JPS6390142A - Method of doping impurity into semiconductor material - Google Patents
Method of doping impurity into semiconductor materialInfo
- Publication number
- JPS6390142A JPS6390142A JP23563086A JP23563086A JPS6390142A JP S6390142 A JPS6390142 A JP S6390142A JP 23563086 A JP23563086 A JP 23563086A JP 23563086 A JP23563086 A JP 23563086A JP S6390142 A JPS6390142 A JP S6390142A
- Authority
- JP
- Japan
- Prior art keywords
- zns
- crystal
- ampule
- type
- regular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012535 impurity Substances 0.000 title claims abstract description 32
- 239000004065 semiconductor Substances 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000000463 material Substances 0.000 title claims description 10
- 230000005684 electric field Effects 0.000 claims abstract description 9
- 239000013078 crystal Substances 0.000 abstract description 23
- 239000003708 ampul Substances 0.000 abstract description 17
- 239000010453 quartz Substances 0.000 abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 14
- 239000002019 doping agent Substances 0.000 abstract description 11
- 239000000843 powder Substances 0.000 abstract description 11
- 239000007864 aqueous solution Substances 0.000 abstract description 6
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 abstract description 5
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract 1
- 238000000197 pyrolysis Methods 0.000 abstract 1
- 239000005083 Zinc sulfide Substances 0.000 description 24
- 229910052984 zinc sulfide Inorganic materials 0.000 description 24
- 238000009792 diffusion process Methods 0.000 description 16
- 230000007547 defect Effects 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003657 tungsten Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体材料に不純物をドーピングする方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of doping semiconductor materials with impurities.
半導体中への不純物ドーピングは半導体デバイスを製作
するプロセスのなかでも最も重要であり不純物ドーピン
グなしではデバイス作成は不可能である。しかしながら
、禁制帯幅の大きい半導体材料にあっては、現在のとこ
ろ、自由にn型、p型にトンピングする事ができない0
例えば、本発明でもちいたZn5([化亜鉛)では、低
抵抗のp型が得られるようなドーピング方法はない。Impurity doping into a semiconductor is the most important process for manufacturing semiconductor devices, and device creation is impossible without impurity doping. However, for semiconductor materials with a large forbidden band width, it is currently not possible to freely dump them into n-type and p-type.
For example, for Zn5 (zinc oxide) used in the present invention, there is no doping method that can provide a p-type with low resistance.
既に述べたように、禁制帯幅の大きい半導体材料におい
ては、n型、p型ドーピングが容易に達成できない、こ
れは、ドーピングによって誘起される母体中の欠陥生成
エネルギーに較べて禁制帯エネルギーが大きくなる為で
あり、この理由は、(1)ドーピングに際して、自己補
償作用Cseef−compensation)により
正規位置に置換したドーパントと正反対の電荷をもつ欠
陥(たとえば母体構成元素の空孔等)が生じる、(2)
ドーピングに際して、自動補償作用(au jo−co
rnpensat i on)により正規位置に置換し
たドーパントと正反対の電荷をもつ欠陥(たとえば同じ
ドーパントが侵入型位置(interstitial
5ite)に存在する欠陥)が生じる、為と考えられ
ている。具体的に本発明で扱ったZnS (硫化亜鉛)
にLiをドーピングした例では、上記(2)の理由によ
りp型結晶ができないとかんかえられている。p型にド
ープできないことはp−n接合により、発光あるいはレ
ーザーダイオード動作が期待されるこの種の半導体デバ
イスにおける致命的な欠点である。As already mentioned, n-type and p-type doping cannot be easily achieved in semiconductor materials with a large forbidden band width.This is because the forbidden band energy is large compared to the defect generation energy in the matrix induced by doping. The reason for this is that (1) during doping, defects (for example, vacancies in the host constituent element, etc.) with a charge opposite to that of the dopant substituted at the normal position are generated due to the self-compensation effect (Cseef-compensation). 2)
During doping, an automatic compensation effect (au jo-co
When the same dopant is substituted at an interstitial position (for example, when the same dopant is substituted at an interstitial position), it is
It is believed that this is due to the occurrence of defects (defects present in 5ite). ZnS (zinc sulfide) specifically treated in the present invention
In the case of doping Li with Li, it is considered that p-type crystals cannot be formed due to the reason (2) above. The impossibility of p-type doping is a fatal flaw in this type of semiconductor device, which is expected to emit light or operate as a laser diode through a pn junction.
