JPS6388866A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6388866A
JPS6388866A JP23484486A JP23484486A JPS6388866A JP S6388866 A JPS6388866 A JP S6388866A JP 23484486 A JP23484486 A JP 23484486A JP 23484486 A JP23484486 A JP 23484486A JP S6388866 A JPS6388866 A JP S6388866A
Authority
JP
Japan
Prior art keywords
grooves
semiconductor substrate
impurity
region
impurity regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23484486A
Other languages
Japanese (ja)
Inventor
Masahiro Shimizu
雅裕 清水
Koji Ozaki
浩司 小崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23484486A priority Critical patent/JPS6388866A/en
Publication of JPS6388866A publication Critical patent/JPS6388866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a transistor having good controllability in a groove-digging type separating structure by forming a plurality of grooves for separating elements therebetween at an interval substantially in parallel on a semiconductor substrate, and forming a plurality of first impurity regions for controlling a threshold value voltage on the surface region between the first grooves on the substrate. CONSTITUTION:A plurality of grooves 21 for separating elements therebetween are formed at an interval substantially in parallel on a predetermined parts of a p<-> type semiconductor substrate 1. Then, a plurality of p<+> type impurity regions 31 for preventing an inversion and a parasitic are formed on the surface regions of the grooves 21. The grooves 21 are buried with separating insulating films 41 up to the surface of the substrate 1, and a gate electrode 71 is formed through a gate insulating film 61 on the regions between the grooves 21 on the films 41. Therefore, it is not necessary to form an impurity region for controlling a threshold value voltage on the surface region of the sidewalls of the grooves as the conventional one. Since an impurity region 51 can be easily formed in an uniform depth between the grooves 21 over the whole surface region of the substrate 1, a transistor having good controllability can be obtained in a groove-digging type separating structure.

Description

【発明の詳細な説明】 [産業上の利用分野」 この発明は半導体装置およびその製造7)法に関し、特
に溝堀型分離構造において制御性の良いトランジスタを
41する半導体装置およびその製造方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly relates to a semiconductor device in which transistors with good controllability are formed in a Mizohori isolation structure and a method for manufacturing the same. It is.

[従来の技術] 第2A図は従来のm堀型分岨構造を右づる半導体装置を
示す平面図であり、第2B図は第2A図のY−Y’線断
面図であり、第2C図は第2△図のXl−X1’線断面
図である。
[Prior Art] FIG. 2A is a plan view showing a semiconductor device having a conventional m-moat type diagonal structure, FIG. 2B is a cross-sectional view taken along the line Y-Y' of FIG. 2A, and FIG. is a sectional view taken along the line Xl-X1' of Fig. 2.

図において、ρ−形半導体基板1の所定部に素子間分離
用の複数の120が互いに間隔を隔てかつほぼ平行に形
成されている。8溝20の底部に複数の分離絶縁膜4o
が形成されており、8溝20の底部の表面領域に各分離
絶縁膜40を囲むように反転・寄生防止用の複数のp+
形不純物領域30が形成されている。溝20間のp−形
半導体基板1の表面領域にMO8電界効果トランジスタ
(以下MO8FETと略記する)のソース・ドレイン用
の複数のn+形不純物領域80.81が形成されており
、各n+形不純物領ji!80と各n+形不純物領域8
1とは互いに間隔を隔てている。
In the figure, a plurality of device isolation devices 120 are formed at predetermined portions of a ρ-type semiconductor substrate 1 at intervals and substantially parallel to each other. A plurality of isolation insulating films 4o are provided at the bottom of the 8 grooves 20.
A plurality of p+ layers for inversion and parasitic prevention are formed in the bottom surface area of the eight grooves 20 surrounding each isolation insulating film 40.
A shaped impurity region 30 is formed. A plurality of n+ type impurity regions 80, 81 for the source and drain of an MO8 field effect transistor (hereinafter abbreviated as MO8FET) are formed in the surface region of the p-type semiconductor substrate 1 between the grooves 20, and each n+ type impurity region Territory! 80 and each n+ type impurity region 8
1 and are spaced apart from each other.

