JPS6390038A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS6390038A
JPS6390038A JP61233215A JP23321586A JPS6390038A JP S6390038 A JPS6390038 A JP S6390038A JP 61233215 A JP61233215 A JP 61233215A JP 23321586 A JP23321586 A JP 23321586A JP S6390038 A JPS6390038 A JP S6390038A
Authority
JP
Japan
Prior art keywords
layer
recording layer
optical recording
recording medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61233215A
Other languages
Japanese (ja)
Inventor
Katsuhide Tamura
田村 勝秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61233215A priority Critical patent/JPS6390038A/en
Publication of JPS6390038A publication Critical patent/JPS6390038A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of corrosion, crack and exfoliation at the end of the recording layer of a substrate by a taper to the end of the optical recording layer so as to decrease the thickness each slightly over the entire width of a specific value or above. CONSTITUTION:A part A where the recording layer is not provided is provided near the end of the substrate 1. The width thereof is about 0.3-20mm. The recording layer 2a is formed by tapering B said part gently to eliminate steps until the tapered part connects to the part A. The width of the part B is enough with 50mum and is set at >=50mum if the film thickness of the layer 2a is about usual 100Angstrom -2mum. The corrosion, crack and exfoliation to be generated at the end of the layer 2a are thereby prevented and the annihilation of the recorded information at the end is obviated. The reliability of preservation is improved and the recording region is widened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ビームにより記録・再生を行うことが可能
な光学的記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical recording medium on which recording and reproduction can be performed using a light beam.

〔従来の技術〕[Conventional technology]

従来より、光ディスクに用いられる光学的記録、  媒
体としては、希土類−遷移金属の合金薄膜、非晶質から
結晶質への相転移を利用したカルコゲン化合物等の還元
性酸化物薄膜、ヒートモード記録媒体、サーモプラスチ
ック記録媒体等が知られている。例えば、希土類−遷移
金属の合金薄膜で形成される光磁気記録媒体としては、
MnB1. MnCuB1などの多結晶薄膜、GdGo
、 GdFe、 TbFe、 DyFe。
Conventionally, optical recording media used in optical disks include rare earth-transition metal alloy thin films, reducing oxide thin films such as chalcogen compounds that utilize phase transition from amorphous to crystalline, and heat mode recording media. , thermoplastic recording media, etc. are known. For example, as a magneto-optical recording medium formed of a rare earth-transition metal alloy thin film,
MnB1. Polycrystalline thin films such as MnCuB1, GdGo
, GdFe, TbFe, DyFe.

GdTbFe、 TbDyFeなどの非晶質薄膜、Gd
IGなどの単結晶薄膜などが知られている。
Amorphous thin films such as GdTbFe and TbDyFe, Gd
Single crystal thin films such as IG are known.

これらの薄膜のうち、大面積の薄膜を室温近傍の温度で
製作する際の成膜性、信号を小さな光熱エネルギーで書
き込むための書き込み効率、および書き込まれた信号を
S/N比よく読み出すための読み出し効率等を勘案して
、最近では前記非晶質薄膜が光学的記録媒体として優れ
ていると考えられている。GdTbFeはカー回転角も
大きく、150℃前後のキューリー点を持つので光磁気
記録媒体として適している。更に我々はカー回転角を向
上させる目的で研究した結果、GdTbFeCoがカー
回転角が充分に大きく、S/N比の良い読み出しが可能
な光磁気記録媒体であることを見い出した。
Among these thin films, there are various issues such as film formability when manufacturing large-area thin films at temperatures near room temperature, writing efficiency for writing signals with small photothermal energy, and readout of written signals with a good S/N ratio. Recently, the amorphous thin film is considered to be excellent as an optical recording medium in consideration of read efficiency and the like. GdTbFe has a large Kerr rotation angle and a Curie point of around 150° C., so it is suitable as a magneto-optical recording medium. Furthermore, as a result of our research aimed at improving the Kerr rotation angle, we found that GdTbFeCo is a magneto-optical recording medium that has a sufficiently large Kerr rotation angle and allows readout with a good S/N ratio.