本発明の目的は上述した従来の問題点を解決し、禁制帯
幅の大きい半導体材料でもn型、p型のドーピングが容
易に達゛成できる半導体材料への不純物ドーピング法を
提供することにある。An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for doping impurities into semiconductor materials that can easily achieve n-type and p-type doping even in semiconductor materials with a large forbidden band width. .
本発明の半導体材料への不純物ドーピング法は、まず半
導体へ高温での熱拡散により不純物を正規格子位置およ
びそれ以外の位置にドーピングし、熱および電場を併用
した拡散によって、例えば自動補償作用等によって生じ
た侵入型位置のドーパント不純物のみを拡散移動させて
、正規位置に置換したドーパントのみが存在する層を形
成し、更に拡散によって生じた正規格子位置以外に位置
するドーパント不純物等の層を剥離して、目的とする正
規位置に置換したドーパントのみ存在する層を得るもの
である。The method of doping impurities into semiconductor materials of the present invention involves first doping impurities into regular lattice positions and other positions in the semiconductor by thermal diffusion at high temperatures, and then doping the impurities into the semiconductor by diffusion using both heat and an electric field, such as by an automatic compensation effect. Only the dopant impurities at the interstitial positions that have been generated are diffused and moved to form a layer in which only the dopants substituted at the regular positions are present, and the layer containing the dopant impurities, etc. located at positions other than the regular lattice positions that have been generated by diffusion is further peeled off. In this way, a layer is obtained in which only the substituted dopant exists at the intended regular position.
ある種の半導体にある種の不純物を拡散させると、母体
の正規位置を置換すると同時に侵入型位置にも不純物が
位置することはよく知られている。これは母体原子に較
べて拡散しようとする不純物原子が小さい場合によく起
こり、本発明で述べるZnS中のLi、GaP (隣化
ガリウム)中のLi、StやGeの中のLiなどがよく
知られている。一方半導体中の侵入位置型不純物は、置
換位置型不純物に較べて拡散のためのエネルギー障壁は
小さくまたイオン化していれば電場によって容易に拡散
する。従って、適当な温度において、侵入位置の置換位
置型不純物を同時に含む半導体に電場を印加すれば、拡
散エネルギー障壁の小さい侵入位置型不純物のみが片側
の電極へ拡散し、置換位置不純物のみを含む層が形成す
ることが出来る。It is well known that when a certain type of impurity is diffused into a certain type of semiconductor, the impurity replaces the normal position of the parent body and at the same time is located at the interstitial position. This often occurs when the impurity atoms that try to diffuse are smaller than the host atoms, and Li in ZnS, Li in GaP (gallium chloride), Li in St and Ge, etc. described in this invention are well known. It is being On the other hand, an interstitial impurity in a semiconductor has a smaller energy barrier for diffusion than a substitutional impurity, and if ionized, it can be easily diffused by an electric field. Therefore, if an electric field is applied to a semiconductor simultaneously containing substitutional impurities at interstitial sites at an appropriate temperature, only the interstitial impurities with a small diffusion energy barrier will diffuse to one side of the electrode, forming a layer containing only substitutional impurities. can be formed.
本発明による不純物の拡散では、用いる母体半導体の種
類と不純物原子の種類は問わず、高温熱拡散によって生
じる反対符号の欠陥準位(例えばドナー性準位とアクセ
プター性準位等、またこれは外因性、内因性欠陥準位を
含む)の拡散エネルギー障壁に差があれば適用可能であ
り、すべての場合をここに網羅することはできない。In the impurity diffusion according to the present invention, irrespective of the type of host semiconductor and the type of impurity atoms used, defect levels of opposite sign (for example, donor level and acceptor level, etc.) generated by high-temperature thermal diffusion, and also due to external causes. This can be applied if there is a difference in the diffusion energy barrier (including intrinsic defect levels), and it is not possible to cover all cases here.