8溝20の側壁部の表面領域の所定部分、および各n+
形不純物領域80と各n+形不純物領域81間のp−形
半導体基板1の表面領域にMOSFETのしきい値電圧
制御用の複数の不純物領域50が形成されている。各不
純物領域50表面、8溝20の側壁表面のしきい値電圧
制御用の不純物領域が形成されていない部分、各n+形
不純物領域80表面および各n+形不純物領域81表面
にゲート絶縁膜60が形成されている。ゲー]−絶縁膜
60表面にゲート電極70が形成されている。
8 A predetermined portion of the surface area of the side wall portion of the groove 20, and each n+
A plurality of impurity regions 50 for controlling the threshold voltage of the MOSFET are formed in the surface region of the p - type semiconductor substrate 1 between the type impurity region 80 and each n + type impurity region 81 . A gate insulating film 60 is formed on the surface of each impurity region 50, the portion of the sidewall surface of the eight trenches 20 where no impurity region for threshold voltage control is formed, the surface of each n+ type impurity region 80, and the surface of each n+ type impurity region 81. It is formed. A gate electrode 70 is formed on the surface of the insulating film 60.

各n+形不純物領域80と各n+形不純物領域81はゲ
ート電極70の両側部に位置しており、各不純物領域5
0はゲート電極70下にだけ形成されている。ここで、
p−形半導体基板1とn+形不純物領域80とn+不純
物領域81とゲート絶縁膜60とゲーt−’l極70.
!=はMO8FET90を構成する。
Each n+ type impurity region 80 and each n+ type impurity region 81 are located on both sides of the gate electrode 70, and each impurity region 5
0 is formed only under the gate electrode 70. here,
p- type semiconductor substrate 1, n+ type impurity region 80, n+ impurity region 81, gate insulating film 60, and gate t-'l pole 70.
! = constitutes MO8FET90.

[発明が解決しようとする問題点] ところで従来の半導体装置においては、満20の側壁部
の表面領域にも不純物をイオン注入してしきい値電圧制
御用の不純物領域を形成しなければならないが、通常の
イオン注入法では、不純物を溝20の側壁部全域にわた
って均等な深さでイオン注入することが困難であり、こ
のため、制御性の良いMOSFETを形成することが困
難であるなどの問題点があった。
[Problems to be Solved by the Invention] However, in conventional semiconductor devices, impurity ions must be implanted into the surface regions of about 20 sidewall portions to form impurity regions for threshold voltage control. With the normal ion implantation method, it is difficult to implant impurity ions to a uniform depth over the entire sidewall portion of the groove 20, which makes it difficult to form a MOSFET with good controllability. There was a point.

この発明は上記のような問題点を解消するため−〇− になされたもので、溝掘型分離構造において制御性の良
いトランジスタを有する半導体装置およびその製造方法
を得ることを目的とする。
The present invention was made in order to solve the above-mentioned problems, and its object is to provide a semiconductor device having a transistor with good controllability in a trench isolation structure, and a method for manufacturing the same.

E問題点を解決するための手段] この発明に係る半導体装置は以下のことを特徴とづる。Measures to solve problem E] The semiconductor device according to the present invention has the following features.

すなわち、その所定部に素子間分離用の複数の第1溝が
互いに間隔を隔てかつほぼ平行に形成された′jR1導
電形の半導体基板と、各第1溝を半導体基板表面まで埋
める複数の第1分離絶縁膜と、半導体基板に第1溝の方
向で各第1溝の両端部に連なって形成される素子間分離
用の複数の第2)llffの各底部に形成される複数の
第2分離絶縁膜と、第1溝間の半導体基板の表面領域に
形成されるしぎい値電圧制御用の複数の第1不純物領域
と、第2溝間の半導体基板の表面領域に形成されるソー
ス・ドレイン用の複数の第2導電形の第2不純物領域と
、各第2嵩の側壁表面、各第1分離絶縁膜表面、各第1
不純物領域表面および各第2不純物領域表面に形成され
るゲート絶縁膜と、各負′(1分離絶縁膜上および各第
1不純物領域上においてゲート絶縁膜表面に形成される
ゲート電極とを備える。
That is, a semiconductor substrate of the 'jR1 conductivity type in which a plurality of first trenches for element isolation are formed in a predetermined part thereof at intervals and substantially parallel to each other, and a plurality of first trenches that fill each of the first trenches up to the surface of the semiconductor substrate. 1 isolation insulating film, and a plurality of second insulation films formed at the bottoms of the plurality of second isolation insulating films for element isolation formed continuously at both ends of each first trench in the direction of the first trench in the semiconductor substrate. an isolation insulating film, a plurality of first impurity regions for threshold voltage control formed in the surface region of the semiconductor substrate between the first trenches, and a source impurity region formed in the surface region of the semiconductor substrate between the second trenches. A plurality of second impurity regions of the second conductivity type for drains, a side wall surface of each second bulk, a surface of each first isolation insulating film, and each first impurity region.
A gate insulating film formed on the surface of the impurity region and the surface of each second impurity region, and a gate electrode formed on the surface of the gate insulating film on each negative isolation insulating film and on each first impurity region.