しかしながら、GdTbFeをはじめとして、一般に非
晶質磁性体は耐腐食性が劣り、磁気を有する雰囲気中で
は腐食されて磁気特性の劣化を生じるという欠点がある
。この欠点は、光磁気記録媒体のみならず、上述した光
学的記録媒体の共通の課題である。
However, amorphous magnetic materials such as GdTbFe generally have poor corrosion resistance, and have the drawback that they are corroded in a magnetic atmosphere, resulting in deterioration of magnetic properties. This drawback is a common problem not only with magneto-optical recording media but also with the above-mentioned optical recording media.

このような欠点を除くために、従来から、非晶質磁性体
の記録磁性層の上に保護層を設けたり、あるいは不活性
ガスによって記録磁性層を封じ込めたエアーサンドイッ
チ構造や張り合わせ構造のディスク状光磁気記録媒体が
提案されている。
In order to eliminate these drawbacks, conventional methods have been to provide a protective layer on the recording magnetic layer made of an amorphous magnetic material, or to create an air sandwich structure in which the recording magnetic layer is sealed with an inert gas or a disc-shaped laminated structure. Magneto-optical recording media have been proposed.

光磁気記録媒体の腐食の原因は、基板の汚れ、媒体形成
後のハンドリング等による油、汚れの付着、湿度、酸素
等であると考えられる。従って、光磁気記録媒体の腐食
は、基板の端面からおこり、広がっていく傾向がある。
The causes of corrosion of magneto-optical recording media are thought to be dirt on the substrate, oil and dirt from handling after the medium is formed, humidity, oxygen, and the like. Therefore, corrosion of a magneto-optical recording medium tends to start from the end surface of the substrate and spread.

そこで従来より、基板の全面に形成された光学的記録層
の基板端部に形成された部分は、記録部として使用され
ることはなかった。しかし、記録層の一部に腐食が始ま
ると、その箇所に局部電池が形成され、その周辺の腐食
が速まり最終的には記録部まで腐食が進行してしまい、
記録層の基板端面に形成された部分を記録部として使用
しないことは、耐腐食性の向上という点からは、何ら意
味のないものである。それゆえ、基板の外縁部及び/又
は内縁部の記録部として使用しない部分には光学的記録
層を形成しない方法が記録部の腐食を実質的に防止する
有効な手段として従来から実施されていた。
Conventionally, therefore, the portion of the optical recording layer formed on the entire surface of the substrate, which is formed at the edge of the substrate, has not been used as a recording section. However, when corrosion begins in a part of the recording layer, a local battery is formed at that location, and the corrosion around it accelerates, eventually progressing to the recording area.
Not using the portion of the recording layer formed on the end surface of the substrate as a recording section is meaningless from the standpoint of improving corrosion resistance. Therefore, a method of not forming an optical recording layer on parts of the outer and/or inner edges of the substrate that are not used as a recording part has been conventionally practiced as an effective means of substantially preventing corrosion of the recording part. .

このような光学的記録媒体及び全面に記録層を設けた光
学的記録媒体について図面を用いて説明する。第3図は
基板の端部まで記録層を設けた光学的記録媒体の外縁部
付近の断面図である。第4図は基板の端部付近には記録
媒体を形成しない状態を示す光学的記録媒体の外縁部付
近の断面図である。第3図、第4図に於いて、1は基板
、2は光学的記録層である。2aの光学的記録層は単層
の場合も有るが、保護層、反射層等がその上下に積層し
て形成された多層膜構成の場合も有る。これらの光学的
記録層の厚みは通常数百λ〜2μ程度が一般的で有る。
Such an optical recording medium and an optical recording medium provided with a recording layer over the entire surface will be explained with reference to the drawings. FIG. 3 is a sectional view of the vicinity of the outer edge of an optical recording medium in which a recording layer is provided up to the edge of the substrate. FIG. 4 is a sectional view of the vicinity of the outer edge of the optical recording medium, showing a state in which no recording medium is formed near the edge of the substrate. In FIGS. 3 and 4, 1 is a substrate and 2 is an optical recording layer. The optical recording layer 2a may be a single layer, but may also have a multilayer structure in which a protective layer, a reflective layer, etc. are laminated above and below. The thickness of these optical recording layers is generally about several hundred λ to 2 μ.

