JPS6388356A - Hydraulic control circuit for automatic speed change gear - Google Patents

Hydraulic control circuit for automatic speed change gear

Info

Publication number
JPS6388356A
JPS6388356A JP61231558A JP23155886A JPS6388356A JP S6388356 A JPS6388356 A JP S6388356A JP 61231558 A JP61231558 A JP 61231558A JP 23155886 A JP23155886 A JP 23155886A JP S6388356 A JPS6388356 A JP S6388356A
Authority
JP
Japan
Prior art keywords
valve
manual
range
shift valve
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61231558A
Other languages
Japanese (ja)
Inventor
Katsuyuki Makino
牧野 克行
Yoshiyuki Onimaru
義幸 鬼丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP61231558A priority Critical patent/JPS6388356A/en
Priority to DE19873732676 priority patent/DE3732676A1/en
Priority to IT22058/87A priority patent/IT1222758B/en
Publication of JPS6388356A publication Critical patent/JPS6388356A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1232Bringing the control into a predefined state, e.g. giving priority to particular actuators or gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1244Keeping the current state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1268Electric parts of the controller, e.g. a defect solenoid, wiring or microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0276Elements specially adapted for hydraulic control units, e.g. valves
    • F16H61/0286Manual valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To make it possible to form both a fail-safe circuit and a manual L inhibitor circuit together by additively providing a shift valve with an auxiliary valve to change over the shift valve in a L range by opening or closing a solenoid valve in a direction opposite to that in a D range. CONSTITUTION:The output port 20d of an auxiliary valve 20 is connected to the input port 10a of a shift valve 10, and the output port 20d of the auxiliary valve 20 to the input port 10c of an oil chamber 10C, and the input port 20a and output port 20d of the auxiliary valve 20 are connected to positions before and behind an orifice 40 respectively, and when the shift valve 10 is in a L range, it is changed over in a direction opposite to that in a D range by opening or closing a solenoid valve 4. Said one solenoid valve 4 can therefore produce four speed change stages to form both a fail-safe circuit and a manual L inhibitor circuit together.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フェイルセーフ回路およびマニュアルLイン
ヒビタ回路を有する前進2段の自動変速機の油圧制御回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydraulic control circuit for a two-forward automatic transmission having a fail-safe circuit and a manual L inhibitor circuit.

(従来の技術) 第5図は従来の前進2段の自動変速機の油圧制御回路を
示すものであって、1はトルクコンバータ、2はマニュ
アルバルブ、3はシフトバルブ。
(Prior Art) Fig. 5 shows a hydraulic control circuit of a conventional automatic transmission with two forward speeds, in which 1 is a torque converter, 2 is a manual valve, and 3 is a shift valve.

4はシフトバルブ3のコントロール用ソレノイドバルブ
、5はレギュレータバルブ、6はアキュムレータ、7は
オイルポンプ、8はオイルクーラである。またこの自動
変速機の各変速段におけるクラッチC1およびブレーキ
Bl、B2の係合は下記の第1表に示す通りである。
4 is a solenoid valve for controlling the shift valve 3, 5 is a regulator valve, 6 is an accumulator, 7 is an oil pump, and 8 is an oil cooler. Further, the engagement of the clutch C1 and the brakes B1 and B2 at each gear stage of this automatic transmission is as shown in Table 1 below.

第1表 (発明が解決しようとする問題点) この油圧制御回路においては、Dレンジの2速状態から
しレンジにシフトした際、車速が所定車速以下になるま
でソレノイドバルブ4を開状態とし、下記の第2表に示
すように2速状態を維持することによってマニュアルヒ
インヒビ2回路を成立させ、マニュアルLシフト時のエ
ンジンオーバランを防止することが出来るようになって
いた。
Table 1 (Problems to be Solved by the Invention) In this hydraulic control circuit, when shifting from the 2nd speed state of the D range to the D range, the solenoid valve 4 is kept open until the vehicle speed falls below a predetermined vehicle speed. As shown in Table 2 below, by maintaining the 2nd speed state, two manual hinge crack circuits were established, making it possible to prevent engine overrun during a manual L shift.