この発明に係る半導体装置の製造方法は、第1導電形の
半導体基板の所定部に素子間分離用の複数の第1溝を互
いに間隔を隔てかつほぼ平行に形成し、各第1溝を半導
体基板表面まで複数の第1分離絶縁膜で埋め、半導体基
板に第1溝の方向で各第1溝の両端部に連なる素子間分
離用の複数の第2溝を形成し、各第2溝の底部に複数の
第2分離絶縁膜を形成し、第1溝間の半導体基板の表面
領域にしきい値電圧制御用の複数の第1不純物領域を形
成し、各第2溝の側壁表面、各第1分離絶縁膜表面、各
第1不純物領域表面および第2溝間の半導体基板表面に
ゲート絶縁膜を形成し、各第1分離絶縁膜上および各第
1不純物領域上においてゲート絶縁膜表面にゲートN極
を形成し、第2溝間の半導体基板の表面領域にソース・
ドレイン用の複数の第2導電形の第2不純物領域を形成
する方法である。
A method for manufacturing a semiconductor device according to the present invention includes forming a plurality of first trenches for isolation between elements in a predetermined portion of a semiconductor substrate of a first conductivity type, spaced apart from each other and substantially parallel to each other, and forming each first trench into a semiconductor substrate. A plurality of first isolation insulating films are filled up to the surface of the substrate, and a plurality of second trenches for element isolation are formed in the semiconductor substrate in the direction of the first trenches and continue at both ends of each first trench. A plurality of second isolation insulating films are formed at the bottom, a plurality of first impurity regions for threshold voltage control are formed in the surface region of the semiconductor substrate between the first trenches, and a plurality of first impurity regions are formed on the sidewall surface of each second trench, each A gate insulating film is formed on the surface of the first isolation insulating film, the surface of each first impurity region, and the surface of the semiconductor substrate between the second grooves, and a gate insulating film is formed on the surface of the gate insulating film on each of the first isolation insulating films and on each of the first impurity regions. An N pole is formed, and a source/source is formed in the surface area of the semiconductor substrate between the second grooves.
This is a method of forming a plurality of second conductivity type second impurity regions for drains.

[作用] この半導体装置の発明においては、半導体基板の所定部
に互いに間隔を隔てかつほぼ平行に形成された素子間分
離用の複数の第1溝を半導体基板表面まで複数の第1分
離絶縁膜で埋め、各第1分離絶縁膜上および第1溝間の
各領域上にゲート絶縁膜を介してゲート電極を形成する
ようにしているので、従来の場合のように溝の側壁の表
面領域にもしきい値電圧制御用の不純物領域を形成する
必要がなく、第1溝間の半導体基板の表面領域にしきい
値電圧制御用の複数の第1不純物領域を形成すればよい
。このため、第1不純物領域の深さかその全領域にわた
って均等な深さに容易になる。
[Function] In the invention of this semiconductor device, a plurality of first grooves for isolation between elements formed in a predetermined portion of a semiconductor substrate at intervals and substantially parallel to each other are connected to a plurality of first isolation insulating films up to the surface of the semiconductor substrate. Since the gate electrode is formed via the gate insulating film on each first isolation insulating film and on each region between the first trenches, the surface area of the side wall of the trench is filled with Also, there is no need to form an impurity region for threshold voltage control, and it is sufficient to form a plurality of first impurity regions for threshold voltage control in the surface region of the semiconductor substrate between the first grooves. Therefore, the depth of the first impurity region can easily be made uniform over the entire region.