第4図に於けるAの幅は0.3mm〜20mm程度が一
般的である。第4図に於いては記録層を形成した部分と
形成しない部分の境界が明確で記録層の厚み分の段差が
そこに形成される。
The width of A in FIG. 4 is generally about 0.3 mm to 20 mm. In FIG. 4, the boundary between the area where the recording layer is formed and the area where it is not formed is clear, and a step corresponding to the thickness of the recording layer is formed there.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし第4図に示したような構造の記録媒体の場合、記
録層を形成した部分と形成しない部分の境界部、すなわ
ち記録層の端部は長期の使用では耐久性が不充分で腐食
やクラックや剥離が発生する。記録層の端部の潜在的歪
応力等がこの原因と考えられる。
However, in the case of a recording medium with the structure shown in Figure 4, the boundary between the area where the recording layer is formed and the area where it is not formed, that is, the edge of the recording layer, is not durable enough to corrode or crack during long-term use. or peeling may occur. This is thought to be caused by latent strain stress at the edge of the recording layer.

本発明は上記問題点に鑑み成されたものであり、その目
的は基板の記録層端部に発生する腐食やクラックや剥離
が防止された光学的記録媒体を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its object is to provide an optical recording medium in which corrosion, cracking, and peeling occurring at the ends of the recording layer of a substrate are prevented.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は以下の光学的記録媒体によって達成
される。
The above objects of the present invention are achieved by the following optical recording medium.

すなわち本発明は、基板上のその端部から一定間隔は除
いた部分に光学的記録層を形成してなる光学的記録媒体
であって、該光学的記録層はその端部に50p以上の巾
にわたって少しずつ薄くなるように傾斜が設けられてい
る光学的記録媒体である。
That is, the present invention provides an optical recording medium in which an optical recording layer is formed on a substrate at a certain distance from the edge thereof, and the optical recording layer has a width of 50p or more at the edge. This is an optical recording medium that has a slope that gradually becomes thinner over the entire length.

第1図は本発明による光学的記録媒体の端部付近の断面
の模式図である。図に於いて1.2aは第3図、第4図
と同様に基板と記録層である。記録層は同様に多層膜構
成でも良い。Aの範囲は第2図と同様に端部付近の記録
層を設けない部分であり、その巾は0.3 mm〜20
+++m程度である。Bの範囲は本発明の特徴であり、
2の記録層が段差がなくなだらかに記録層を設けていな
い部分Aにつながる様に記録層を形成した部分である。
FIG. 1 is a schematic cross-sectional view of the vicinity of an end of an optical recording medium according to the present invention. In the figure, 1.2a is a substrate and a recording layer as in FIGS. 3 and 4. Similarly, the recording layer may have a multilayer structure. The range A is the area near the edge where no recording layer is provided, as in Figure 2, and its width is 0.3 mm to 20 mm.
It is about +++m. The range B is a feature of the present invention,
This is a portion where the recording layer is formed so that the recording layer No. 2 smoothly connects to the portion A where no recording layer is provided, without any step.

Bの巾は記録層の膜厚に対し充分にとる必要が有るが、
記録層の膜厚が通常の100人〜2戸程度である場合に
は50u+であれば充分で、大きくても1mm <らい
である。具体的にはこの傾斜の程度は傾斜郡全体として
は50μ〜0.5+nm <らいであることが好ましい
The width of B needs to be sufficient for the thickness of the recording layer,
When the thickness of the recording layer is normally used for about 100 people to 2 households, 50u+ is sufficient, and the thickness is at most 1 mm. Specifically, the degree of this inclination is preferably 50 μm to 0.5+nm for the entire inclination group.

