JPS638970B2 - - Google Patents

Info

Publication number
JPS638970B2
JPS638970B2 JP54164598A JP16459879A JPS638970B2 JP S638970 B2 JPS638970 B2 JP S638970B2 JP 54164598 A JP54164598 A JP 54164598A JP 16459879 A JP16459879 A JP 16459879A JP S638970 B2 JPS638970 B2 JP S638970B2
Authority
JP
Japan
Prior art keywords
polyester resin
acetaldehyde
thermoplastic polyester
resin
ionizing radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54164598A
Other languages
Japanese (ja)
Other versions
JPS5686933A (en
Inventor
Hideo Kushida
Toshio Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP16459879A priority Critical patent/JPS5686933A/en
Publication of JPS5686933A publication Critical patent/JPS5686933A/en
Publication of JPS638970B2 publication Critical patent/JPS638970B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は熱可塑性ポリエステル樹脂成形体の成
形に使用される成形材料中に含有されているアセ
トアルデヒドの低減化方法に関するものである。 [従来の技術] 熱可塑性ポリエステル樹脂によつて成形された
壜は、水分やガスの透過性が小さく、透明性に優
れ、かつ無毒性である等の特質により、特に液体
調味料等の充填に広範囲に利用されている。 しかしながら、このポリエチレンテレフタレー
トに代表される熱可塑性ポリエステル樹脂の成形
体中には、主として、熱可塑性ポリエステル樹脂
の合成の段階で、 なる反応式で表示される熱分解反応によつて生成
されたアセトアルデヒドが含有されているため
に、その一部が液体内容物である充填物中に溶出
し、充填物自体がアルデヒド臭を伴つたり、充填
物の味をも変化させる等の弊害が生じている。 [発明が解決しようとする問題点] アセトアルデヒドの生成による前記弊害を解決
するためには、アセトアルデヒドの一般的な除去
方法として知られている減圧下又は大気圧下での
高温加熱を施し、樹脂中または成形体中に存在し
ているアルデヒドを揮散、除去する方法も考えら
れるが、かかる方法では高温加熱処理により、樹
脂の場合には、樹脂が結晶化して白化したり、ま
た、重合反応が進行して分子量が高くなるために
成形しにくくなる等の弊害が生ずるし、また成形
体の場合には、更に加えて成形体自体の形状が変
形する等の問題が生ずる。 これに対して、本発明は、処理工程中におい
て、樹脂が結晶化して白化を生ずるようなことが
無く、また、重合反応が進行して分子量が高くな
るような弊害を伴うこともなく、熱可塑性ポリエ
ステル樹脂成形材料中に含有されるアセトアルデ
ヒドを低減化する方法を提供するものである。 [問題点を解決するための手段] 本発明は、熱可塑性ポリエステル樹脂成形体に
成形される成形材料たる熱可塑性ポリエステル樹
脂、例えば熱可塑性ポリエステル樹脂粉末や熱可
塑性ポリエステル樹脂チツプ等に、0.1メガラド
以上の電離性放射線、すなわち、α線、β線、γ
線、x線、紫外線等を照射処理するもので、適量
の電離性放射線を照射することにより、成形材料
たる熱可塑性ポリエステル樹脂中に含有されてい
るアセトアルデヒドを分解させ、アセトアルデヒ
ドの低減化を図るものである。 前記構成からなる本発明方法において使用され
る電離性放射線としては、放射線同位元素より放
射されるα線、β線、γ線、加速装置で発生され
る電子線、陽子線、x線発生装置により発生され
るx線等があり、電離性放射線の照射は、例え
ば、大気中、真空中、窒素ガス等の不活性ガス中
等で、雰囲気温度−196〜100℃の広範囲の温度領
域にて実施され得るものである。前記電離性放射
線の照射処理における電離性放射の照射線量は
0.1メガラド以上とすることが必要であるが、100
メガラド以下に抑えておくことが好ましい。これ
は、照射線量が0.1メガラド未満では、本発明方
法の目的とするアセトアルデヒドの低減化の達成
が十分ではなく、また、100メガラドを超えるよ
うな大量の照射線量を使用することは効率面での
意味がないからである。 [発明の作用] 熱可塑性ポリエステル樹脂成形体に成形される
成形材料たる飽和ポリエステル樹脂中に含有され
ているアセトアルデヒドが、電離性放射線の照射
処理により低減化される理由は明確ではないが、
電離性放射線の照射によるエネルギーにより、下
記(1),(2)に表示される酸化反応、及び(3)にて表示
される分解反応が、飽和ポリエステル樹脂中で促
進され、速やかに達成されるためであろうと推定
される。 [実施例] 以下、本発明の熱可塑性ポリエステル樹脂成形
材料中に含有されるアセトアルデヒドの低減化方
法の具体的な構成を実施例に基づいて説明する。 実施例 ガラス容器中に内填されているポリエチレンテ
レフタレート樹脂チツプ(A)に、コバルト―60より
発生させたγ線を常温、大気中にて5メガラド照
射し、白化現象の発生の全く無いポリエチレンテ
レフタレート樹脂チツプ(B)を得た。 なお、参考までに、前記ポリエチレンテレフタ
レート樹脂チツプ(A)を用い、インジエクシヨン成
形法により先端に丸味を有する有底筒状のプリフ
オーム(C)を成形するとともに、同じく前記ポリエ
チレンテレフタレート樹脂チツプ(B)を用いて、前
記プリフオーム(C)と同形のプリフオーム(D)を成形
した後、前記各プリフオーム(C)および(D)を、該プ
リフオームを構成している樹脂のガラス転移温度
以上、融点以下の延伸温度に加熱し、吹込み成形
用金型内でブロー成形することにより、プリフオ
ーム(C)からは二軸延伸されたポリエチレンテレフ
タレート樹脂製の壜(E)を、また、プリフオーム(D)
からは同じく二軸延伸されたポリエチレンテレフ
タレート樹脂製の壜(F))を得た。 前記ポリエチレンテレフタレート樹脂チツプ(A)
および(B)、ならびに二軸延伸されたポリエチレン
テレフタレート樹脂製の壜(E)および(F)中に含有さ
れているアセトアルデヒドの量は第1表に示す通
りである。
[Industrial Field of Application] The present invention relates to a method for reducing acetaldehyde contained in a molding material used for molding a thermoplastic polyester resin molded article. [Prior Art] Bottles made of thermoplastic polyester resin have low moisture and gas permeability, excellent transparency, and are non-toxic, making them particularly suitable for filling liquid seasonings, etc. It is widely used. However, in the molded body of thermoplastic polyester resin represented by polyethylene terephthalate, mainly during the synthesis stage of thermoplastic polyester resin, Because it contains acetaldehyde generated by the thermal decomposition reaction shown by the reaction formula, a part of it is eluted into the filling, which is the liquid content, and the filling itself has an aldehyde odor. This also causes problems such as changing the taste of the filling. [Problems to be Solved by the Invention] In order to solve the above-mentioned adverse effects caused by the production of acetaldehyde, high temperature heating under reduced pressure or atmospheric pressure, which is known as a general method for removing acetaldehyde, is performed to remove the acetaldehyde from the resin. Alternatively, a method of volatilizing and removing the aldehyde present in the molded product may be considered, but in the