この半導体装置の製造方法の発明においては、半導体基
板に素子間分離用の複数の第1溝を互いに間隔を隔てか
つほぼ平行に形成し、第1溝間の半導体基板の表面領域
にしきい値電圧制御用の複数の第1不純物領域を形成す
るので、第1不純物領域の深さをその全領域にわたって
均等な深さに容易にすることができる。
In the invention of the method for manufacturing a semiconductor device, a plurality of first grooves for element isolation are formed in a semiconductor substrate at intervals and substantially parallel to each other, and a threshold voltage is applied to a surface area of the semiconductor substrate between the first grooves. Since a plurality of first impurity regions for control are formed, the depth of the first impurity regions can be easily made uniform over the entire region.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1A図〜第1H図はこの発明の実施例である、溝堀型
分離構造を有する半導体装置の製造方法を示す工程平面
図および断面図であり、第1B図は第1A図のXl−X
1’線断面図、第1D図は第1C図のX2−X2’線断
面図、第11=図、第1G図および第1H図はそれぞれ
第1E図のY−Y′線断面図、Xl−X1’線断面図お
にびX2−X2’線断面図である。
1A to 1H are process plan views and cross-sectional views showing a method for manufacturing a semiconductor device having a trench-type isolation structure, which is an embodiment of the present invention, and FIG. 1B is a
Figure 1D is a cross-sectional view taken along the line X2-X2' of Figure 1C, Figure 11, Figure 1G and Figure 1H are cross-sectional views taken along the Y-Y' line of Figure 1E, and Xl- It is a sectional view taken along the line X1' and a sectional view taken along the line X2-X2'.

この製造方法について説明すると、まず、p−形半導体
基板1の所定部に素子間分離用の複数の溝21を互いに
間隔を隔てかつほぼ平行に形成する。次に、8溝21の
表面領域に反転・寄生防止用の複数のp+形不純物領域
31を形成する。次に、8溝21をp−形半導体基板1
表面まで複数の分離絶縁膜41で埋める(第1A図、第
1B図)。次に、p−形半導体基板1に溝21の方向で
8溝21の両端部に連なる素子間分離用の複数の溝22
を形成する。次に、8溝22の底部の表面領域に反転・
寄生防止用の複数のp+形不純物領域30を形成する。
To explain this manufacturing method, first, a plurality of grooves 21 for element isolation are formed in a predetermined portion of the p-type semiconductor substrate 1 at intervals and substantially parallel to each other. Next, a plurality of p+ type impurity regions 31 for inversion/parasitic prevention are formed in the surface region of the eight grooves 21. Next, the eight grooves 21 are inserted into the p-type semiconductor substrate 1.
The surface is filled with a plurality of isolation insulating films 41 (FIGS. 1A and 1B). Next, a plurality of grooves 22 for element isolation are formed in the p-type semiconductor substrate 1 in the direction of the grooves 21, and are connected to both ends of the eight grooves 21.
form. Next, the bottom surface area of the 8-groove 22 is inverted and
A plurality of p+ type impurity regions 30 for preventing parasitic properties are formed.

次に、多溝22の底部に各p十形不純物領域30に囲ま
れるように複数の分離絶縁膜40を形成する(第1C図
、第1D図)。次に、満21間のp−形半導体基板1の
表面領域にしきい値電圧制御用の複数の不純物領域51
を形成する。このとき、不純物領域51はイオン注入法
によりp−形半導体基板1の表面領域に形成されるので
、不純物領域51の深さをその全領域にわたって均等の
深さに容易にすることができる。
Next, a plurality of isolation insulating films 40 are formed at the bottom of the multi-groove 22 so as to be surrounded by each p-type impurity region 30 (FIGS. 1C and 1D). Next, a plurality of impurity regions 51 for threshold voltage control are formed in the surface region of the p-type semiconductor substrate 1 for about 21 hours.
form. At this time, since the impurity region 51 is formed in the surface region of the p-type semiconductor substrate 1 by ion implantation, the depth of the impurity region 51 can be easily made uniform over the entire region.