このBの部分を形成する方法を以下に述べる。A method for forming part B will be described below.

薄膜の記録層の通常の作成法としては蒸着やスパッタリ
ングやCVD法が有る。これらの方法に於いて第4図の
Aの部分を作成するには通常、基板のAの部分に膜が形
成されるのを防ぐマスクが使用される。第5図はこれを
示す模式図で有り、1は基板、3はマスクで有る。第5
図の様にマスク3を付けた状態で記録層を形成すると第
4図の様な記録層が形成される。
Conventional methods for forming a thin film recording layer include vapor deposition, sputtering, and CVD. In these methods, a mask is usually used to create the portion A in FIG. 4, which prevents a film from being formed on the portion A of the substrate. FIG. 5 is a schematic diagram showing this, where 1 is a substrate and 3 is a mask. Fifth
When a recording layer is formed with the mask 3 attached as shown, a recording layer as shown in FIG. 4 is formed.

これに対し第6図、第7図は第1図に於けるBの部分を
形成するための方法の例で有り、第5図と同様に1は基
板、3はマスクである。第6図に於いては7スク3に面
取り部分4を設けてあり、第7図ではマスクと基板との
間にスキマが設けて有る。面取りやスキマの大きさは各
種成膜方法により影の部分への回りこみ性が異なるので
、成膜方法の特性に応じて決めれば良い。
On the other hand, FIGS. 6 and 7 are examples of a method for forming the portion B in FIG. 1, where 1 is a substrate and 3 is a mask, as in FIG. 5. In FIG. 6, a chamfered portion 4 is provided on seven masks 3, and in FIG. 7, a gap is provided between the mask and the substrate. The size of the chamfer or gap may be determined depending on the characteristics of the film forming method, since the ability to wrap around the shadow area differs depending on the film forming method.

第1図のBの範囲に示す様ななだらかな記録層の端部を
形成する事により、記録層端部の潜在的歪応力が減少す
るために記録層端部から発生する腐食やクラックや剥離
が防止されるものと考えられる。
By forming a gentle edge of the recording layer as shown in the area B in Figure 1, the potential strain stress at the edge of the recording layer is reduced, resulting in corrosion, cracking, and peeling occurring at the edge of the recording layer. This is considered to be prevented.

記録層が多層膜構成の場合の本発明の実施態様を第8図
に示す。第8図の光学的記録媒体は記録層を設けた2枚
の基板を部材を介して貼り合わせたエアーサンドイッチ
構造のものであり、1は基板、2aは記録層、2bは反
射層、2cは下引層である。このような多層構造の場合
には以下の様な事も耐久性向上の原因になると考えられ
る。すなわち、第1図に於いて、Bの範囲のAに接する
端末部では記録層の厚さは0〜100人程度である。こ
の部分では膜が薄すぎるため連続膜にはならず、いわゆ
るアイランド状である。このことは第8図のBの範囲の
Aに接する端末部においても同じことで、その部分的拡
大図を第9図に示している。
FIG. 8 shows an embodiment of the present invention in which the recording layer has a multilayer structure. The optical recording medium shown in FIG. 8 has an air sandwich structure in which two substrates each having a recording layer are bonded together via a member. 1 is the substrate, 2a is the recording layer, 2b is the reflective layer, and 2c is the It is a subbing layer. In the case of such a multilayer structure, the following factors are also considered to be causes of improved durability. That is, in FIG. 1, the thickness of the recording layer at the end portion in contact with A in the range B is about 0 to 100 mm. Since the film is too thin in this part, it is not a continuous film, but has a so-called island shape. This also applies to the terminal portion in contact with A in the range B in FIG. 8, and a partially enlarged view thereof is shown in FIG.