第2表 しかしこの従来の油圧制御回路においては、制御用のソ
レノイドバルブが1個であるためソレノイドバルブ4が
故障した場合のフェイルセーフ回路を成立させることが
出来なかった。
Table 2 However, in this conventional hydraulic control circuit, since there is only one solenoid valve for control, it is not possible to establish a fail-safe circuit in the event that the solenoid valve 4 fails.

また油圧制御回路を第6図に示すように構成し、下記の
第3表のように1個のソレノイドバルブでフェイルセー
フ回路が成立するようにしだ場合には、今度はマニュア
ルヒインヒビ2回路を成立させることが出来なかった。
In addition, if the hydraulic control circuit is configured as shown in Figure 6, and a fail-safe circuit is established with one solenoid valve as shown in Table 3 below, then two manual hydraulic control circuits are required. could not be established.

第3表 この発明は1.上記のような従来の油圧制御回路が有す
る欠点を解消するために為されたものであって、1個の
ソレノイドバルブでフェイルセーフ回路およびマニュア
ルヒインヒビ2回路を共に成立させることの出来る前進
2段の自動変速機の油圧制御回路を提供することを目的
とする。
Table 3 This invention consists of 1. This was done in order to eliminate the drawbacks of the conventional hydraulic control circuit as described above, and it is possible to establish both a fail-safe circuit and two manual hinge circuits with one solenoid valve. The purpose of the present invention is to provide a hydraulic control circuit for an automatic transmission.

(問題点を解決するための手段) この発明は、上記目的を達成するために、1個のソレノ
イドバルブでシフトバルブの切換を行う前進2段の自動
変速機の油圧制御回路において。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a hydraulic control circuit for a two-speed forward automatic transmission in which shift valves are switched using one solenoid valve.

LレンジのマニュアルL信号圧によって作動しソレノイ
ドバルブの開閉によりシフトバルブをDレンジの際と逆
方向に切換える補助バルブをシフトバルブに付設したこ
とを特徴としているものである。
The shift valve is characterized by an auxiliary valve that is operated by the manual L signal pressure in the L range and switches the shift valve in the opposite direction to that in the D range by opening and closing a solenoid valve.

(作 用) 上記本発明による自動変速機の油圧制御囲路は、Dレン
ジにおいてはシフトバルブがソレノイドバルブの開閉に
応動して切換えられることによって1速状態(D−1)
および2速状態(D−2)が成立され、またLレンジに
おいては補助バルブがマニ。アルバルブからのマニュア
ルL信号圧によって作動し、ソレノイドバルブの開閉に
応動してシフトバルブを前記Dレンジの場合と逆方向に
切換えることによって1速状態(L−1)および2速状
態(L−2)が成立され、−個のソレノイドバルブで4
通り(D−1,D−2,L−1、L−2)の変速段を成
立させることができる。
(Function) In the D range, the hydraulic control circuit of the automatic transmission according to the present invention switches the shift valve to the first speed state (D-1) in response to the opening and closing of the solenoid valve.
and 2nd speed state (D-2) is established, and in the L range, the auxiliary valve is in the manifold position. The shift valve is activated by the manual L signal pressure from the Al valve, and switches the shift valve in the opposite direction to the D range in response to the opening and closing of the solenoid valve. ) is established, and 4 with - solenoid valves.
It is possible to establish the following gears (D-1, D-2, L-1, L-2).

従って油圧制御回路が1個のみのソレノイドバルブを有
する前進2段の自動変速機であっても。
Therefore, even if the hydraulic control circuit is an automatic transmission with two forward speeds and has only one solenoid valve.