次に、多溝22の側壁表面、各分離絶縁膜41表面、各
p+十形不純物領域31表面各不純物領域51表面およ
び溝22闇のp−形半導体基板1表面にゲート絶縁膜6
1を形成する。次に、各分離絶縁膜41上、各p″形不
純物領域31上および各不純物領域51上においてゲー
ト絶縁膜61表面にゲート電極71を形成する。次に、
溝22間においてゲート電極71の両側部のp−形半導
体基板1の表面領域にソース・ドレイン用の複数のn゛
形不純物領域80.81を形成する。ここで、p−形半
導体基板1とn+十形不純物領域80n1形不純物領域
81とゲート絶縁膜61とゲート電極71とはMOSF
ETを構成する〈第1E図〜第1H図)。
Next, a gate insulating film 6 is formed on the side wall surface of the multi-groove 22, the surface of each isolation insulating film 41, the surface of each p+ type impurity region 31, the surface of each impurity region 51, and the surface of the p- type semiconductor substrate 1 in the groove 22.
form 1. Next, a gate electrode 71 is formed on the surface of the gate insulating film 61 on each isolation insulating film 41, on each p″ type impurity region 31, and on each impurity region 51. Next,
A plurality of n-type impurity regions 80, 81 for source and drain are formed in the surface region of the p-type semiconductor substrate 1 on both sides of the gate electrode 71 between the grooves 22. Here, the p-type semiconductor substrate 1, the n+decade impurity region 80, the n1-type impurity region 81, the gate insulating film 61, and the gate electrode 71 are MOSFETs.
ET (Figures 1E to 1H).

このように、各!I21を1)−半導体基板1表面まで
各分離絶縁膜41で埋め、各分離絶縁膜41上および溝
21間の各領域上にゲーi・絶縁膜61を介してゲート
電極71を形成するようにしているので、従来の場合の
にうに溝の側壁の表面領域にもしきい値電圧制御用の不
純物領域を形成する必要がなく、溝21間のp−形半導
体基板1の表面領域に不純物領域51をその全領域にわ
たって均等な深さで容易に形成できるので、溝堀型分離
構造においで制御性の良いトランジスタを1!Iること
ができる。
In this way, each! I21 is filled up to 1) - the surface of the semiconductor substrate 1 with each isolation insulating film 41, and a gate electrode 71 is formed on each isolation insulating film 41 and on each region between the trenches 21 via a gate insulating film 61. Therefore, there is no need to form an impurity region for threshold voltage control in the surface region of the side wall of the trench as in the conventional case, and an impurity region 51 is not required to be formed in the surface region of the p-type semiconductor substrate 1 between the trenches 21. can be easily formed with a uniform depth over the entire region, making it possible to create transistors with good controllability in the Mizohori isolation structure. I can.

なお、上記実施例では、MO8F[E丁としてnチャン
ネルトランジスタを形成する場合に゛ついて示したが、
この発明は、pチPンネル1−ランジスタを形成する場
合についても適用でき、さらには、MO8FET以外の
他のトランジスタを形成する場合にも適用することがで
きる。
In addition, in the above embodiment, the case where an n-channel transistor is formed as MO8F[E] is shown, but
The present invention can be applied to the case of forming a p-channel p-channel 1-transistor, and can also be applied to the case of forming other transistors other than MO8FET.

[発明の効果] 以上のようにこの半導体装置の発明によれば、半導体基
板の所定部に互いに間隔を隔てかつほぼ平行に形成され
た素子間分離用の複数の第1溝を半導体基板表面まで複
数の第1分離絶縁膜で埋め、各第1分離絶縁膜上および
各第1溝間の各領域上にゲート絶縁膜を介してゲート電
極を形成するようにしているので、第1溝間の半導体基
板の表面領域にしきい値電圧制御用の複数の第1不純物
領域を形成すればよい。このため、第1不純物領域の深
さがその全領域にわたって均等な深さに容易になり、溝
堀型分離構造において制御性の良いトランジスタを有す
る半導体装置を得ることができる。
[Effects of the Invention] As described above, according to the invention of this semiconductor device, a plurality of first grooves for isolation between elements, which are formed in a predetermined portion of a semiconductor substrate at intervals and substantially parallel to each other, extend to the surface of the semiconductor substrate. Since a plurality of first isolation insulating films are filled and a gate electrode is formed on each first isolation insulating film and on each region between each first trench through a gate insulating film, the area between the first trenches is A plurality of first impurity regions for threshold voltage control may be formed in the surface region of the semiconductor substrate. Therefore, the depth of the first impurity region can easily be made uniform over the entire region, and a semiconductor device having a transistor with good controllability in a trench isolation structure can be obtained.