次に、本発明の実施例について図面を参照して説明する
。第1図および第2図は本発明の一実施例を説明するた
めに工程順に示した工程の原理図であり、第1図は工程
1.第2図は工程2の説明図である。本実施例ではZn
S中にLiを拡散してP型結晶を得る方法について説明
する。Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are principle diagrams of steps shown in order to explain an embodiment of the present invention, and FIG. 1 shows step 1. FIG. 2 is an explanatory diagram of step 2. In this example, Zn
A method for obtaining a P-type crystal by diffusing Li into S will be explained.
先ず工程1として、硫酸リチウム約20グラムを100
グラムの水に溶かし硫酸リチウム水溶液とする。この水
溶液中に10龍×101×1市に切り出し、クロム混酸
液および水酸化カリウム水溶液(30%、90℃)でエ
ツチングしたZnSバルク結晶1を浸し、その後取り出
して約110℃で乾燥させる。このとき、他の不純物が
混入しないように十分注意する0次に十分洗浄した石英
アンプル2にこの硫酸リチウム水溶液を塗布され乾燥さ
せたZnSバルク結晶1と、この結晶の熱分解を防ぐ為
に入られたZnS粉末3を第1図の配置の様に入れた後
、石英ア〉・プル2を高真空排気装置につなぐ。ZnS
粉末3がまわないように石英アンプル2を排気し、10
”TOrr以下の超高真空になったところでこの石英ア
ンプル2を封じ切る。この後石英アンプル2全体を電気
炉4内に、加熱ヒーター5および6によってそれぞれZ
nSバルク結晶1と、ZnS粉末3が独立に加熱される
様に配置する。上記の操作ののち、加熱ヒーター5およ
び6に電流を流す。このLiの高温熱拡散の為の温度、
時間は種々の条件に依存するが、本実施例の場合、Zn
Sバルク結晶1の温度を850℃、ZnS粉末3の温度
が870℃となる様に設定し5時間保持した。上記熱処
理の後、石英アンプル2を割ってZnSバルク結晶1を
取り出し、水酸化カリウム水溶液(30%、90℃)で
エツチングした後、結晶の両面にタングステン金属を蒸
着する。このタングステン金属にIIIIlファイの白
金線を圧着する。First, in step 1, about 20 grams of lithium sulfate is
Dissolve it in gram of water to make a lithium sulfate aqueous solution. A ZnS bulk crystal 1 cut into 10 x 101 x 1 pieces and etched with a chromium mixed acid solution and a potassium hydroxide aqueous solution (30%, 90°C) is immersed in this aqueous solution, then taken out and dried at about 110°C. At this time, the ZnS bulk crystal 1, which has been coated with this lithium sulfate aqueous solution and dried, is added to a quartz ampoule 2 that has been thoroughly washed and thoroughly washed to prevent other impurities from being mixed in. After putting in the ZnS powder 3 as shown in FIG. 1, the quartz pulley 2 is connected to a high vacuum evacuation device. ZnS
Evacuate the quartz ampoule 2 so that the powder 3 does not spread, and
The quartz ampoule 2 is sealed when the ultra-high vacuum below TOrr is reached.Then, the entire quartz ampoule 2 is placed in an electric furnace 4 and heated to Z by heating heaters 5 and 6, respectively.