従来何れか一方しか成立させることが出来なかったフェ
イルセーフ回路およびマニュアルヒインヒビ2回路を共
に成立させることが可能となり1例えば−ド記第4表に
示すように、補助バルブがLレンジにおいてソレノイド
バルブが閉のとき油圧をシフトバルブに導通してこのシ
フトバルブを2速状態に保持し、ソレノイドバルブが開
のとき前記シフトバルブを2速状態に保持していた油圧
を排出側に導通してシフトバルブを1速状態とするよう
構成すれば、ソレノイドバルブが故障して開状態となっ
たときのフェイルセーフ回路およびD−2レンジからし
レンジにシフトされたときのマニュアルヒインヒビ2回
路が共に成立する。
It is now possible to establish both a fail-safe circuit and two manual failure circuits, which conventionally only allowed one of them to be established.1For example, as shown in Table 4, when the auxiliary valve is in the L range, the solenoid When the valve is closed, hydraulic pressure is conducted to the shift valve to maintain the shift valve in the 2nd speed state, and when the solenoid valve is open, the hydraulic pressure that was maintaining the shift valve in the 2nd speed condition is conducted to the discharge side. If the shift valve is configured to be in the 1st speed state, there will be a fail-safe circuit when the solenoid valve fails and it becomes open, and a manual hi-hi crack 2 circuit when the D-2 range is shifted to the D-2 range. Established together.

第4表 (実施例) 以下この発明を2図面に示す実施例に基づいてさらに詳
細に説明を行う。
Table 4 (Examples) This invention will be described in more detail below based on examples shown in two drawings.

第1ないし4図においてシフトバルブlOはランドIl
a 、 llbが形成されたスプール11をqし、この
スプールI【は図面左端側に内装されたスプリング12
によって図面右方向に付勢されている。このシフトバル
ブ10は、スプール11のランドLlHの図面左端側に
形成される油室10Aに連通ずる入力ポートlogと、
ランドlLaとランドllbの間に形成される油室10
Bに連通ずるクラッチ圧出力ポートL(lbと、スプー
ル11の図面右端側に形成される油室10cに連通する
人力ボートlOcと、この入力ポート10cとクラッチ
圧出力ポート10bとの間に形成された人力ポートlo
dとを有している。そしてスプール11がスプリング1
2に付勢されて図面右位置に位置された際(第1,3図
)クラッチ圧出力ポート10bは油室10Bを介して入
力ポートlodと連通され、スプール11がスプリング
12に抗して図面左位置に位置された際(第2,4図)
入力ポート10dはランドfobによって閉鎖され、ク
ラッチ圧出力ポート10bはドレーンボート10eに連
通されるようになっている。
In Figs. 1 to 4, the shift valve lO is the land Il.
a, the spool 11 on which the llb is formed, and this spool I [is the spring 12 installed inside the left end side of the drawing.
is biased toward the right in the drawing. This shift valve 10 has an input port log communicating with an oil chamber 10A formed on the left end side in the drawing of land LlH of the spool 11,
Oil chamber 10 formed between land lLa and land llb
A clutch pressure output port L (lb) communicating with B, a human-powered boat lOc communicating with an oil chamber 10c formed on the right end side of the spool 11 in the drawing, and a clutch pressure output port 10c formed between this input port 10c and the clutch pressure output port 10b. human power port lo
d. And spool 11 is spring 1
When the clutch pressure output port 10b is biased to the right position in the drawings (Figs. 1 and 3), the clutch pressure output port 10b communicates with the input port lod via the oil chamber 10B, and the spool 11 resists the spring 12 and is positioned at the right position in the drawings (Figs. 1 and 3). When placed in the left position (Figures 2 and 4)
The input port 10d is closed by a land fob, and the clutch pressure output port 10b is communicated with the drain boat 10e.