また、この半導体装置の製造方法の発明によれば、半導
体基板に素子間分離用の複数の第1溝を互いに間隔を隔
てかつほぼ平行に形成し、第1溝間の半導体基板の表面
領域にしきい値電圧制御用の複数の第1不純物領域を形
成するので、第1不純物領域の深さをその全領域にわた
って均等に容易にすることができる。このため、溝堀型
分離構造において制御性の良いトランジスタを有する半
導体装置の製造方法を得ることができる。
Further, according to the invention of the method for manufacturing a semiconductor device, a plurality of first grooves for isolation between elements are formed in the semiconductor substrate at intervals and substantially parallel to each other, and the surface area of the semiconductor substrate between the first grooves is formed. Since a plurality of first impurity regions for threshold voltage control are formed, the depth of the first impurity regions can be made uniform over the entire region. Therefore, it is possible to obtain a method of manufacturing a semiconductor device having a transistor with good controllability in a trench-type isolation structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1H図はこの発明の実施例である、溝堀型
分離構造を有する半導体装置の製造方法を示す工程平面
図および断面図であり、第1B図は第1A図のXl−X
1’線断面図、第1D図は第1C図のX2−X2’線断
面図、第1F図、第1G図および第1H図はそれぞれ第
1E図のY−Y′線断面図、Xl−X1’線断面図およ
びX2−X2’線断面図である。 第2A図は従来の溝堀型分離構造を有する半導体装置を
示す平面図であり、第2B図は第2A図のY−Y’線断
面図であり、第2C図は第2A図のXl−X1’線断面
図である。 図において、1はp−形半導体基板、21.22は溝、
30.31はp+十形不純物領域40゜41は分離絶縁
膜、51は不純物領域、61はゲート絶縁膜、71はゲ
ート電極、80.81は01形不純物領域、91はMO
SFETである。 なお、各図中同一符号は同一または相当部分を示す。
1A to 1H are process plan views and cross-sectional views showing a method for manufacturing a semiconductor device having a trench-type isolation structure, which is an embodiment of the present invention, and FIG. 1B is a
Figure 1D is a cross-sectional view taken along the line X2-X2' of Figure 1C, and Figures 1F, 1G, and 1H are cross-sectional views taken along the Y-Y' line of Figure 1E, and Xl-X1. They are a cross-sectional view taken along the line ``X2-X2''. FIG. 2A is a plan view showing a semiconductor device having a conventional trench-type isolation structure, FIG. 2B is a cross-sectional view taken along the line Y-Y' in FIG. 2A, and FIG. It is a sectional view taken along the line X1'. In the figure, 1 is a p-type semiconductor substrate, 21 and 22 are grooves,
30.31 is a p+ dec type impurity region 40°41 is an isolation insulating film, 51 is an impurity region, 61 is a gate insulating film, 71 is a gate electrode, 80.81 is a 01 type impurity region, 91 is MO
It is an SFET. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電形の半導体基板を備え、 前記半導体基板の所定部には素子間分離用の複数の第1
溝が互いに間隔を隔てかつほぼ平行に形成されており、 前記各第1溝を前記半導体基板表面まで埋める複数の第
1分離絶縁膜と、 前記半導体基板には前記第1溝の方向で前記各第1溝の
両端部に連なる素子間分離用の複数の第2溝が形成され
ており、 前記各第2溝の底部に形成される複数の第2分離絶縁膜
と、 前記第1溝間の前記半導体基板の表面領域に形成される
しきい値電圧制御用の複数の第1不純物領域と、 前記第2溝間の前記半導体基板の表面領域に形成される
ソース・ドレイン用の複数の第2導電形の第2不純物領
域と、 前記各第2溝の側壁表面、前記各第1分離絶縁膜表面、
前記各第1不純物領域表面および前記各第2不純物領域
表面に形成されるゲート絶縁膜と、前記各第1分離絶縁
膜上および前記各第1不純物領域上において前記ゲート
絶縁膜表面に形成されるゲート電極とを備えた半導体装
置。
(1) A semiconductor substrate of a first conductivity type is provided, and a predetermined portion of the semiconductor substrate has a plurality of first semiconductor substrates for isolation between elements.
a plurality of first isolation insulating films that fill each of the first grooves up to the surface of the semiconductor substrate, the grooves being spaced apart from each other and substantially parallel; A plurality of second grooves for isolation between elements are formed at both ends of the first groove, and a plurality of second isolation insulating films formed at the bottom of each of the second grooves are formed between the plurality of second isolation insulating films formed at the bottom of each of the second grooves; a plurality of first impurity regions for threshold voltage control formed in the surface region of the semiconductor substrate; and a plurality of second impurity regions for source/drain formed in the surface region of the semiconductor substrate between the second grooves. a conductive type second impurity region; a sidewall surface of each of the second grooves; a surface of each of the first isolation insulating films;