case of resin, the high temperature heat treatment in such a method may cause the resin to crystallize and turn white, or the polymerization reaction may progress. Since the molecular weight becomes high, problems such as difficulty in molding occur, and in the case of a molded product, there are additional problems such as deformation of the shape of the molded product itself. On the other hand, the present invention does not cause the resin to crystallize and cause whitening during the treatment process, nor does the polymerization reaction proceed and cause the molecular weight to increase. The present invention provides a method for reducing acetaldehyde contained in a plastic polyester resin molding material. [Means for Solving the Problems] The present invention provides a thermoplastic polyester resin that is a molding material to be molded into a thermoplastic polyester resin molded article, such as thermoplastic polyester resin powder, thermoplastic polyester resin chips, etc. ionizing radiation, i.e. alpha, beta, gamma
This is a process that uses radiation, X-rays, ultraviolet rays, etc. to decompose the acetaldehyde contained in the thermoplastic polyester resin used as the molding material by irradiating it with an appropriate amount of ionizing radiation, thereby reducing the amount of acetaldehyde. It is. The ionizing radiation used in the method of the present invention having the above configuration includes α rays, β rays, and γ rays emitted from radioactive isotopes, electron beams, proton beams generated by accelerators, and x-ray generators. Irradiation with ionizing radiation is carried out, for example, in the atmosphere, in a vacuum, in an inert gas such as nitrogen gas, and in a wide temperature range from -196 to 100 degrees Celsius. It's something you get. The ionizing radiation irradiation dose in the ionizing radiation irradiation treatment is
It is necessary to set it to 0.1 megarad or more, but 100
It is preferable to keep it below megarad. This is because if the irradiation dose is less than 0.1 megarad, the reduction of acetaldehyde, which is the objective of the method of the present invention, cannot be achieved sufficiently, and the use of a large irradiation dose exceeding 100 megarad is not effective in terms of efficiency. This is because it has no meaning. [Operation of the invention] Although it is not clear why the acetaldehyde contained in the saturated polyester resin, which is the molding material used to form the thermoplastic polyester resin molded article, is reduced by the irradiation treatment with ionizing radiation,
The oxidation reactions shown in (1) and (2) below, and the decomposition reactions shown in (3) below are promoted and quickly achieved in the saturated polyester resin by the energy generated by ionizing radiation irradiation. It is presumed that this is because of this. [Example] Hereinafter, a specific configuration of the method for reducing acetaldehyde contained in a thermoplastic polyester resin molding material of the present invention will be described based on Examples. Example A polyethylene terephthalate resin chip (A) contained in a glass container was irradiated with 5 megarads of gamma rays generated from cobalt-60 at room temperature in the air, resulting in polyethylene terephthalate with no whitening phenomenon. Resin chips (B) were obtained. For reference, a bottomed cylindrical preform (C) with a rounded tip was molded by the injection molding method using the polyethylene terephthalate resin chip (A), and the polyethylene terephthalate resin chip (B) was also molded. After molding a preform (D) having the same shape as the preform (C), each of the preforms (C) and (D) is stretched at a temperature above the glass transition temperature and below the melting point of the resin constituting the preform. By heating to a high temperature and blow molding in a blow mold, a biaxially stretched polyethylene terephthalate resin bottle (E) is produced from the preform (C), and a preform (D) is produced.
A bottle (F) made of polyethylene terephthalate resin which had also been biaxially stretched was obtained. Said polyethylene terephthalate resin chip (A)
The amounts of acetaldehyde contained in (B) and bottles (E) and (F) made of biaxially stretched polyethylene terephthalate resin are shown in Table 1.