インヒビタバルブ20(補助バルブ)はランド21a、
 21bが形成されたスプール21を有し、このスプー
ル2Iは図面左端側に内装されたスプリング22によっ
て図面左方向に付勢されている。このインヒビタバルブ
20は、スプール21のランド21aとランド21bと
の間に形成される油室20Aに連通する人力ボート20
aと、この人力ポート20aの図面左側に形成された出
力ポート20bと、スプール21の図面右端側に形成さ
れる油室2OBに連通ずるマニュアルL信号圧入力ポー
ト20cと、このマニュアルL信号圧入力ポート20c
と人力ポート20aとの間に形成された出カポ−1−2
0dとを有している。そしてスプール21がスプリング
22に付勢されて図面右位置に位置された際(第1,2
図)入力ポート20aは出力ポート20dに油室20A
を介して連通され、また出力ポート20bはドレーンポ
ート20eと連通されるようになっており、スプール2
1がスプリング22に抗して図面右位置に位置された際
(第3,4図)には、出力ポート20dはランド21b
によって閉鎖され代って人力ポート20aは出力ポート
20bと連通されるようになっている。
The inhibitor valve 20 (auxiliary valve) has a land 21a,
The spool 21 has a spool 21 having a spool 21b formed therein, and this spool 2I is biased toward the left in the drawing by a spring 22 installed inside the left end side in the drawing. This inhibitor valve 20 is connected to a human-powered boat 20 that communicates with an oil chamber 20A formed between a land 21a and a land 21b of a spool 21.
a, an output port 20b formed on the left side of this manual port 20a in the drawing, a manual L signal pressure input port 20c communicating with the oil chamber 2OB formed on the right end side of the spool 21 in the drawing, and this manual L signal pressure input port 20c
Output port 1-2 formed between the and the human power port 20a
0d. When the spool 21 is biased by the spring 22 and positioned at the right position in the drawing (first and second
Figure) The input port 20a is connected to the output port 20d with an oil chamber 20A.
The output port 20b is communicated with the drain port 20e, and the spool 2
1 is positioned at the right position in the drawing against the spring 22 (Figs. 3 and 4), the output port 20d is connected to the land 21b.
Instead, the manual port 20a is communicated with the output port 20b.

シフトバルブ10の入力ポートloaはインヒビタバル
ブ20の出力ポート20dと連通し、入力ポート10d
はライン圧油路L1のオリフィス40より上流側と迎通
し、油室10Cの入力ボート10Cはオリフィス50を
介してライン圧油路Llのオリフィス40より4−流側
と連通ずるとともにインヒビタバルブ20の出力ポート
20dと連通している。
The input port loa of the shift valve 10 communicates with the output port 20d of the inhibitor valve 20, and the input port 10d
communicates with the upstream side of the orifice 40 of the line pressure oil passage L1, and the input boat 10C of the oil chamber 10C communicates with the 4-stream side of the orifice 40 of the line pressure oil passage Ll via the orifice 50, and also communicates with the upstream side of the orifice 40 of the line pressure oil passage L1. It communicates with the output port 20d.

インヒビタバルブ20の入力ポート20aはライン圧油
路L1のオリフィス40より下流側と連通されており7
また油室20Bの入力ポート20cはマニュアルバルブ
30のマニュアルL信号圧出力ポート30aに、連通さ
れている。
The input port 20a of the inhibitor valve 20 is in communication with the downstream side of the orifice 40 of the line pressure oil passage L1.
Further, the input port 20c of the oil chamber 20B is communicated with the manual L signal pressure output port 30a of the manual valve 30.

なお油圧制御回路の他の部分の構成および各変速段にお
けるクラッチとブレーキの作動については、第5図の従
来の油圧制御回路と同様である。
The configuration of other parts of the hydraulic control circuit and the operation of the clutch and brake at each gear stage are the same as the conventional hydraulic control circuit shown in FIG.

次に上記油圧制御回路の各変速段における作動をそれぞ
れ対応する各図に基づいて順に説明を行う。
Next, the operation of the hydraulic control circuit at each gear stage will be explained in order based on the corresponding figures.

第1図はDレンジの2速状態(D−2)を表しており、
ソレノイドバルブ4は開放されている。
Figure 1 shows the 2nd speed state (D-2) of the D range.
Solenoid valve 4 is open.

そのため油路L1におけるマニュアルバルブ30からの
ライン圧はシフトバルブ10の人力ポートlOcに圧力
を発生させず、またDレンジであるためインヒビタバル
ブ20の油室2OB内にはマニュアルL信号圧入力ポー
ト20CからL信号圧が発生されておらず、スプール2
1はスプリング22によって付勢されて図面右位置に位
置されており、入力ポート20aと出力ポート20dと
が油室20Aを介して連通されるため、シフトバルブI
Oの油室Cには圧力が発生しない。
Therefore, the line pressure from the manual valve 30 in the oil passage L1 does not generate pressure in the manual port lOc of the shift valve 10, and since it is in the D range, the manual L signal pressure input port 20C is in the oil chamber 2OB of the inhibitor valve 20. L signal pressure is not generated from spool 2.
1 is biased by a spring 22 and positioned at the right position in the drawing, and the input port 20a and the output port 20d are communicated via the oil chamber 20A, so that the shift valve I
No pressure is generated in the oil chamber C of O.