a gate insulating film formed on the surface of each of the first impurity regions and the surface of each of the second impurity regions; and a gate insulating film formed on the surface of the gate insulating film on each of the first isolation insulating films and on each of the first impurity regions. A semiconductor device comprising a gate electrode.
(2)さらに、前記各第1溝の表面領域に形成され、前
記半導体基板の不純物濃度より不純物濃度が高い反転・
寄生防止用の複数の第1導電形の第3不純物領域と、 前記各第2溝の底部の表面領域に前記各第2分離絶縁膜
を囲むように形成され、前記半導体基板の不純物濃度よ
り不純物濃度が高い反転・寄生防止用の複数の第1導電
形の第4不純物領域とを備えた特許請求の範囲第1項記
載の半導体装置。
(2) Furthermore, an inverted groove is formed in the surface region of each of the first trenches and has an impurity concentration higher than that of the semiconductor substrate.
a plurality of third impurity regions of the first conductivity type for parasitic prevention; and a plurality of third impurity regions of the first conductivity type are formed in a surface region at the bottom of each of the second grooves so as to surround each of the second isolation insulating films, and the impurity region is lower than the impurity concentration of the semiconductor substrate. 2. The semiconductor device according to claim 1, further comprising a plurality of fourth impurity regions of the first conductivity type for inversion/parasitic prevention with high concentration.
(3)第1導電形の半導体基板の所定部に素子間分離用
の複数の第1溝を互いに間隔を隔てかつほぼ平行に形成
する工程と、 前記各第1溝を前記半導体基板表面まで複数の第1分離
絶縁膜で埋める工程と、 前記半導体基板に前記第1溝の方向で前記各第1溝の両
端部に連なる素子間分離用の複数の第2溝を形成する工
程と、 前記各第2溝の底部に複数の第2分離絶縁膜を形成する
工程と、 前記第1溝間の前記半導体基板の表面領域にしきい値電
圧制御用の複数の第1不純物領域を形成する工程と、 前記各第2溝の側壁表面、前記各第1分離絶縁膜表面、
前記各第1不純物領域表面および前記第2溝間の前記半
導体基板表面にゲート絶縁膜を形成する工程と、 前記各第1分離絶縁膜上および前記各第1不純物領域上
において前記ゲート絶縁膜表面にゲート電極を形成する
工程と、 前記第2溝間の前記半導体基板の表面領域にソース・ド
レイン用の複数の第2導電形の第2不純物領域を形成す
る工程とを備えた半導体装置の製造方法。
(3) forming a plurality of first grooves for isolation between elements in a predetermined portion of a semiconductor substrate of a first conductivity type, spaced apart from each other and substantially parallel to each other; filling with a first isolation insulating film; forming a plurality of second grooves for device isolation in the semiconductor substrate in the direction of the first grooves and extending from both ends of each of the first grooves; forming a plurality of second isolation insulating films at the bottom of the second trench; forming a plurality of first impurity regions for threshold voltage control in a surface region of the semiconductor substrate between the first trenches; a side wall surface of each of the second grooves, a surface of each of the first isolation insulating films,
forming a gate insulating film on the surface of the semiconductor substrate between the surface of each of the first impurity regions and the second trench; and forming a plurality of second impurity regions of a second conductivity type for sources and drains in a surface region of the semiconductor substrate between the second grooves. Method.
(4)さらに、前記各第1溝の表面領域に、前記半導体
基板の不純物濃度より不純物濃度が高い反転・寄生防止
用の複数の第1導電形の第3不純物領域を形成する工程
と、 前記各第2溝の底部の表面領域に前記各第2分離絶縁膜
を囲むように、前記半導体基板の不純物濃度より不純物
濃度が高い反転・寄生防止用の複数の第1導電形の第4
不純物領域を形成する工程とを備えた特許請求の範囲第
3項記載の半導体装置の製造方法。
(4) Further, forming a plurality of third impurity regions of the first conductivity type for inversion/parasitic prevention having an impurity concentration higher than the impurity concentration of the semiconductor substrate in the surface region of each of the first grooves; A plurality of fourth conductivity type fourth conductive films for inversion/parasitic prevention having an impurity concentration higher than the impurity concentration of the semiconductor substrate are arranged in the surface region at the bottom of each second trench so as to surround each of the second isolation insulating films.
4. The method of manufacturing a semiconductor device according to claim 3, further comprising the step of forming an impurity region.
JP23484486A 1986-10-01 1986-10-01 Semiconductor device and manufacture thereof Pending JPS6388866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23484486A JPS6388866A (en) 1986-10-01 1986-10-01 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23484486A JPS6388866A (en) 1986-10-01 1986-10-01 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6388866A true JPS6388866A (en) 1988-04-19