The nS bulk crystal 1 and the ZnS powder 3 are arranged so as to be heated independently. After the above operation, current is applied to the heaters 5 and 6. The temperature for this high-temperature thermal diffusion of Li,
Although the time depends on various conditions, in the case of this example, Zn
The temperature of the S bulk crystal 1 was set at 850°C and the temperature of the ZnS powder 3 was set at 870°C, and maintained for 5 hours. After the above heat treatment, the quartz ampoule 2 is broken and the ZnS bulk crystal 1 is taken out, and after etching with an aqueous potassium hydroxide solution (30%, 90° C.), tungsten metal is deposited on both sides of the crystal. A III-phi platinum wire is crimped onto this tungsten metal.
次に、工程2として、第2図に示すように、十分洗浄し
た石英アンプル7に、予め工程1でLiを拡散され、電
圧を印加するため結晶両面にタングステン金属電極8お
よび9を持つZnSバルク結晶10と、この結晶の熱分
解を防ぐ為に入れられたZnS粉末11を配置し、タン
グステン金属電極8および9から引き出された白金線1
2および13を、予め石英アンプル7に取り付けられた
貫通電極14及び15につなぎ、更に貫通電極14及び
15は石英アンプル7の外に置かれた電源16に接続さ
れ、石英アンプル全体は電気炉17内に配置されて独立
な加熱ヒーター18および19によってそれぞれZnS
バルク結晶10と、ZnS粉末11が独立に加熱される
様に配置される。Next, in step 2, as shown in FIG. 2, a ZnS bulk film, which has been previously diffused with Li in step 1 and has tungsten metal electrodes 8 and 9 on both sides of the crystal, is placed in a thoroughly cleaned quartz ampoule 7. A platinum wire 1 drawn out from tungsten metal electrodes 8 and 9 is placed with a crystal 10 and ZnS powder 11 added to prevent thermal decomposition of the crystal.
2 and 13 are connected to through electrodes 14 and 15 that have been attached to the quartz ampoule 7 in advance, and the through electrodes 14 and 15 are further connected to a power source 16 placed outside the quartz ampoule 7, and the entire quartz ampoule is connected to an electric furnace 17. ZnS is heated by independent heaters 18 and 19 arranged in
The bulk crystal 10 and the ZnS powder 11 are arranged so as to be heated independently.
上記の操作のうち、加熱ヒーター18および19に電流
を流す。このLiの電場および熱拡散の為の温度、時間
、電源16の電圧、等は種々の条件に依存するが、本実
施例の場合、ZnSバルク結晶10の温度を320℃、
ZnS粉末11の温度が400℃となる様に設定し、電
圧を1000ポルhとして、30時間保持した。Among the above operations, current is passed through the heaters 18 and 19. The temperature, time, voltage of the power supply 16, etc. for this electric field and thermal diffusion of Li depend on various conditions, but in the case of this example, the temperature of the ZnS bulk crystal 10 was set to 320°C,
The temperature of the ZnS powder 11 was set to 400° C., the voltage was set to 1000 pol h, and this was maintained for 30 hours.
この後工程3として、石英アンプル7を割ってZnSバ
ルク結晶10を取り出し、水酸化カリウム水溶液(30
%、90℃)でエツチングして表面あるいは裏面に存在
する高抵抗層をとりさる。In the subsequent step 3, the quartz ampoule 7 is broken, the ZnS bulk crystal 10 is taken out, and a potassium hydroxide aqueous solution (30
%, 90° C.) to remove the high resistance layer present on the front or back surface.
室温でのHall測定によって、上記の操作後のZnS
バルク結晶の正孔濃度を評価した結果、ホール係数は正
、すなわちp型を示し、キャリア濃度はI X l 0
17 cm−、であった。またLiの高温熱拡散(工程
1および工程3)のみを行なった試料では、高抵抗の為
Hall測定は不可能であった。Hall measurements at room temperature revealed that ZnS after the above operations
As a result of evaluating the hole concentration of the bulk crystal, the Hall coefficient was positive, that is, p-type, and the carrier concentration was I
It was 17 cm. In addition, Hall measurement was impossible for samples subjected to only high-temperature thermal diffusion of Li (Steps 1 and 3) due to high resistance.