従ってシフトバルブ10のスプール11は、スプリング
12に付勢されて図面右位置に位置され、入力ポート1
0dとクラッチ圧出力ポートIObとが連通されて、油
路L1からのライン圧がクラッチC1に導入され、前記
の第1表に示すように2速状態が成立する。
Therefore, the spool 11 of the shift valve 10 is biased by the spring 12 and positioned at the right position in the drawing, and the input port 1
0d and the clutch pressure output port IOb are communicated, line pressure from the oil passage L1 is introduced into the clutch C1, and the second speed state is established as shown in Table 1 above.

第2図はDレンジの1速状態(D−1)を示しており、
第1図の2速状態(D−2)から車速が所定車速以下に
減速されるとソレノイドバルブ4が閉じられる。そのた
め油路L1におけるマニュアルバルブ30からのライン
圧がシフトバルブIOの油室10Cに入力ポート10C
から導入される。またインヒビタバルブ20にはDレン
ジであるためL信号圧が発生されていないためライン圧
が人力ボート20a−出力ポート20d−人力ポートl
ocを介して油室10cに導入される。
Figure 2 shows the 1st speed state (D-1) of the D range.
When the vehicle speed is reduced from the second speed state (D-2) in FIG. 1 to a predetermined vehicle speed or less, the solenoid valve 4 is closed. Therefore, the line pressure from the manual valve 30 in the oil path L1 is input to the oil chamber 10C of the shift valve IO at the input port 10C.
introduced from. In addition, since the inhibitor valve 20 is in the D range, no L signal pressure is generated, so the line pressure is from the manual boat 20a to the output port 20d to the manual port L.
The oil is introduced into the oil chamber 10c via the oc.

この油室10C内に導入された油圧によってスプール1
1がスプリング12に抗して図面左方向に移動され、こ
れによって入力ポート10dがランド11bによって閉
じられ、またクラッチ圧出力ポート10bはドレーンボ
ートfoeと連通しこのドレーンボートLOeからクラ
ッチ圧が排出される。
The spool 1 is caused by the hydraulic pressure introduced into this oil chamber 10C.
1 is moved to the left in the drawing against the spring 12, thereby the input port 10d is closed by the land 11b, and the clutch pressure output port 10b is communicated with the drain boat foe, so that the clutch pressure is discharged from the drain boat LOe. Ru.

従ってクラッチC1の係合が解除され、また油路L2に
おけるマニュアルバルブ30からのライン圧によってブ
レーキB1が係合されるので、第1表に示すように1速
状態が成立する。
Therefore, the clutch C1 is disengaged and the brake B1 is engaged by the line pressure from the manual valve 30 in the oil passage L2, so that the first speed state is established as shown in Table 1.

第3図はLレンジの2速状態(L−2)を示しており、
第1図の2速状態(D−2)からマニュアルバルブ30
がLレンジにシフトされると、車速か所定車速以下に減
速されるまでソレノイドバルブ4は閉じられる。そして
マニュアルバルブ30のマニュアルL信号圧出力ポート
30aからはL信号圧が出力され、インヒビタバルブ2
0のマニュアルL信号圧入力ボート20Cから油室2O
Bに導入されて、スプール21をスプリング22に抗し
て図面左方向にスライドさせる。
Figure 3 shows the second speed state (L-2) of the L range.
From the 2nd speed state (D-2) in Figure 1, the manual valve 30
When the vehicle is shifted to the L range, the solenoid valve 4 is closed until the vehicle speed is reduced to a predetermined vehicle speed or less. Then, the L signal pressure is output from the manual L signal pressure output port 30a of the manual valve 30, and the inhibitor valve 2
0 manual L signal pressure input boat 20C to oil chamber 2O
B and slides the spool 21 to the left in the drawing against the spring 22.