Family

ID=16977249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23484486A Pending JPS6388866A (en) 1986-10-01 1986-10-01 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6388866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387540A (en) * 1993-09-30 1995-02-07 Motorola Inc. Method of forming trench isolation structure in an integrated circuit
US6146970A (en) * 1998-05-26 2000-11-14 Motorola Inc. Capped shallow trench isolation and method of formation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387540A (en) * 1993-09-30 1995-02-07 Motorola Inc. Method of forming trench isolation structure in an integrated circuit
US5436488A (en) * 1993-09-30 1995-07-25 Motorola Inc. Trench isolator structure in an integrated circuit
US6146970A (en) * 1998-05-26 2000-11-14 Motorola Inc. Capped shallow trench isolation and method of formation

Similar Documents

Publication Publication Date Title
TWI695454B (en) Bidirectional switch having back to back field effect transistors and manufacturing method thereof
US6468847B1 (en) Method of fabricating a high-voltage transistor
KR101320331B1 (en) Semiconductor structure with improved on resistance and breakdown voltage performance
US6940145B2 (en) Termination structure for a semiconductor device
US20150340231A1 (en) Semiconductor device and manufacturing method thereof
US8168494B2 (en) Trench MOS transistor and method of manufacturing the same
US6271550B1 (en) Junction field effect transistor or JFET with a well which has graded doping directly beneath the gate electrode
KR20030072071A (en) Semiconductor device having dual isolation structure and method of fabricating the same
US5525532A (en) Method for fabricating a semiconductor device
JPH11191559A (en) Manufacture of mosfet
JPH0260169A (en) Field effect transistor
US7008865B2 (en) Method of manufacturing a semiconductor device having a high breakdown voltage and low on-resistance
GB2347014A (en) Vertical power MOS / IGBT devices
US6713814B1 (en) DMOS transistor structure with gate electrode trench for high density integration and method of fabricating the structure
JP2004022769A (en) Lateral high breakdown voltage semiconductor device
JPS6388866A (en) Semiconductor device and manufacture thereof
US20050212073A1 (en) Semiconductor element and manufacturing method thereof
JPH11330383A (en) Semiconductor device
KR19980024731A (en) Semiconductor element controllable by electric field effect
KR19980082916A (en) SOI MOS transistor device and manufacturing method thereof
KR100240881B1 (en) Mosfet and method for manufacturing the same
JP2005085975A (en) Semiconductor device
KR100457907B1 (en) Power transistors and method of fabricating the same
KR100273688B1 (en) MOSFET and method for forming the same
JPH03159173A (en) Manufacture of semiconductor integrated circuit device