第9図の破線Cで囲む部分においてはこのアイランド状
のまま多層膜が積層して形成されるため、この部分では
多層膜の各層間の境界が明確ではなく、混合された層と
して形成される結果となり、層間剥離等が発生しにくい
と考えられる。
In the area surrounded by the broken line C in Figure 9, the multilayer film is stacked in this island shape, so the boundaries between each layer of the multilayer film are not clear in this area, and they are formed as mixed layers. As a result, it is thought that delamination etc. are less likely to occur.

なお、第1.8.9図に示した本発明の特徴である光学
的記録媒体の端部付近の断面図は模式図で有り、これら
の図中ではBの範囲で直線的に膜厚が減少する傾斜が設
けられている様に示されているが、傾斜はこれに限定さ
れるものではなく、カーブの有る曲線的膜厚減少傾斜で
も良い。また、第2図に示す様に記録層の端に小さな段
差が残っているようなものであってもBのなだらかな膜
厚減少傾斜部が一部形成されていればそれだけの効果は
認められる。
Note that the cross-sectional views near the edges of the optical recording medium, which is a feature of the present invention, shown in Figure 1.8.9 are schematic views, and in these figures, the film thickness is linearly increased within the range B. Although shown as having a decreasing slope, the slope is not limited to this, and may be a curvilinear film thickness decreasing slope. Furthermore, as shown in Figure 2, even if a small step remains at the edge of the recording layer, the effect can be recognized as long as a part of the gradual B thickness decreasing slope is formed. .

本発明は上記のように記録層の端部に傾斜を設けること
に限らず、下引層、保護層、反射防止層、反射層、断熱
層、干渉層等の端部も同様の形状にすることにより、そ
れぞれの層の剥離等が防止でき、記録媒体全体としても
信頼性の向上が計られる。このような態様のうち保護層
を記録層と同様に形成する場合は、保護層を記録層より
は大きく形成するが基板の端までは形成しない方法でも
有効である。
The present invention is not limited to providing the edges of the recording layer with an inclination as described above, but also makes the edges of the undercoat layer, protective layer, antireflection layer, reflective layer, heat insulating layer, interference layer, etc. have a similar shape. By doing so, peeling of each layer can be prevented, and the reliability of the recording medium as a whole can be improved. In this embodiment, when the protective layer is formed in the same manner as the recording layer, it is also effective to form the protective layer larger than the recording layer but not to the edge of the substrate.

(実施例) 以下、本発明の実施例を挙げて本発明を更に詳細に説明
する。
(Example) Hereinafter, the present invention will be explained in more detail by giving examples of the present invention.

実施例1 第1図に示すように記録層が設けられているその上に保
護層と保護用のガラス板が配されている光学的記録媒体
を次の様にして製作した。外周200mmφ、中心部穴
径35mmφのドーナツ状1.2mm厚のガラス基板1
に厚さ1mmの外周縁部5mmをおおうマスク及び内周
縁部10+nmをおおうマスクを設置した。マスクのエ
ツジ部は第6図の4に示すような直角を挾む2辺の長さ
がどちらも0.2mmの直角二等辺三角形の形状をした
面取りを設けた。その後、スパッタリングによりGdT
bFeGoの磁性薄膜記録層2aを1000人の厚さに
形成した。次いで磁性薄膜記録層の上に、真空蒸着装置
を用いて抵抗加熱により保護層としてAIを膜厚300
0人で蒸着した。この記録層付きのガラス板と、保護用
のガラス板とを接着剤〔商品名:ボンドEセットM:発
売元:コニシ■〕で貼り合わせて光熱磁気記録媒体を製
作した。
Example 1 As shown in FIG. 1, an optical recording medium having a recording layer on which a protective layer and a protective glass plate were arranged was manufactured in the following manner. A donut-shaped 1.2 mm thick glass substrate 1 with an outer circumference of 200 mmφ and a center hole diameter of 35 mmφ.
A mask with a thickness of 1 mm covering the outer peripheral edge 5 mm and a mask covering the inner peripheral edge 10+ nm were installed. The edge portion of the mask was chamfered in the shape of a right isosceles triangle with the length of the two sides sandwiching the right angle being 0.2 mm, as shown in 4 in FIG. 6. After that, GdT was formed by sputtering.
A bFeGo magnetic thin film recording layer 2a was formed to a thickness of 1000 mm. Next, on the magnetic thin film recording layer, AI was deposited as a protective layer to a thickness of 300 mm by resistance heating using a vacuum evaporation device.
Vapor deposition was performed by 0 people. This glass plate with the recording layer and a protective glass plate were bonded together with an adhesive [trade name: Bond E Set M, publisher: Konishi ■] to produce a photothermal magnetic recording medium.