本実施例では半導体としてZnS、*た不純物としてL
iを選んだが、作用の項で述べたように、用いる母体半
導体の種類と不純物原子の種類は問わず、高温熱拡散に
よって生じる反対符号の欠陥準位(例えばドナー性準位
とアクセプター性準位等、またこれは外因性、内因性欠
陥準位を含む)の拡散エネルギー障壁に差があれば適用
可能であり例えば母体となる半導体としてはSi、Ge
、I nP、GaAs、AIGaN、AlGaP、Al
GaInSb、Zn5e、C(ダイヤモンド)、などの
種類を問わず、更に結晶かアモルファスかも問わない。In this example, ZnS is used as the semiconductor, and L is used as the impurity.
However, as mentioned in the section on effects, regardless of the type of host semiconductor and the type of impurity atoms used, defect levels of opposite sign (for example, donor level and acceptor level) generated by high-temperature thermal diffusion This can also be applied if there is a difference in the diffusion energy barrier of (including extrinsic and intrinsic defect levels); for example, the base semiconductor may be Si, Ge, etc.
, InP, GaAs, AIGaN, AlGaP, Al
It does not matter whether it is GaInSb, Zn5e, C (diamond), etc., and whether it is crystalline or amorphous.
また不純物原子としても通常のドナーやアクセプターと
なる元素は勿論のこと、例えば還移金属元素等でも可能
であり、その種類を限るものではない。In addition, the impurity atoms can be not only ordinary donor and acceptor elements but also, for example, reduction metal elements, and the type thereof is not limited.
このように、本発明の方法により作製したLiドーズZ
nSの電気的特性から、従来の方法では達成できなかっ
たp型ZnSが作製可能である事がわかる。この発明は
このように半導体中へ電場および熱拡散によって不純物
置換位置を制御できるようにしたものであり、全ての半
導体への不純物ドーピングにその活用が期待されるもの
である。In this way, the Li dose Z produced by the method of the present invention
It can be seen from the electrical characteristics of nS that p-type ZnS, which could not be achieved by conventional methods, can be produced. In this way, the present invention enables the position of impurity substitution into a semiconductor to be controlled by an electric field and thermal diffusion, and is expected to be utilized for doping impurities into all semiconductors.
第1図および第2図は本発明の一実施例を説明するため
に工程順に示した原理図であり、第1図はLiのZnS
への高温熱拡散工程(工程1)。
第2図はLiのZnSへの電場及び熱拡散工程(工程2
)を示す。
1・・・ZnSバルク結晶、2・・・石英アンプル、3
・・・ZnS粉末、4・・・電気炉、5.6・・・加熱
ヒータ、7・・・石英アンプル、8.9・・・タングス
テン電極、10・・・ZnSバルク結晶、11・・・Z
nS粉末、12.13・・・白金線、14.15・・・
貫通電極、16・・・電源、17・・・電気炉、18.
19・・・加熱し−タ。1 and 2 are principle diagrams shown in the order of steps to explain one embodiment of the present invention.
high temperature thermal diffusion step (step 1). Figure 2 shows the electric field and thermal diffusion process (process 2) of Li into ZnS.
) is shown. 1...ZnS bulk crystal, 2...quartz ampoule, 3
... ZnS powder, 4... Electric furnace, 5.6... Heater, 7... Quartz ampoule, 8.9... Tungsten electrode, 10... ZnS bulk crystal, 11... Z
nS powder, 12.13...Platinum wire, 14.15...
Through electrode, 16... Power supply, 17... Electric furnace, 18.
19... Heat up.