これによって出力ポート20dはランド21bによって
閉じられ、オリフィス50を介して油路L1から油路L
3に導入された油圧はボート20dで遮断される。また
入力ポート20aと出力ポート20bが連通されること
によって油路L1からライン圧が人力ポート20a−油
室20A−出力ポート20b−シフトバルブ10の入力
ボートlOaを介して油室1OA内に導入される。
As a result, the output port 20d is closed by the land 21b, and from the oil passage L1 to the oil passage L via the orifice 50.
The hydraulic pressure introduced into the boat 20d is cut off by the boat 20d. Furthermore, by communicating the input port 20a and the output port 20b, line pressure is introduced from the oil passage L1 into the oil chamber 1OA via the manual port 20a, the oil chamber 20A, the output port 20b, and the input boat lOa of the shift valve 10. Ru.

従ってシフトバルブ10の油室10C内にオリフィス5
0を介して油室10C内にライン圧が導入されているに
もかかわらず、スプリング12および油室10A内に導
入された油圧によって付勢されてスプール11は図面右
位置に位置されており、入力ポートIOdとクラッチ圧
出カポ−) fobとが連通されクラッチC1に油路L
1からクラッチ圧が導入されることによって2速状態が
保持される。
Therefore, there is an orifice 5 in the oil chamber 10C of the shift valve 10.
Even though line pressure is introduced into the oil chamber 10C through the oil chamber 10A, the spool 11 is biased by the spring 12 and the hydraulic pressure introduced into the oil chamber 10A, and is positioned at the right position in the drawing. The input port IOd and the clutch pressure output port (fob) are communicated with each other, and the oil passage L is connected to the clutch C1.
2nd speed state is maintained by introducing clutch pressure from 1st gear.

以上のようにD−2状態からLレンジにシフトされた際
所定車速以下に減速されるまでソレノイドバルブ4は閉
じられ、インヒビタバルブ20の作動によってシフトバ
ルブ10が2速状態に維持されるので、マニュアルLイ
ンヒビタ回路が成立することとなる。
As described above, when shifting from the D-2 state to the L range, the solenoid valve 4 is closed until the vehicle speed is decelerated below a predetermined speed, and the shift valve 10 is maintained in the 2nd speed state by the operation of the inhibitor valve 20. A manual L inhibitor circuit is established.

第4図はLレンジの1速状態(L−1)を示しており、
インヒビタバルブ20のスプール21はマニュアルバル
ブ30からのL信号圧によって第3図の場合と同様図面
左位置に保持されている。そして第3図の2速状態(L
−2)から車速が所定車速以下になるとソレノイドバル
ブ4が開放され。
Figure 4 shows the 1st speed state (L-1) of the L range.
The spool 21 of the inhibitor valve 20 is held at the left position in the drawing by the L signal pressure from the manual valve 30, as in the case of FIG. Then, in the 2nd speed state (L
-2) When the vehicle speed becomes less than a predetermined vehicle speed, the solenoid valve 4 is opened.

これによってシフトバルブ10の油室10Aから圧油が
ボート1oa−ボート20b−ボート20aを介してソ
レノイドバルブ4から排出されるため、油室10C内の
油圧がスプリング12に打勝ってスプール11を付勢し
図面左方向にスライドさせる。これによって第2図の場
合と同様クラッチC1から圧油がドレーンボート10e
を通って排出され、油路L2からのブレーキ圧によって
ブレーキB1が係合されて1速状態(L−1)が成立す
る。
As a result, the pressure oil from the oil chamber 10A of the shift valve 10 is discharged from the solenoid valve 4 via the boat 1oa, the boat 20b, and the boat 20a, so that the oil pressure in the oil chamber 10C overcomes the spring 12 and attaches the spool 11. Slide the drawing to the left. As a result, pressure oil is drained from the clutch C1 to the drain boat 10e as in the case shown in Fig. 2.
The brake B1 is engaged by the brake pressure from the oil passage L2, and the first speed state (L-1) is established.

ここで第3図のL−2状態において、ソレノイドバルブ
4が故障し開放状態となった場合には。
Here, in the L-2 state of FIG. 3, if the solenoid valve 4 fails and becomes open.

第4図の状態となり1速状態が維持されるので。The state shown in Fig. 4 is reached and the 1st speed state is maintained.

フェイルセーフ回路が成立することとなる。A fail-safe circuit will be established.