比較のため、面取のないマスクを用いる以外は同じ条件
で、光熱磁気記録媒体を作成した。
For comparison, a photothermal magnetic recording medium was produced under the same conditions except that a mask without a chamfer was used.

以上の2つの記録媒体の外周縁部近くの記録層端部を透
過型顕微鏡で観察したところ、面取を設けたマスクを用
いた媒体では透過光量が記録層端部の約0.2mmの巾
の部分で徐々に変化していて第1図のBのようななだら
かな膜厚変化をしていることが確認された。一方、比較
のため面取のないマスクを用いて作成した記録層では顕
微鏡で明確な明暗比が観察された事により第4図の様な
段差の有る記録膜が形成された事が確認された。
When the edges of the recording layer near the outer periphery of the above two recording media were observed using a transmission microscope, it was found that in the medium using a mask with a chamfer, the amount of transmitted light was approximately 0.2 mm wide at the edge of the recording layer. It was confirmed that there was a gradual change in the film thickness in the area shown in B in Figure 1. On the other hand, for comparison, in the recording layer created using a mask without a chamfer, a clear brightness ratio was observed under a microscope, and it was confirmed that a recording film with steps as shown in Figure 4 was formed. .

この光熱磁気記録媒体を75℃、相対湿度85%の恒温
恒湿槽に入れて耐腐食性試験を1000時間行なった後
、肉眼的に観察した。その結果、面取を設けたマスクに
より作成した記録層は腐食の発生が認められなかったが
、面取なしのマスクにより作成した記録層は外縁部、内
縁部の記録層端部から腐食が発生し端部からの腐食侵入
距離は最大3mmであった。
This photothermal magnetic recording medium was placed in a constant temperature and humidity chamber at 75°C and relative humidity of 85%, and a corrosion resistance test was conducted for 1000 hours, after which it was visually observed. As a result, no corrosion was observed in the recording layer created using a mask with a chamfer, but corrosion occurred from the edges of the recording layer at the outer and inner edges of the recording layer created using a mask without a chamfer. The maximum corrosion penetration distance from the edge was 3 mm.

実施例2 実施例1に対し、A1の保護膜が無い以外は全く同一条
件で光熱磁気記録媒体を作成した。顕微鏡観察の結果、
実施例1と同様に面取りの有るマスクでは、記録層端部
がなだらかな膜厚減少をしており、面取りのないマスク
では段差が有る事が確認された。
Example 2 A photothermal magnetic recording medium was produced under exactly the same conditions as in Example 1 except that the protective film A1 was not provided. As a result of microscopic observation,
As in Example 1, it was confirmed that the mask with a chamfer had a gradual decrease in film thickness at the end of the recording layer, and the mask without a chamfer had a step.

この光熱磁気記録媒体を60℃、相対湿度90%の恒温
恒湿槽に入れて耐腐食性試験を1000時間行なった後
、肉眼的に観察した。その結果、面取りを設けたマスク
により作成した記録層は腐食の発生が認められなかった
が、面取なしのマスクにより作成した記録層は外縁部、
内縁部の記録層端部から腐食が発生し、端部からの腐食
侵入距離は最大5mmであった。
This photothermal magnetic recording medium was placed in a constant temperature and humidity chamber at 60° C. and relative humidity of 90%, and a corrosion resistance test was conducted for 1000 hours, after which it was visually observed. As a result, no corrosion was observed in the recording layer created with a mask with a chamfer, but on the outer edge of the recording layer created with a mask without a chamfer,
Corrosion occurred from the edge of the recording layer at the inner edge, and the maximum corrosion penetration distance from the edge was 5 mm.