【表】 なお、前記第1表中に表示されるアセトアルデ
ヒドの含有量は下記方法にて測定した値である。 アセトアルデヒドの定量方法 成形材料用チツプについてはこれを直接に、ま
た成形された壜については細断に付した後に、そ
れぞれ液体窒素で凍結粉砕することによつて粉末
状となし、得られた粉末の一部をガラス容器に採
取し、窒素を流しつつ140℃にて20分間加熱し、
粉末状の試料中に含まれる揮発性物質をガスクロ
マトグラフ分析装置に導入することによつて定量
する。 [発明の効果] 本発明の熱可塑性ポリエステル樹脂成形材料中
に含有されるアセトアルデヒドの低減化方法は、
熱可塑性ポリエステル樹脂成形体に成形される粉
末やチツプ等の樹脂に0.1メガラド以上の電離性
放射線を照射することからなるもので、処理後の
樹脂が結晶化して白化したり、あるいは処理中に
重合反応が進行して分子量が高くなることによる
成形能の低下が生ずる等の弊害を伴うことなく、
極めて効率良くアセトアルデヒド含有量の低減化
を行ない得るという効果を有するものである。 また、本発明のアセトアルデヒド含有量の低減
化方法は、熱可塑性ポリエステル樹脂成形体に成
形される前の粉末やチツプ等からなる成形材料に
電離性放射線を照射することからなるものである
から、例えば成形後の成形体に同様の方法を施す
ことによつてアセトアルデヒドの低減化を図る場
合と比較して、電離性放射線が照射される成形体
を回転させる装置が不要であるばかりでなく、照
射される成形体を回転させる際のクリアランスも
が不要となるので、設備が簡単で済み、しかも効
率良く電離性放射線を照射することができる等の
効果を奏するものである。
[Table] Note that the acetaldehyde content shown in Table 1 above is a value measured by the following method. Method for quantifying acetaldehyde Chips for molding materials are directly processed, and molded bottles are shredded and then freeze-pulverized with liquid nitrogen to form a powder. A portion was collected in a glass container and heated at 140℃ for 20 minutes while flowing nitrogen.
Volatile substances contained in a powdered sample are quantified by introducing them into a gas chromatograph analyzer. [Effect of the invention] The method for reducing acetaldehyde contained in the thermoplastic polyester resin molding material of the present invention is as follows:
This method involves irradiating resin such as powder or chips that are molded into thermoplastic polyester resin moldings with ionizing radiation of 0.1 megarad or more, which may cause the resin to crystallize and whiten after treatment, or polymerize during treatment. without any adverse effects such as a decrease in molding ability due to an increase in molecular weight as the reaction progresses.
This has the effect of reducing the acetaldehyde content extremely efficiently. Furthermore, since the method for reducing the acetaldehyde content of the present invention consists of irradiating a molding material consisting of powder, chips, etc. with ionizing radiation before being molded into a thermoplastic polyester resin molding, for example, Compared to the case of reducing acetaldehyde by applying the same method to the molded product after molding, not only is there no need for a device to rotate the molded product that is irradiated with ionizing radiation, but it is also possible to reduce the amount of acetaldehyde. Since there is no need for clearance when rotating the molded body, the equipment can be simple and the ionizing radiation can be irradiated efficiently.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性ポリエステル樹脂成形材料に0.1メ
ガラド以上の電離性放射線を照射することを特徴
とする熱可塑性ポリエステル樹脂成形材料中に含
有されるアセトアルデヒドの低減化方法。
1. A method for reducing acetaldehyde contained in a thermoplastic polyester resin molding material, which comprises irradiating the thermoplastic polyester resin molding material with ionizing radiation of 0.1 megarad or more.
JP16459879A 1979-12-18 1979-12-18 Method for reducing acetaldehyde contained in thermoplastic polyester resin or molded article of the same Granted JPS5686933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16459879A JPS5686933A (en) 1979-12-18 1979-12-18 Method for reducing acetaldehyde contained in thermoplastic polyester resin or molded article of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16459879A JPS5686933A (en) 1979-12-18 1979-12-18 Method for reducing acetaldehyde contained in thermoplastic polyester resin or molded article of the same