(発明の効果) 以」二のようにこの発明は、シフトバルブにLレンジの
ときソレノイドバルブの開閉によってDレンジのときと
逆方向にシフトバルブを切換える補助バルブ(インヒビ
タバルブ)を付設したことによって、前進2段の自動変
速機において1個のソレノイドバルブで四通りの変速段
を得ることが可能となり、フェイルセーフ回路およびマ
ニュアルLインヒビタ回路を共に成立させることが可能
になるものである。
(Effects of the Invention) As mentioned above, this invention is achieved by attaching to the shift valve an auxiliary valve (inhibitor valve) that switches the shift valve in the opposite direction to that in the D range by opening and closing a solenoid valve when in the L range. In an automatic transmission with two forward speeds, it is possible to obtain four different speeds with one solenoid valve, and it is possible to establish both a fail-safe circuit and a manual L inhibitor circuit.

なお従来技術の欠点を解消するために、1−2シフト用
ソレノイドバルブの他にマニュアル上インヒビタ用ソレ
ノイドバルブを1個追加することも考えられたが、2速
A T Mの場合油圧回路内のスペースが小さくまた追
加するソレノイドバルブはマニュアルLインヒビタ専用
となって他の回路構成に有効利用出来ないためスペース
確保が難しく、さらにソレノイドバルブは高価であるた
めコストアップしてしまうという問題が生じる。しかし
本発明は小型で安価な補助バルブを1本追加讐るのみで
良いので、スペース確保やコストの面において−1−紀
のような問題を生じることは無い。
In order to eliminate the drawbacks of the conventional technology, it was considered to add one manual inhibitor solenoid valve in addition to the 1-2 shift solenoid valve, but in the case of a 2-speed ATM, Since the space is small and the added solenoid valve is used exclusively for the manual L inhibitor and cannot be used effectively for other circuit configurations, it is difficult to secure space, and furthermore, the cost increases because solenoid valves are expensive. However, in the present invention, only one additional small and inexpensive auxiliary valve is required, so there are no problems like those in the -1st era in terms of securing space and cost.

【図面の簡単な説明】 第1図は本発明の一実施例におけるD−2状態を示す油
圧回路図、第2図は同実施例におけるD−1状態を示す
油圧回路図、第3図は同実施例におけるL〜2状態を示
す油圧回路図、第4図は同実施例におけるL−1状態を
示す油圧回路図。 第5および6図は従来例を示す油圧回路図である。 4・・・ソレノイドバルブ、   10・・・シフトバ
ルブ。 2G・・・インヒビタバルブ。 20c・・・マニュアルL信号圧入力ポート。 30・・・マニュアルバルブ。 30a・・・マニュアルL信号圧出力ポート。 CI・・・クラッチ。 Bl、B2・・・ブレーキ。
[Brief Description of the Drawings] Fig. 1 is a hydraulic circuit diagram showing the D-2 state in one embodiment of the present invention, Fig. 2 is a hydraulic circuit diagram showing the D-1 state in the same embodiment, and Fig. 3 is a hydraulic circuit diagram showing the D-1 state in the same embodiment. FIG. 4 is a hydraulic circuit diagram showing the L-2 state in the same embodiment, and FIG. 4 is a hydraulic circuit diagram showing the L-1 state in the same embodiment. 5 and 6 are hydraulic circuit diagrams showing a conventional example. 4... Solenoid valve, 10... Shift valve. 2G...Inhibitor valve. 20c...Manual L signal pressure input port. 30...Manual valve. 30a...Manual L signal pressure output port. CI...Clutch. Bl, B2...Brake.