実施例3 実施例1と同じ基板の上に実施例1と同じマスクを設置
して、スパッタリングによりSiOの下引層を1000
人の厚さに形成し、次いで下引層の上にGdTbFe1
l:oの磁性薄膜記録層2aを1000人の厚さに形成
した。更に記録層の上にSinの保護層を1 (1(1
0人の厚さに形成し、光熱磁気記録媒体を得た。この光
熱磁気記録媒体2枚を記録層が内側になるように環状の
アルミ族、厚さ1mm、巾3mmの内外周スペーサ一部
材を介して2液温合エポキシポリアミド系接着剤によっ
て貼り合わせて第8図に断面図を示すようなエアーサン
ドイチ構造の光熱磁気記録媒体を得た。
Example 3 The same mask as in Example 1 was placed on the same substrate as in Example 1, and a SiO undercoat layer of 1,000 ml was formed by sputtering.
GdTbFe1 on top of the undercoat layer.
A 1:0 magnetic thin film recording layer 2a was formed to a thickness of 1,000 layers. Furthermore, a protective layer of 1 (1 (1
A photothermal magnetic recording medium was obtained. These two photothermal magnetic recording media were pasted together with a two-component thermal epoxy polyamide adhesive with the recording layer facing inside through an annular aluminum group member, 1 mm thick, and 3 mm wide inner and outer periphery spacers. A photothermal magnetic recording medium having an air sandwich structure as shown in the cross-sectional view in FIG. 8 was obtained.

この光熱磁気記録媒体の外周縁部近くの記録層端部を透
過型顕微鏡で観察したところ、透過光量が記録層端部の
約0.2 mmの巾の部分で徐々に変化していて第8図
のBのようななだらかな膜厚変化をしていることが確認
された。
When the edge of the recording layer near the outer periphery of this photothermal magnetic recording medium was observed using a transmission microscope, it was found that the amount of transmitted light gradually changed in a portion approximately 0.2 mm wide at the edge of the recording layer. It was confirmed that the film thickness changed gently as shown in B in the figure.

この光熱磁気記録媒体を75℃、相対湿度85%の恒温
恒湿槽に人れて耐腐食性試験を1000時間行なった後
、肉眼的に観察した。その結果、記録層には腐食の発生
が認められなかった。
This photothermal magnetic recording medium was subjected to a corrosion resistance test for 1000 hours in a constant temperature and humidity chamber at 75° C. and 85% relative humidity, and then visually observed. As a result, no corrosion was observed in the recording layer.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の光学的記録媒体は、記録層の端部
にクラック等の劣化が発生しにくいため、端部の記録情
報が消滅することなく保存信頼性が高く、記録可能領域
が広いという利点がある。
As described above, the optical recording medium of the present invention is less prone to deterioration such as cracks at the edges of the recording layer, so the recorded information at the edges does not disappear, resulting in high storage reliability and a wide recordable area. There is an advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の光学的記録媒体の特徴部分
を表す部分断面図であり、第3図及び第4図は従来の光
学的記録媒体の部分断面図であり、第5図は第4図に示
す構造の光学的記録媒体を作成する方法を示す模式図で
あり、第6図及び第7図は本発明の光学的記録媒体を作
成する方法を示す模式図であり、第8図は本発明の光学
的記録媒体をエアーサンドイッチ構造にしたものの模式
断面図であり、第9図は第8図の部分拡大図である。 1:基板 2a:記録層 2b二反射層 2c:下引層 3:マスク 4:面取り A:記録層を設けない部分
1 and 2 are partial sectional views showing characteristic parts of the optical recording medium of the present invention, FIGS. 3 and 4 are partial sectional views of a conventional optical recording medium, and FIG. is a schematic diagram showing a method for producing an optical recording medium having the structure shown in FIG. 4; FIGS. 6 and 7 are schematic diagrams showing a method for producing an optical recording medium of the present invention; FIG. 8 is a schematic sectional view of the optical recording medium of the present invention having an air sandwich structure, and FIG. 9 is a partially enlarged view of FIG. 8. 1: Substrate 2a: Recording layer 2b 2 Reflective layer 2c: Undercoat layer 3: Mask 4: Chamfering A: Portion where no recording layer is provided