Publications (2)

Publication Number Publication Date
JPS5686933A JPS5686933A (en) 1981-07-15
JPS638970B2 true JPS638970B2 (en) 1988-02-25

Family

ID=15796213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16459879A Granted JPS5686933A (en) 1979-12-18 1979-12-18 Method for reducing acetaldehyde contained in thermoplastic polyester resin or molded article of the same

Country Status (1)

Country Link
JP (1) JPS5686933A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331999A1 (en) * 1993-09-21 1995-03-23 Huels Gaf Chemie Gmbh Process for the production of high molecular polyester
DE4405911A1 (en) * 1994-02-24 1995-08-31 Huels Gaf Chemie Gmbh Moldings based on high-molecular polyester

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538690A (en) * 1976-07-14 1978-01-26 Japan Atom Energy Res Inst Preparation of graft copolymer for ion-exchange membrane
JPS53125184A (en) * 1977-04-04 1978-11-01 Kanegafuchi Chemical Ind Biaxially oriented bottle having preferable size stability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538690A (en) * 1976-07-14 1978-01-26 Japan Atom Energy Res Inst Preparation of graft copolymer for ion-exchange membrane
JPS53125184A (en) * 1977-04-04 1978-11-01 Kanegafuchi Chemical Ind Biaxially oriented bottle having preferable size stability

Also Published As

Publication number Publication date
JPS5686933A (en) 1981-07-15

Similar Documents

Publication Publication Date Title
ES506668A0 (en) METHOD OF PRODUCING PLASTIC MATERIAL PACKAGING WITH HALOGENATED POLYMER.
US3563869A (en) Irradiated polyethylene
US2855517A (en) Irradiation treatment of polyethylene
JPS638970B2 (en)
JPH0848859A (en) Copolyester carbonate resin/pct blend for obtaining molding having improved radiation resistance
SE428568B (en) SET TO REDUCE MONOMER CONTENTS IN ACRYLIC NITRAL POLYMERS
EP0714419A1 (en) Biodegradable compostable plastic and method of making the same
EP0047171A3 (en) Process for irradiation of polyethylene
JPH10287733A (en) Production of crosslinked polycaprolactone
US3783115A (en) Process for the radiation treatment of polyethylene
EP0374590B1 (en) Method for sterilizing intraocular lenses
KR970011567B1 (en) Process for forming container of acrylonitrile polymers by biaxial orientation blow molding preform
JP3418848B2 (en) Plastic molded products modified by radiation
GB870381A (en) Improvements in or relating to a process for the production of bodies of cross-linked polymeric material
JP2847169B2 (en) Method for pulverizing polymer
GB814320A (en) Process for the production of moulded articles or compact masses from polyethylene powder
Kabanov et al. Radiation-induced ionic graft copolymerization at room temperature
US5260005A (en) Process for forming container of acrylonitrile polymers by biaxial-orientation blow-molding preform
JPH05178976A (en) Method for treating molded polymer article
JPH02275748A (en) Molding method for powder injection-molding component
GB832076A (en) Improvements in or relating to the sterilization and subsequent protection of articles
JPH0464427A (en) Molding method of acrylonitrile resin vessel
JPS6042808B2 (en) Improved crosslinking method for polyethylene resins
JP2802376B2 (en) Method for pulverizing polymer
US3425541A (en) Package and a method for exposing its contents