Claims (1)

【特許請求の範囲】 1、1個のソレノイドバルブでシフトバルブの切換を行
う前進2段の自動変速機の油圧制御回路において、Lレ
ンジのマニュアルL信号圧によって作動しソレノイドバ
ルブの開閉によりシフトバルブをDレンジの際と逆方向
に切換える補助バルブをシフトバルブに付設したことを
特徴とする自動変速機の油圧制御回路。 2、補助バルブがLレンジにおいてソレノイドバルブが
閉のとき油圧をシフトバルブに導通してこのシフトバル
ブを2速状態に保持し、ソレノイドバルブが開のとき前
記シフトバルブを2速状態に保持していた油圧を排出側
に導通してシフトバルブを1速状態とする特許請求の範
囲第1項記載の自動変速機の油圧制御回路。
[Claims] 1. In a hydraulic control circuit for a two-speed forward automatic transmission in which a shift valve is switched by one solenoid valve, the shift valve is operated by a manual L signal pressure in an L range, and the shift valve is switched by opening and closing the solenoid valve. A hydraulic control circuit for an automatic transmission, characterized in that a shift valve is provided with an auxiliary valve for switching in a direction opposite to that in D range. 2. When the auxiliary valve is in the L range and the solenoid valve is closed, hydraulic pressure is conducted to the shift valve to maintain the shift valve in the 2nd speed state, and when the solenoid valve is open, the shift valve is maintained in the 2nd speed state. 2. The hydraulic control circuit for an automatic transmission according to claim 1, wherein the hydraulic pressure is conducted to the discharge side to put the shift valve in the first speed state.
JP61231558A 1986-09-30 1986-09-30 Hydraulic control circuit for automatic speed change gear Pending JPS6388356A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61231558A JPS6388356A (en) 1986-09-30 1986-09-30 Hydraulic control circuit for automatic speed change gear
DE19873732676 DE3732676A1 (en) 1986-09-30 1987-09-28 Hydraulic control circuit for an automatic transmission
IT22058/87A IT1222758B (en) 1986-09-30 1987-09-29 HYDRAULIC CONTROL CIRCUIT FOR AN AUTOMATIC GEARBOX

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61231558A JPS6388356A (en) 1986-09-30 1986-09-30 Hydraulic control circuit for automatic speed change gear

Publications (1)

Publication Number Publication Date
JPS6388356A true JPS6388356A (en) 1988-04-19

Family

ID=16925387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231558A Pending JPS6388356A (en) 1986-09-30 1986-09-30 Hydraulic control circuit for automatic speed change gear

Country Status (3)

Country Link
JP (1) JPS6388356A (en)
DE (1) DE3732676A1 (en)
IT (1) IT1222758B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053216B2 (en) * 1980-05-19 1985-11-25 アイシン精機株式会社 Vehicle transmission
JPS6182055A (en) * 1984-09-13 1986-04-25 Honda Motor Co Ltd Backup device of electronic speed change control device

Also Published As

Publication number Publication date
IT8722058A0 (en) 1987-09-29
DE3732676A1 (en) 1988-05-11
IT1222758B (en) 1990-09-12
DE3732676C2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
JP4167772B2 (en) Control device for automatic transmission for vehicle
US5676026A (en) Hydraulic pressure control system
JPH0235173B2 (en)
KR100204125B1 (en) Hydraulic driving control device of transmission
JPS6219623B2 (en)
JP2000104811A (en) Control device for vehicular automatic transmission
US5641043A (en) Control apparatus for hydraulically operated vehicular transmission
US4779491A (en) Automatic transmission control system
US4987798A (en) Hydraulic control device for automatic transmission for vehicle with high accuracy reverse inhibition system
JPS6388356A (en) Hydraulic control circuit for automatic speed change gear
JPH05209683A (en) Oil pressure control device for shift-by-wire automatic transmission
JPH09133204A (en) Oil pressure control circuit for automatic transmission
JPS63186055A (en) Oil pressure circuit of automatic transmission
JPH0542582B2 (en)
JPS6145156A (en) Hydraulic control device of automatic speed change gear
GB2166817A (en) Automatic transmission hydraulic pressure control
JP3516767B2 (en) Hydraulic control device for automatic transmission
JPH0213184B2 (en)
JP2818825B2 (en) Line pressure control device for automatic transmission
JPH056058B2 (en)
JPH08135779A (en) Hydraulic control device for automatic transmission
JPH04357367A (en) Hydraulic circuit structure of service car
JPS616028A (en) Control circuit for hydraulic clutch for running speed shift
JPS63270952A (en) Controller of hydraulic actuation type transmission for vehicle
JPH0652098B2 (en) Hydraulic control of automatic transmission