Claims (2)

【特許請求の範囲】[Claims] (1)、基板上のその端部から一定間隔は除いた部分に
光学的記録層を形成してなる光学的記録媒体であって、
該光学的記録層はその端部に50μm以上の巾にわたっ
て少しずつ薄くなるように傾斜が設けられていることを
特徴とする光学的記録媒体。
(1) An optical recording medium in which an optical recording layer is formed on a portion of a substrate excluding a certain distance from the edge thereof,
An optical recording medium characterized in that the optical recording layer is sloped at its end so as to gradually become thinner over a width of 50 μm or more.
(2)、前記光学的記録層の上下に積層して形成する下
引層、保護層、反射防止層、反射層、断熱層、干渉層等
のうち1つ以上を前記光学的記録層と同様にその端部に
50μm以上の巾にわたって少しずつ薄くなるように傾
斜が設けられている特許請求の範囲第1項記載の光学的
記録媒体。
(2) One or more of a subbing layer, a protective layer, an antireflection layer, a reflective layer, a heat insulating layer, an interference layer, etc., which are laminated above and below the optical recording layer, are the same as the optical recording layer. 2. The optical recording medium according to claim 1, wherein the end portion thereof is sloped so as to gradually become thinner over a width of 50 μm or more.
JP61233215A 1986-10-02 1986-10-02 Optical recording medium Pending JPS6390038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233215A JPS6390038A (en) 1986-10-02 1986-10-02 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233215A JPS6390038A (en) 1986-10-02 1986-10-02 Optical recording medium

Publications (1)

Publication Number Publication Date
JPS6390038A true JPS6390038A (en) 1988-04-20

Family

ID=16951561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233215A Pending JPS6390038A (en) 1986-10-02 1986-10-02 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS6390038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085838A (en) * 2001-09-14 2003-03-20 Tdk Corp Method of manufacturing optical recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085838A (en) * 2001-09-14 2003-03-20 Tdk Corp Method of manufacturing optical recording medium

Similar Documents

Publication Publication Date Title
JPS6129437A (en) Photomagnetic recording medium
JPH0481817B2 (en)
US4710418A (en) Optical recording medium
JPH0352142B2 (en)
JPS6124041A (en) Magnetic recording medium
JPS6390038A (en) Optical recording medium
JPS60219655A (en) Optical recording medium
JPH04219650A (en) Optical recording medium
JPH0352143B2 (en)
JPH0352653B2 (en)
JPS60197966A (en) Optical recording medium
JPS62295232A (en) Optical recording medium
JPS6134745A (en) Photoelectromagnetic recording medium
JPS6316439A (en) Production of magneto-optical recording medium
JPS60197965A (en) Magnetic recording medium
JP2590925B2 (en) Magneto-optical recording medium
JPS62121943A (en) Optical recording medium
JPS6192456A (en) Optical recording medium
JPS639047A (en) Magneto-optical recording medium
JPS6157053A (en) Optical recording medium
JPS61278061A (en) Photomagnetic recording medium
JPH0760532B2 (en) Optical recording medium
JPS6180638A (en) Optical recording medium
JP2740814B2 (en) Magneto-optical recording medium
JPS60205845A (en) Optical recording medium