Claims (1)
記半導体材料に熱および電場を同時に印加し所望の格子
位置のみに前記導入不純物を置換させる工程2と、前記
導入不純物のうち所望の格子位置に置換していないもの
を取り去る工程3とを含むことを特徴とする半導体材料
への不純物ドーピング法。Step 1 of introducing an impurity into a semiconductor material; Subsequently, Step 2 of simultaneously applying heat and an electric field to the semiconductor material to replace the introduced impurity only at a desired lattice position; and replacing the introduced impurity at a desired lattice position. 3. A method for doping impurities into a semiconductor material, the method comprising the step of removing impurities that are not present.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61235630A JPH0695497B2 (en) | 1986-10-02 | 1986-10-02 | Impurity doping method for semiconductor materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61235630A JPH0695497B2 (en) | 1986-10-02 | 1986-10-02 | Impurity doping method for semiconductor materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6390142A true JPS6390142A (en) | 1988-04-21 |
JPH0695497B2 JPH0695497B2 (en) | 1994-11-24 |
Family
ID=16988860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61235630A Expired - Fee Related JPH0695497B2 (en) | 1986-10-02 | 1986-10-02 | Impurity doping method for semiconductor materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0695497B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178500A (en) * | 1985-01-31 | 1986-08-11 | マツクス‐プランク‐ゲゼルシヤフト・ツール・フエルデルング・デル・ヴイツセンシヤフテン・エー・フアウ | Conversion of local atomic composition of solid body, manufacture of semiconductor having locally different electroconductivities, polarization of semiconductor p-n junction, semiconductor-constitutional element, condensationfor matter and gas accumulator |
-
1986
- 1986-10-02 JP JP61235630A patent/JPH0695497B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178500A (en) * | 1985-01-31 | 1986-08-11 | マツクス‐プランク‐ゲゼルシヤフト・ツール・フエルデルング・デル・ヴイツセンシヤフテン・エー・フアウ | Conversion of local atomic composition of solid body, manufacture of semiconductor having locally different electroconductivities, polarization of semiconductor p-n junction, semiconductor-constitutional element, condensationfor matter and gas accumulator |
Also Published As
Publication number | Publication date |
---|---|
JPH0695497B2 (en) | 1994-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grecu et al. | Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells | |
Brebrick et al. | Composition stability limits of PbTe. II | |
EP1997157B1 (en) | Method for fabricating a photovoltaic element with stabilised efficiency | |
Osburn | Dielectric Breakdown Properties of SiO2 Films Grown in Halogen and Hydrogen‐Containing Environments | |
Chu et al. | Thin‐film junctions of cadmium telluride by metalorganic chemical vapor deposition | |
JP2002231627A (en) | Method of manufacturing photoelectric conversion unit | |
Harris et al. | Silicon self‐interstitial supersaturation during phosphorus diffusion | |
Toyama | Effect of Heat Treatment on Gallium Arsenide Crystals. I. Thermal Conversion in Excess Arsenic Vapor | |
US4385938A (en) | Dual species ion implantation into GaAs | |
KR100421800B1 (en) | Method of manufacturing zinc oxide semiconductor | |
Rao et al. | Two‐step rapid thermal annealing of Si‐implanted InP: Fe | |
US3732471A (en) | Method of obtaining type conversion in zinc telluride and resultant p-n junction devices | |
Finkman et al. | Surface recombination velocity of anodic sulfide and ZnS coated p‐HgCdTe | |
JPS6390142A (en) | Method of doping impurity into semiconductor material | |
JPS6390143A (en) | Method of doping impurity into semiconductor material | |
Kobayashi et al. | Impurity conduction of cleaned germanium surfaces at low temperatures | |
Pearton et al. | Hydrogen in Semiconductors: Crystal growth and device processing | |
Henini et al. | Deep states in GaAs LEC crystals | |
Sandiford | Temperature dependence of carrier lifetime in silicon | |
JPS6392030A (en) | Manufacture of semiconductor device | |
Nishimura et al. | Effect of heat treatment on p‐type CdTe crystals and CdS/CdTe heterojunctions formed by chemical vapor deposition | |
US3373059A (en) | Method of making photosensitive elements | |
US4675087A (en) | Semiconductor purification by solid state electromigration | |
US20240355884A1 (en) | Purified surface region of an oxide semiconductor, and method of near-surface purification | |
López-Rubio et al. | Multi-step rapid thermal annealing of boron and indium implanted Hg 1− x Cd x Te |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |