JPS6388328A - Torque transmitter - Google Patents

Torque transmitter

Info

Publication number
JPS6388328A
JPS6388328A JP61232090A JP23209086A JPS6388328A JP S6388328 A JPS6388328 A JP S6388328A JP 61232090 A JP61232090 A JP 61232090A JP 23209086 A JP23209086 A JP 23209086A JP S6388328 A JPS6388328 A JP S6388328A
Authority
JP
Japan
Prior art keywords
cam surface
cam
fluid
torque
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61232090A
Other languages
Japanese (ja)
Other versions
JPH0819972B2 (en
Inventor
Takashi Okubo
孝 大久保
Toji Takemura
統治 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61232090A priority Critical patent/JPH0819972B2/en
Publication of JPS6388328A publication Critical patent/JPS6388328A/en
Publication of JPH0819972B2 publication Critical patent/JPH0819972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To improve durability and reliability by inserting into the 1st rotation member the 2nd rotation member which forms a mechanism which connects fluid chambers of a coordinate phase changing their volumes with cam-bodies reciprocating in a diametric direction. CONSTITUTION:A rotor 40 provided with cylindrical holes 42 in confrontation with a cam surface 31 is inserted into a drive-housing 30 fixed to an input shaft and forming the cam surface 31 on its inner perimeter. Oil chambers 60 are formed by inserting in an oil-tight condition into these cylindrical holes 42 driving pistons 50 which have spherical surfaces 50a slide-contacting with the cam surface 31 and reciprocate at a time of the relative rotation of the input and output shafts. Also, oil chambers 60 of a coordinate phase are connected with oil passages 61a, 2 provided with an orifice 62 and a check valve 64. Accordingly, a torque transmission characteristic which is added with a transmission torque element generated by a centrifugal force element is obtained, so a transmitter is compact and restrains the lowering of transmission torque and prevents the occurrence of a collision sound and is inexpensive and can improve reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、四輪駆動車等の多輪駆動車の駆動力配分装置
や、左右輪の差動装置や、左右輪の差動を制限する差動
制限装置等として用いられるトルク伝達装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a drive force distribution device for a multi-wheel drive vehicle such as a four-wheel drive vehicle, a differential device for left and right wheels, and a limiter for differential differential between left and right wheels. The present invention relates to a torque transmission device used as a differential limiting device, etc.

(従来の技術) 従来のトルク伝達装置としては、例えば、特開昭60−
116529号公報に記載されているような装置が知ら
れている。
(Prior Art) As a conventional torque transmission device, for example,
A device as described in Japanese Patent No. 116529 is known.

この従来装置は、前輪に駆動力を伝達する第1の回転軸
と、後輪に駆動力を伝達する第2の回転軸と、前記第1
と第2の回転軸の連結手段として使用され、かつ第1と
第2の回転軸の回転速度差によって駆動されると共に回
転速度差に応じた油量を吐出する油圧ポンプとからなる
四輪駆動用連結装置において、油圧ポンプの吐出■コと
吸込[]側抽油路に油流通制御手段を有する副油路を設
けたことを特徴とする特 また、従来のトルク伝達装置としては、例えば、特公昭
54−4134号公報に記載されているような装置も知
られている。
This conventional device includes a first rotating shaft that transmits driving force to the front wheels, a second rotating shaft that transmits driving force to the rear wheels, and a second rotating shaft that transmits driving force to the front wheels.
and a hydraulic pump that is used as a connecting means for the second rotating shaft, is driven by the difference in rotational speed between the first and second rotating shafts, and discharges an amount of oil according to the difference in rotational speed. The conventional torque transmission device is characterized in that an auxiliary oil passage having an oil flow control means is provided in the discharge passage and the suction oil extraction passage of the hydraulic pump. A device as described in Japanese Patent Publication No. 54-4134 is also known.

この従来装置は、静[Lハウジング内にジャーナルされ
た第1回転部材、前記ハウジング内に伸び前記第1回転
部材に回転可能に連結された入力回転部材、前記第1回
転部材に隣接して同軸に配置された第2回転部材、前記
ハウジング内に伸び前記第2回転部材に回転可能に連結
された第1出力回転部材、前記入力部材に回転可能に連
結された第2出力回転部材、前記回転部材間を連結し予
め決められた流体圧力条件下で入力部材からの入力トル
クを選択した割合で前記第1出力回転部材に伝達し入力
部材から伝達されたトルクの残りの14を第2出力回転
部材に伝達する流体手段、及び前記流体手段が前記出力
部材に伝達するトルクの割合を調整する作動を行なうた
めの予め決められた流体圧力条件を調整する選択手段か
ら成る。
This prior art device includes a first rotary member journaled within a static housing, an input rotary member extending within the housing and rotatably coupled to the first rotary member, and an input rotary member adjacent and coaxial with the first rotary member. a second rotating member disposed in the housing, a first output rotating member extending within the housing and rotatably coupled to the second rotating member, a second output rotating member rotatably coupled to the input member; The members are connected, and under predetermined fluid pressure conditions, the input torque from the input member is transmitted to the first output rotating member at a selected rate, and the remaining 14 of the torque transmitted from the input member is transferred to the second output rotating member. It comprises a fluid means for transmitting to the member and a selection means for adjusting a predetermined fluid pressure condition for operating to adjust the proportion of torque that the fluid means transmits to the output member.

(発明が解決しようとする問題点) しかしながら、前者の従来装置(特開昭60−1165
29!;)にあっては、以下に述べるような問題点があ
った。
(Problem to be solved by the invention) However, the former conventional device
29! ;) had the following problems.

(V 回転中心軸から半径方向に犬きく雛れた位置であ
るカムリング20b側の回転ハウジングに油圧制御回路
21が形成されている為、高車速時等で回転ハウジング
が高回転する時には、油路を流通する作動油やリリーフ
弁に遠心力が作用し、こ・ の遠心力作用で油圧ポンプ
での発生油圧レベルが所望する油圧レベルに達しなかっ
たり、逆に油圧レベルが高過ぎてしまったりして安定し
たトルク伝達効果を望めない。
(V) Since the hydraulic control circuit 21 is formed in the rotating housing on the cam ring 20b side, which is located far away from the rotational center axis in the radial direction, when the rotating housing rotates at high speeds such as at high vehicle speeds, the oil passage Centrifugal force acts on the hydraulic fluid flowing through the pump and the relief valve, and this centrifugal force can cause the oil pressure level generated by the hydraulic pump to not reach the desired oil pressure level, or conversely cause the oil pressure level to become too high. Therefore, a stable torque transmission effect cannot be expected.

(2)  回転ハウジングに油圧制御回路21が形成さ
れている為、この油圧制御回路21が回転ハウジングの
マスアンバランスの原因となり、高車速1”i等で回転
ハウジングが高回転する詩には、振れ回り振動が発生し
てしまう。
(2) Since the hydraulic control circuit 21 is formed in the rotary housing, this hydraulic control circuit 21 causes the mass imbalance of the rotary housing. Whirling vibration occurs.

(3) また、公報図面に示されるよう;こ、回転速度
差に応じた油がを吐出する油圧ポンプとしてベーンポン
プが用いられている為、回転速度差が小さい領域では油
のリーク(ベーンポンプは一般にシール性確保が困難で
ある)を考慮すると十′分な油圧が発生せず、従って四
輪駆動車にこの従来装置を用いた場合には、極めて大き
な車輪スリップが発生しないことにはトルク伝達効果が
望めない。
(3) Also, as shown in the drawings in the publication, since a vane pump is used as a hydraulic pump that discharges oil according to the difference in rotational speed, oil leaks in areas where the difference in rotational speed is small (vane pumps generally (difficult to ensure sealing), sufficient hydraulic pressure is not generated, and therefore, when this conventional device is used in a four-wheel drive vehicle, the torque transmission effect is required to prevent extremely large wheel slip. I can't hope for it.

また、後者の従来装′?i(特公昭54−4134号)
にあっては、以下に述べるような問題点がある。
Also, the latter's conventional outfit? i (Special Publication No. 54-4134)
There are problems as described below.

■ 流体手段のカム面114を内側の回転部材の外周面
に形成している為、外側の回転部材の内周面にカム面を
形成する場合と比べて、カム面全体の径寸法が小さく、
カム面の加工精度を上げるのが困難であるし、1−分な
流量を発生させる為にはカム面の凹凸段差を大きくしな
くてはならないが、カム面の全体径寸法が小さい為、凹
凸段差がなめらかにならず、回転時にピストン頭部との
衝突丘が発生してしまう。
■ Since the cam surface 114 of the fluid means is formed on the outer circumferential surface of the inner rotating member, the diameter of the entire cam surface is smaller than when the cam surface is formed on the inner circumferential surface of the outer rotating member.
It is difficult to increase the machining accuracy of the cam surface, and in order to generate a flow rate of 1 minute, the unevenness of the cam surface must be increased, but since the overall diameter of the cam surface is small, the unevenness The difference in level is not smooth, and a collision hill with the piston head occurs during rotation.

僕) 流動抵抗が回転速度差とは無関係にチェックバル
ブにより決定される為、わずかに回転速度差が発生する
高摩擦係数路での旋回時にも4輪駆動状yπ;(6輪駆
動状ym )になってしまい、タイトコーナブレーキ現
象が発生してしまう。
Since the flow resistance is determined by the check valve regardless of the rotational speed difference, even when turning on a high friction coefficient road where there is a slight difference in rotational speed, the 4-wheel drive condition yπ; (6-wheel drive condition ym) This results in a tight corner braking phenomenon.

・6.)  また、カム面114に対し径方向外側から
接触するようにピストン124が配置されている為、高
車速時等でピストン124がJQけられている第1回転
部材90が高回転する時は、ピストン124に作用する
遠心力がカム面114との接触力を低下させる方向に働
き、一般に車速が高ければ高いほど4輪駆動側の駆動力
配分が好ましいにもかかわらず、この従来装置でのトル
ク伝達特性は、高車速時であるほど伝達トルクが小さく
なるり、+F性を示す。
・6. ) Furthermore, since the piston 124 is arranged so as to contact the cam surface 114 from the outside in the radial direction, when the first rotating member 90 in which the piston 124 is skewed at high speeds rotates at a high speed, The centrifugal force acting on the piston 124 acts in the direction of reducing the contact force with the cam surface 114, and although generally speaking, the higher the vehicle speed, the better the driving force distribution to the four-wheel drive side. As for the transmission characteristics, the higher the vehicle speed is, the smaller the transmission torque becomes, and exhibits +F characteristics.

このような従来技術に対し、本山v人は上述の問題点を
解決する先願として、特願昭61−129424号の出
願を行なった。
In response to such prior art, V. Motoyama filed Japanese Patent Application No. 129424/1983 as a prior application to solve the above-mentioned problems.

しかし、この先行技術にあっては、−個のカム体によっ
て形成される流体窒出たり一個のオリフィスが設けられ
ていた為、以下に述べるような問題点を残していた。
However, in this prior art, since only one orifice was provided for fluid drainage formed by two cam bodies, the following problems remained.

■ オリフィス径のバラツキにより、同位相同士の流体
室圧力にアンバランスが生じやすく、カム体の耐久性を
損なう。
■ Due to variations in orifice diameter, the pressure in fluid chambers of the same phase tends to become unbalanced, impairing the durability of the cam body.

山)−個のオリフィス当りの流量が少ない為、トルク容
量を確保するにはオリフィス径を絞り込まなくてはなら
なく、同じトルク容量で換算するとオリフィス径が小さ
くなってしまい、コンタミネーション(内部のゴミのこ
と)の影響を受けやすい。
Since the flow rate per orifice is small, the orifice diameter must be reduced in order to secure the torque capacity, and when converted to the same torque capacity, the orifice diameter becomes smaller, resulting in contamination (internal dust). ).

(9)  オリフィス等部品点数が多く、コストが高く
、信頼性が低い。
(9) The number of parts such as orifices is large, the cost is high, and the reliability is low.

(問題点を解決するための手段) 本発明は、上述のような問題点を解決することを[1的
とし、この[1的達成のために本発明では、相対回転可
ず駈な入出力軸間に設けられ、前記両軸の回転速度差に
応じた吊:の流体を流動させるfi、量発生手段を備え
、前記流体の流動抵抗により前記入出力軸間の伝達トル
クが制御されるトルク伝達装置において、前記流量発生
手段は、入出力軸の一方と一体的に形成され内周部にカ
ム面を有する第1回転部材と、入出力軸の他方と一体的
に形成され前記力L・面内に挿入される第2回転部材と
、該第2回転部材に支持されると共に前記カム面と周接
し前記両回転部材の相対回転時に径方向に往復動するカ
ム体と、該カム体の往復動に伴ない体積変化する複数の
流体室と、第2回転部材に形成され各流体室間をオリフ
ィスを介して連結する流体路と、前記カム体の往復勤行
程で同位相の複数の流体室を互いに連通ずる連通路と、
を備えた手段であることを特徴とする。
(Means for Solving the Problems) The present invention aims to solve the above-mentioned problems, and in order to achieve the above-mentioned problems, the present invention provides an input/output system that is non-rotatable and has fast input/output. A torque generating means is provided between the shafts for causing a fluid to flow according to a rotational speed difference between the two shafts, and the transmission torque between the input and output shafts is controlled by the flow resistance of the fluid. In the transmission device, the flow rate generating means includes a first rotating member that is formed integrally with one of the input/output shafts and has a cam surface on the inner peripheral portion, and a first rotating member that is formed integrally with the other input/output shaft and generates the force L. a second rotating member inserted into the plane; a cam body supported by the second rotating member and in circumferential contact with the cam surface and reciprocating in the radial direction when the two rotating members rotate relative to each other; a plurality of fluid chambers whose volume changes with reciprocating motion; a fluid path formed in the second rotating member and connecting each fluid chamber via an orifice; and a plurality of fluids that are in the same phase during the reciprocating stroke of the cam body. a communication path that communicates the chambers with each other;
It is characterized by being a means equipped with the following.

(作 用) 従って、本発明のトルク伝達装置では、J−述のような
手段としたため、第1回転部材と第2回転部材とのfl
に相対回転が生じると、カム面と周接しているカム体が
カム面の形状に応じて径方向に往復動し、カム体の往復
動に伴ない体積変化する流体室ではオリフィスによる流
動抵抗により流体圧が発生し、カム体がこの流体圧によ
りカム面に押し伺けられることで、両回転部材の相対回
転速度差に応じたトルクが伝達される。
(Function) Therefore, in the torque transmission device of the present invention, since the means as described in J-2 is used, the fl.
When relative rotation occurs, the cam body surrounding the cam surface reciprocates in the radial direction according to the shape of the cam surface, and in the fluid chamber whose volume changes due to the reciprocating movement of the cam body, due to flow resistance due to the orifice. Fluid pressure is generated and the cam body is pushed against the cam surface by this fluid pressure, thereby transmitting torque corresponding to the relative rotational speed difference between the two rotating members.

そして、カム体が設けられる第2回転部材の絶対回転速
度が大きい時、すなわち高車速時にはカム体に作用する
遠心力がカム面への押し付ける力を増大させるように働
くため、トルク伝達特性としては、相対回転速度差に応
じて伝達トルクが高まると共に、車速が高車速である程
、遠心力により発生する伝達トルク分が付加される特性
を示す。
When the absolute rotational speed of the second rotating member on which the cam body is provided is high, that is, at high vehicle speeds, the centrifugal force acting on the cam body acts to increase the pressing force against the cam surface, so the torque transmission characteristics , the transmission torque increases according to the relative rotational speed difference, and the higher the vehicle speed, the more the transmission torque generated by centrifugal force is added.

また、カム体の往復勤行程で同位相の複数の流体室を互
いに連通ずる連通路を備えているため、同位相同士の圧
力バランスが保たれるし、少なくとも2個分の流体室容
積の流体量を一つのオリフィスで絞る構成となるため、
同じ絞り作用を発揮させながらオリフィス面積を2倍以
上に設定でき、コンタミネーションの影響も防止できる
In addition, since the cam body is provided with a communication path that communicates a plurality of fluid chambers in the same phase with each other during the reciprocating stroke, the pressure balance between the same phases can be maintained, and the fluid with a volume of at least two fluid chambers can be maintained. Since the amount is reduced by one orifice,
The orifice area can be set to more than double while maintaining the same throttling effect, and the effects of contamination can also be prevented.

(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

尚、この実施例を述べるにあたって、四輪駆動車のエン
ジン駆動力伝達系に設けられるトルク伝達装置を例にと
る。
In describing this embodiment, a torque transmission device provided in an engine drive power transmission system of a four-wheel drive vehicle will be taken as an example.

まず、実施例のトルク伝達装置Aを第1図〜第4図に示
す図面に基づいて説明する。
First, a torque transmission device A according to an embodiment will be described based on the drawings shown in FIGS. 1 to 4.

実施例のトルク伝達装置Aは、第41Jに示すように、
前輪駆動をベースにした四輪駆動車の後輪駆動系の途中
に、センターディファレンシャルと、後輪への駆動力配
分制御装置を兼用する装置として設けられている。
The torque transmission device A of the embodiment, as shown in No. 41J,
It is installed in the middle of the rear wheel drive system of a four-wheel drive vehicle based on front wheel drive as a device that serves as both a center differential and a device for controlling drive force distribution to the rear wheels.

実施例装置Aが適用される四輪駆動車の駆動系は、前輪
駆動系として、エンジンl、トランスミッション(クラ
ッチを含む)2.フロントディファレンシャル3、フロ
ントドライフシャフト4.5、フロントドライブシャフ
トジヨイント6・・・、前輪7,8を備えていて、後輪
駆動系として、トランスファギヤトレーン9、フロント
プロペラシャフト10、センタプロペラシャフト(入力
軸)11、トルク伝達装置A1、リヤプロペラシャフト
(出力軸)12、プロペラシャフトジヨイント13・・
・、センターベアリング14、リヤディファレンシャル
15、リヤドライブシャフト16.17、リヤドライブ
シャフトジヨイント18・・・、後輪19.20を備え
ている。
The drive system of a four-wheel drive vehicle to which the embodiment device A is applied includes, as a front wheel drive system, an engine 1, a transmission (including a clutch) 2. It is equipped with a front differential 3, a front dry shaft 4.5, a front drive shaft joint 6..., front wheels 7, 8, and as a rear wheel drive system, a transfer gear train 9, a front propeller shaft 10, a center propeller shaft ( input shaft) 11, torque transmission device A1, rear propeller shaft (output shaft) 12, propeller shaft joint 13...
, a center bearing 14, a rear differential 15, a rear drive shaft 16, 17, a rear drive shaft joint 18, and a rear wheel 19, 20.

前記フロントディファレンシャル3は、トランスミッシ
ョン2の最終段ギヤ21と、前記フロントドライブシャ
フト4,5との間に介装された前輪7.8の差動装置で
ある。
The front differential 3 is a differential device for the front wheels 7.8 that is interposed between the final gear 21 of the transmission 2 and the front drive shafts 4, 5.

前記トランスファギヤトレーン9は、前記フロントディ
ファレンシャル3のデフケース22からエンジン駆動力
を後輪19.20側へ取り出す駆動力分割装置で、この
トランスファギヤトレーン9と前記フロントディファレ
ンシャル3と共にトランスアクスルケース23に納めら
れている。
The transfer gear train 9 is a driving force splitting device that extracts engine driving force from the differential case 22 of the front differential 3 to the rear wheels 19, 20 side, and is housed in a transaxle case 23 together with the transfer gear train 9 and the front differential 3. It is being

前記リヤディファレンシャル15は、前記リヤプロペラ
シャフト12と、リヤドライブシャフト16.17との
間に介装された後輪19.20の差動装置である。
The rear differential 15 is a differential device for the rear wheels 19.20 that is interposed between the rear propeller shaft 12 and the rear drive shaft 16.17.

実施例のトルク伝達装置Aの構成を説明する。The configuration of the torque transmission device A of the embodiment will be explained.

実施例装置Aは、第1図及び第2図に示すように、ドラ
イブハウジング(第1回転部材)30、カム面31、ロ
ーター(第2回転部材)40、ドライビングピストン(
カム体)50、油室(流体室)60、油路(流体路)6
1、オリフィス62、連通路63を主要な構成としてい
る。
As shown in FIGS. 1 and 2, the embodiment device A includes a drive housing (first rotating member) 30, a cam surface 31, a rotor (second rotating member) 40, a driving piston (
cam body) 50, oil chamber (fluid chamber) 60, oil passage (fluid passage) 6
1. The main components are an orifice 62 and a communication path 63.

前記ドライブハウジング30は、入力軸であるセンタプ
ロペラシャフト11に対し、ポルトILめ等により一体
に設けられる部材で、その内周部には略正方形によるカ
ム面31が形成されている。
The drive housing 30 is a member that is provided integrally with the center propeller shaft 11, which is an input shaft, by means of a port IL, etc., and has a substantially square cam surface 31 formed on its inner circumference.

前記ローター40は、前記ドライブハウジング30のカ
ム而31内に挿入状態で配置され、出力軸であるリヤプ
ロペラシャフト12がボルト止め等によって一体に設け
られると共に、前記ドライブハウジング30に対しビス
止めされたストッパプレート41によって相対回転を許
容しながら軸方向に固定状態で設けられている。
The rotor 40 is inserted into the cam 31 of the drive housing 30, and the rear propeller shaft 12, which is an output shaft, is integrally provided with bolts or the like, and is also screwed to the drive housing 30. The stopper plate 41 is provided in a fixed state in the axial direction while allowing relative rotation.

尚、このローター40には、前記カム面31に対向する
位置で放射半径方向に等間隔で4個所にシリンダ穴42
・・・が形成されている。
The rotor 40 has four cylinder holes 42 arranged at equal intervals in the radial direction at positions facing the cam surface 31.
... is formed.

前記ドライビングピストン50は、前記シリンダ穴42
に対しシールリング51により油密状態で設けられたカ
ム部材で、カム面31との周接面は滑らかな接触移動を
確保する為、球面50aに形成されていて、周方向に4
5度ズした位置でカム面31に周接し、前記ドライブハ
ウジング30とローター40との相対回転時に往復動す
る。
The driving piston 50 is connected to the cylinder hole 42.
On the other hand, the cam member is provided in an oil-tight state by a seal ring 51, and the circumferential surface with the cam surface 31 is formed into a spherical surface 50a to ensure smooth contact movement, and the circumferential direction is 4.
It circumferentially contacts the cam surface 31 at a position offset by 5 degrees, and reciprocates when the drive housing 30 and rotor 40 rotate relative to each other.

尚、前記球面50aの曲率半径は、カム面31より小さ
いが、シリンダ穴42の径に合うドライビングポールよ
りも大きく設定されていて、ヘルツの接触応力が高く、
高容量(高トルク)に耐えられるようにしている。
The radius of curvature of the spherical surface 50a is smaller than that of the cam surface 31, but is set larger than that of the driving pole that matches the diameter of the cylinder hole 42, and the Hertzian contact stress is high.
It is designed to withstand high capacity (high torque).

前記油室60は、前記シリンダ穴42と前記ドライビン
グピストン50との間に形成された室で、ドライビング
ピストン50の往復動に伴なって体積変化する。
The oil chamber 60 is a chamber formed between the cylinder hole 42 and the driving piston 50, and changes in volume as the driving piston 50 reciprocates.

前記油路61は、各油室60・・・間を連結するように
前記ローター40に形成された路で、対向する1対のシ
リンダ穴42に対応してオリフィス62及び逆止弁64
が設けられる。
The oil passage 61 is a passage formed in the rotor 40 so as to connect each oil chamber 60, and has an orifice 62 and a check valve 64 corresponding to a pair of opposing cylinder holes 42.
is provided.

尚、油路61は、各シリンダ穴42・・・の底部に孔設
された径方向油路61aと、ローター40の軸心に孔設
された軸方向油路61bとで構成され、対向する油室6
0.60を結ぶ油路61にそれぞれ一組のオリフィス6
2及び逆止弁64が設けられている。すなわち、2個の
ドライビングピストン50に一組のオリフィス62及び
逆止弁64が設けられている。
The oil passage 61 is composed of a radial oil passage 61a formed at the bottom of each cylinder hole 42, and an axial oil passage 61b formed at the axis of the rotor 40, which face each other. Oil chamber 6
A set of orifices 6 are provided in each oil passage 61 connecting the 0.60
2 and a check valve 64 are provided. That is, two driving pistons 50 are provided with a set of orifices 62 and check valves 64.

また、前記軸方向油路61bの開口端部はアキュムレー
タ室74に導かれていて、急なドライビングピストン5
0の往復動等に伴なう油量変動を吸収するようにしてい
る。これは、それぞれの油室60に容積の変動があって
もあらゆる相対回転位置でほぼ総容積が一定となるよう
に設定されているが、急な相対回転時や大きな相対回転
時等では部分的な容積変動が生じる為である。
Further, the opening end of the axial oil passage 61b is led to an accumulator chamber 74, and the steep driving piston 5
It is designed to absorb fluctuations in oil amount due to reciprocating motion of the engine. This is set so that the total volume remains almost constant at all relative rotation positions even if there is a change in volume in each oil chamber 60, but when there is a sudden relative rotation or a large relative rotation, the total volume is This is because significant volume fluctuations occur.

尚、第1図及び第2図に示すアキュムレータ室74は、
ローター40に往復動可能に油密状態で設けられたアキ
ュムレータピストン65と、該ピストン65とスプリン
グリテーナ66との間に介装されたコイルスプリング6
7と、によって構成されていて、前記アキュムレータピ
ストン65には、その中央部(中心軸上)にエアー及び
油抜き用のシールプラグ68が設けられていて、このシ
ールプラグ68によって回転アンバランスを防止しなが
らエアーや油抜き作業を短時間で効果的に出来るように
している。
Incidentally, the accumulator chamber 74 shown in FIGS. 1 and 2 is
An accumulator piston 65 that is reciprocatably provided in an oil-tight state on the rotor 40, and a coil spring 6 that is interposed between the piston 65 and a spring retainer 66.
7, the accumulator piston 65 is provided with a seal plug 68 for air and oil removal in the center (on the central axis), and this seal plug 68 prevents rotational imbalance. At the same time, air and oil removal work can be done effectively in a short time.

他例である第3図に示すアキュムレータ室64は、ロー
ター40に往復動回走に油密状態で設けられたアキュム
レータピストン69と、該ピストン69とワッシャ70
との間に介装された皿バネ71と、によって構成されて
いて、前記アキュムレータピストン69には、その中央
部に前例と同様のエアー及び油抜き用のシールプラグ7
2が設。
Another example of the accumulator chamber 64 shown in FIG.
and a disc spring 71 interposed between the accumulator piston 69 and the accumulator piston 69, and the accumulator piston 69 has a seal plug 7 for air and oil drainage similar to the previous example in its center.
2 was established.

けられている・ 前記連通路63は、前記ドライビングピストン50の往
復動行程で同位相の複数の油室60,60(実施例では
対向する2室)を互いに連通ずる油路で、3つの連通路
63.63.63は互いに干渉しないように形成されて
いる。
The communication passage 63 is an oil passage that communicates a plurality of oil chambers 60, 60 (in the embodiment, two opposing chambers) that are in the same phase during the reciprocating stroke of the driving piston 50, and has three communication passages. The passages 63.63.63 are formed so as not to interfere with each other.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be explained.

(イ)回転速度差ΔNの発生がない時 乾燥アスファルト路等を低・中速で直線走行する場合等
であって、前後輪に回転速度差ΔNが発生しない時は、
ドライブハウジング30とローター40とに相対回転が
なく、ドライビングピストン50が径方向に往復動しな
い為、トルク伝達装置Aによる後輪19.20側への伝
達トルクΔTの発生がなく、エンジン駆動力は前輪7,
8のみに伝達される前輪駆動状態となる。
(B) When no rotational speed difference ΔN occurs When driving in a straight line at low to medium speeds on a dry asphalt road, etc., when no rotational speed difference ΔN occurs between the front and rear wheels,
Since there is no relative rotation between the drive housing 30 and the rotor 40 and the driving piston 50 does not reciprocate in the radial direction, there is no transmission torque ΔT transmitted to the rear wheels 19, 20 by the torque transmission device A, and the engine driving force is front wheel 7,
It becomes a front wheel drive state where the transmission is transmitted only to 8.

しかしながら、前後輪に回転速度差ΔNが発生しない時
であっても、高速道路を高速直進走行する場合には、後
輪19.20の回転に伴なって高速回転するローター4
0に設けられているドライビングピストン50には遠心
力Fcが作用し、この遠心力Fcによってドライビング
ピストン50がカム面31に押し付けられることになり
、この遠心力Fcにより、第5図に示すように、伝達ト
ルクΔTcoが発生することになる。尚、遠心力Fcは
、 m’v2 Fc=− m;質量(ドライビングピストン) r;回転中心軸から質m重心までの距離V;ローター回
転速度 であり、回転速度V、すなわち車速■の2乗に比例して
発生する。
However, even when the rotational speed difference ΔN does not occur between the front and rear wheels, when driving straight on a highway at high speed, the rotor 4 rotates at high speed as the rear wheels 19.20 rotate.
Centrifugal force Fc acts on the driving piston 50 provided at 0, and the driving piston 50 is pressed against the cam surface 31 by this centrifugal force Fc, as shown in FIG. , transmission torque ΔTco will be generated. In addition, the centrifugal force Fc is m'v2 Fc=- m; Mass (driving piston) r; Distance from the rotation center axis to the mass center of gravity V; Rotor rotation speed, and the rotation speed V, that is, the square of the vehicle speed ■ occurs in proportion to.

従って、高速道路等での高速直進走行時には、後輪19
.20側への伝達トルクΔTcoが発生して4輪駆動状
態となり、高速直進安定性を高めることができる。
Therefore, when driving straight at high speed on a highway, etc., the rear wheel 19
.. The transmission torque ΔTco to the 20 side is generated, resulting in a four-wheel drive state, and high-speed straight running stability can be improved.

(ロ)回転速度差ΔNの発生時 アクセルペダルを急踏みしての発進時や加速時、あるい
は山路や雪路や泥ねい地等での走行時であって、駆動輪
である前輪7,8がスリップし、前後輪に回転速度差Δ
Nを生じた場合には、ドライブハウジング30とロータ
ー40とに相対回転が発生し、この相対回転によりカム
面31゜32に周接するドライビングピストン50は径
方向に往復動し、この往復動のうち回転軸中心に向かう
ことで油室60の容積を縮小させようとする時には、オ
リフィス62による流動抵抗で油室60内の圧力が高ま
り、この発生油圧とピストン50の受圧面積とを掛は合
せた油圧力がドライビングピストン50をカム面31に
押し付ける力となり、この押し付は力によって後輪19
.20側への伝達トル76丁が発生する。
(b) When a rotational speed difference ΔN occurs When starting or accelerating by suddenly pressing the accelerator pedal, or when driving on a mountain road, snowy road, muddy ground, etc., the front wheels 7 and 8 are the driving wheels. slips, and there is a rotational speed difference Δ between the front and rear wheels.
When N occurs, relative rotation occurs between the drive housing 30 and the rotor 40, and due to this relative rotation, the driving piston 50 that contacts the cam surfaces 31 and 32 reciprocates in the radial direction. When trying to reduce the volume of the oil chamber 60 by moving toward the center of the rotation axis, the pressure inside the oil chamber 60 increases due to the flow resistance caused by the orifice 62, and this generated oil pressure is multiplied by the pressure receiving area of the piston 50. The hydraulic pressure becomes a force that presses the driving piston 50 against the cam surface 31, and this pressing is caused by the force that causes the rear wheel 19 to press against the cam surface 31.
.. 76 transmission torques to the 20 side are generated.

尚、後輪19.20側への伝達トルクΔTは、回転速度
差ΔNが大きければ大きい程、オリフィス62の前後圧
力差も大きくなることから、第5図の実線に示すように
、2次関数曲線であられされる伝達トルク特性を示し、
車速Vが高い程、遠心力による伝達トルクΔTcが付加
された特性を示す。
The torque ΔT transmitted to the rear wheels 19, 20 is expressed as a quadratic function, as shown by the solid line in FIG. The curve shows the transmission torque characteristics,
The higher the vehicle speed V is, the more transmission torque ΔTc due to centrifugal force is added.

従って、前輪7,8がスリップした場合には、前輪7,
8のスリップ度合に応じて、自動的に前輪駆動状!ムか
ら4輪駆動状態へと駆動力配分が制御されることになり
、発進性や加速性の向上、山路や雪路での走破性向上、
及び泥ねい地での脱出性向上を図ることができる。
Therefore, when the front wheels 7 and 8 slip, the front wheels 7 and 8 slip.
Automatically switches to front-wheel drive depending on the degree of slippage! Drive force distribution will be controlled from the 4-wheel drive state to the 4-wheel drive state, improving starting performance and acceleration performance, and improving drivability on mountain roads and snowy roads.
Also, it is possible to improve the ability to escape from muddy ground.

また、低速での小旋回時にも前後輪の旋回走行軌跡の差
で、前後輪にわずかの回転速度差ΔNが生じるが、この
時には後輪19.20側への伝達トルクΔTが小さな状
態である為1前後輪の回転速度差ΔNはトルク伝達装置
Aで吸収され(センタディファレンシャル機能)、タイ
トコーナブレーキ現象の発生が防止される。
In addition, even when making a small turn at low speed, a slight rotational speed difference ΔN occurs between the front and rear wheels due to the difference in the turning trajectory between the front and rear wheels, but at this time, the torque ΔT transmitted to the rear wheel 19.20 side is small. Therefore, the rotational speed difference ΔN between the front and rear wheels is absorbed by the torque transmission device A (center differential function), and the tight corner braking phenomenon is prevented from occurring.

また、高速旋回時においては、前後輪に大きな回転速度
差ΔNが生じ、後輪19.20側への伝達トルクΔTが
高い4輪駆動状態となる為、駆動力とコーナリングフォ
ースとの関係から限界旋回性能(コーナリング時の限界
速度)が高まる。
In addition, when turning at high speed, a large rotational speed difference ΔN occurs between the front and rear wheels, resulting in a four-wheel drive state where the torque ΔT transmitted to the rear wheels is high, so there is a limit due to the relationship between driving force and cornering force. Turning performance (limit speed during cornering) increases.

以上説明してきたように、実施例のトルク伝達装置Aに
あっては、以下に述べるような効果が得られる。
As explained above, in the torque transmission device A of the embodiment, the following effects can be obtained.

■ カム面31に対し径方向内側からドライビングピス
トン50が接触するように配置されている為、ローター
40が高回転する時に前記ドライビングピストン50に
作用する遠心力Fcで、前後輪に回転速度差ΔNの発生
がない時でも高車速時には所定の伝達トルクΔTcoが
発生して高速走行安定性が高まるし、回転速度差ΔNの
発生時には伝達トルクΔTcが付加されたトルク伝達特
性、すなわち回転速度差ΔNと車速Vとに対応したトル
ク伝達特性(第5図)を得ることができる。
■ Since the driving piston 50 is arranged to contact the cam surface 31 from the inside in the radial direction, the centrifugal force Fc that acts on the driving piston 50 when the rotor 40 rotates at high speed creates a rotational speed difference ΔN between the front and rear wheels. Even when this does not occur, a predetermined transmission torque ΔTco is generated at high vehicle speeds, improving high-speed driving stability, and when a rotational speed difference ΔN occurs, the torque transmission characteristic with the transmission torque ΔTc added, that is, the rotational speed difference ΔN. A torque transmission characteristic (FIG. 5) corresponding to the vehicle speed V can be obtained.

くめ 相対回転する回転部材のうち、内側に配置される
ローター40に油室60及び油路61が形成されている
為、ローター40が高回転する時に油室60及び油路6
1を流通する作動油に対する遠心力影響がほとんど発生
せず、安定したトルク伝達特性が得られると共に、振れ
回りの原因となることもなく、油路61がコンパクトに
ローター40の回転軸部に形成される。
Among the rotating members that rotate relatively, the oil chamber 60 and the oil passage 61 are formed in the rotor 40, which is disposed inside.
There is almost no centrifugal force effect on the hydraulic oil flowing through the rotor 40, stable torque transmission characteristics are obtained, and the oil passage 61 is compactly formed on the rotating shaft of the rotor 40 without causing whirling. be done.

■ 構造的にショックアブンーバタイブであり油室60
のシール性は、シールリング51だけで油のリークを防
止する高いシール性が確保される為、低い回転速度差Δ
Nの領域でもトルク伝達特性に従って伝達トルクΔTを
発生させることができる。
■ Structurally, it is a shock absorber with 60 oil chambers.
Since the seal ring 51 alone ensures high sealing performance to prevent oil leakage, the rotational speed difference Δ is low.
Even in the N range, the transmission torque ΔT can be generated according to the torque transmission characteristics.

■ カム面31をドライブハウジング30の内周部に形
成させている為、カム面31の全体の径を大きくとるこ
とができ、これによってカム面31を精度良く加工でき
ると共に、カム面31の凹凸がなめらかになるので、回
転速度差ΔNが大であっでもカム面31とドライビング
ピストン5゜の衝突音発生を防止できる。
■ Since the cam surface 31 is formed on the inner periphery of the drive housing 30, the overall diameter of the cam surface 31 can be made large, which allows the cam surface 31 to be machined with high precision and to reduce the unevenness of the cam surface 31. Since the rotation speed becomes smooth, even if the rotational speed difference ΔN is large, collision noise between the cam surface 31 and the driving piston 5° can be prevented from occurring.

■ 油路61の端部は、アキュムレータ室64に導かれ
ている為、油量変動吸収と共に、トルク伝達系に生じる
衝撃的なトルクのダンパーとなるし、ドライビングピス
トン50その他各部の摺動部分の耐久による摩耗等の補
正手段としても作用する。
■ Since the end of the oil passage 61 is led to the accumulator chamber 64, it not only absorbs fluctuations in the oil amount, but also acts as a damper for the impact torque generated in the torque transmission system, and also acts as a damper for the sliding parts of the driving piston 50 and other parts. It also acts as a correction means for wear due to durability.

(Φ 対向する同位相同士の油室60,60は、連通路
63で連通されている為、相互の圧力バランン、すなわ
ち、トルク反力/九ランスが保たれ、耐久性が向トする
(Φ Since the opposing oil chambers 60, 60 having the same phase are communicated with each other through the communication passage 63, the mutual pressure balance, that is, the torque reaction force/9 lance is maintained, and the durability is improved.

■ 連通路63による連通に伴なって、2個分のシリン
タ容積(油量)を1個のオリフィス62絞る為、オリフ
ィス面積は2倍に設定できる。換言すれば、オリフィス
径はlシリンダ1個のオリフィスに比べr2倍の大きさ
となり、コンタミネーション(内部のゴミのこと)のy
gは激減する。■ 1シリンダ1個のオリフィス及び逆
上弁を設ける場合に比べ、部品点数的に半減し、コスト
が低く<、信頼性も高まる。
(2) With the communication through the communication path 63, the volume (oil amount) of two cylinders is squeezed into one orifice 62, so the orifice area can be set to double. In other words, the orifice diameter is r2 times larger than the orifice of one l cylinder, and the contamination (internal dust) is
g decreases drastically. ■ Compared to the case where one orifice and reverse valve are provided for each cylinder, the number of parts is halved, the cost is low, and the reliability is improved.

以上、本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本発
明の要旨を逸脱しない範囲における設計変更等があって
も本発明に含まれる。
Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. included.

例えば、本発明のトルク伝達装置は、実施例で示した適
用例に限られるものではなく、後輪駆動ベースの四輪駆
動車の前輪側プロペラシャフトの途中に設けたり、前輪
駆動ベースの四輪駆動車のりャディファレンシャルの代
りに設けたり、左右輪や前後輪の差動制限装置として差
動装置とは別に設けることもできる。
For example, the torque transmission device of the present invention is not limited to the application examples shown in the embodiments, and may be installed in the middle of the front propeller shaft of a rear-wheel drive-based four-wheel drive vehicle, or It can be provided in place of the differential of the drive vehicle, or it can be provided separately from the differential device as a differential limiting device for the left and right wheels or the front and rear wheels.

また、本実施例は、連通したシリンダ群に付、1個のオ
リフィスと1個の逆止弁とを設けた例を示したが、これ
に限定されるものではなく、例えば、第6図にモデル的
に示すように、互いに同相なシリンダ群を連通ずる連通
路a、b間をオリフィスCを有する油路dのみで連通ず
る様にしても良い。
Further, although this embodiment has shown an example in which one orifice and one check valve are provided in a group of communicating cylinders, the present invention is not limited to this, and for example, as shown in FIG. As shown in the model, only an oil passage d having an orifice C may be used to communicate between communication passages a and b that communicate cylinder groups that are in phase with each other.

また、カム面やカム体の形状及び油路構成にっいても実
施例に限られるものではない。
Further, the shape of the cam surface and the cam body, and the oil passage configuration are not limited to those in the embodiment.

また、伝達トルク容量の設定は、オリフィスの変更、カ
ム体への受圧面積の変更、カム体の数、カム面によるス
トローク幅の変更等により適宜行なうことができる。
Further, the transmission torque capacity can be appropriately set by changing the orifice, changing the pressure receiving area of the cam body, changing the number of cam bodies, changing the stroke width depending on the cam surface, etc.

(発明の効果) 以上説明してきたように1本発明のトルク伝達装置にあ
っては、流量発生手段が、入出力軸の一方と一体的に形
成され内周部にカム面を有する第1回転部材と、入出力
軸の他方と一体的に形成され前記カム面内に挿入される
第2回転部材と、該第2回転部材に支持されると共に前
記カム面と周接し前記両回転部材の相対回転時に径方向
に往復動するカム体と、該カム体の往復動に伴ない体積
変化する複数の流体室と、第2回転部材に形成され各流
体室間をオリフィスを介して連結する流体路と、前記カ
ム体の往復動行程で同位相の複数の流体室を互いに連通
ずる連通路と、を備えた手段であるため、以下に列挙す
る効果が得られる。
(Effects of the Invention) As explained above, in the torque transmission device of the present invention, the flow rate generating means is integrally formed with one of the input/output shafts and has a cam surface on the inner circumference. a second rotating member that is integrally formed with the other input/output shaft and inserted into the cam surface, and a second rotating member that is supported by the second rotating member and in circumferential contact with the cam surface, and that A cam body that reciprocates in the radial direction during rotation, a plurality of fluid chambers whose volume changes as the cam body reciprocates, and a fluid path formed in the second rotating member and connecting each fluid chamber through an orifice. and a communication path that communicates a plurality of fluid chambers in the same phase with each other during the reciprocating stroke of the cam body, so that the following effects can be obtained.

■ 第1回転部材と第2回転部材との相対回転時の回転
速度差に応じて高まると共に、車速が高車速である程、
遠心力により発生する伝達トルク分が付加されるトルク
伝達4キ性が得られる。
■ The rotational speed increases depending on the difference in rotational speed during relative rotation between the first rotating member and the second rotating member, and the higher the vehicle speed, the more
A four-key torque transmission property is obtained in which the transmission torque generated by centrifugal force is added.

(坊 相対回転する両回転部材のうち、内側に配置され
る第2回転部材に流体室及び流体路が形成される為、第
2回転部材が高回転する時の流体に対する遠心力影響が
ほとんどなく、安定したトルク伝達特性が得られると共
に、振れ回りの原因になることがなく、さらに流体路が
第2回転部材の回転軸部にコンパクトに形成される。
(Bo) Of the two rotating members that rotate relative to each other, the fluid chamber and fluid path are formed in the second rotating member located inside, so there is almost no centrifugal force effect on the fluid when the second rotating member rotates at high speed. In addition, stable torque transmission characteristics can be obtained, whirling does not occur, and the fluid passage is compactly formed in the rotating shaft portion of the second rotating member.

■ 構造的にショックアブソーバタイプであり、流体室
のシール性が容易に確保される為、流体のリークにより
伝達トルクの発生がなかったり、伝達トルクが低下する
のが抑えられる。
■ The structure is a shock absorber type, and the sealing performance of the fluid chamber is easily ensured, so no transmission torque is generated or a decrease in transmission torque due to fluid leakage is suppressed.

■ カム面を第1回転部材の内面部に形成させているた
め、カム径を大きくとることができ、これによって、カ
ム面を精度良く加工できると共に。
(2) Since the cam surface is formed on the inner surface of the first rotating member, the cam diameter can be made large, which allows the cam surface to be machined with high precision.

カム面の凹凸がなめらかになるので相対回転の回転速度
差が大きい時でもカム体による衝突音の発生を防止でき
る。
Since the unevenness of the cam surface is smoothed, collision noise caused by the cam body can be prevented even when the difference in relative rotational speed is large.

(リ カム体の往復動行程で同位相の複数の流体室を一
〃いに連通ずる連通路を備えている為、相互の圧力バラ
ンスを保てるし、オリフィス面積の拡大によりコンタミ
ネーションの影響を減じることが出来るし、さらに、部
品点数の減少でコストが低く、信頼性が向上する。
(Since it is equipped with a communication path that connects multiple fluid chambers in the same phase during the reciprocating stroke of the cam body, it is possible to maintain mutual pressure balance, and the influence of contamination is reduced by expanding the orifice area. In addition, the reduced number of parts reduces costs and improves reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例のトルク伝達袋こを示す縦断正面
図、第2図は第1図I−I線による断面図、第3図はア
キュムレータ室部分の他例を示す断面図、第4図は実施
例装置を適用したエンジン駆動系を示す概略図、第5図
は実施例装置でのトルク伝達特性図、第6図はトルク伝
達装置のロータ一部の他例を示す斜視図である。 30・・・ドライブハウジング (第1回転部材) 31・・・カム面 40・・・ローター(第2回転部材) 50・・・ドライビングピストン(カム体)60・・・
油室(流体室) 61・・・油路(流体路) 62・・・オリフィス 63・・・連通路
Fig. 1 is a longitudinal sectional front view showing a torque transmission bag according to an embodiment of the present invention, Fig. 2 is a sectional view taken along line I-I in Fig. 1, and Fig. 3 is a sectional view showing another example of the accumulator chamber portion. Fig. 4 is a schematic diagram showing an engine drive system to which the embodiment device is applied, Fig. 5 is a torque transmission characteristic diagram of the embodiment device, and Fig. 6 is a perspective view showing another example of the rotor part of the torque transmission device. be. 30... Drive housing (first rotating member) 31... Cam surface 40... Rotor (second rotating member) 50... Driving piston (cam body) 60...
Oil chamber (fluid chamber) 61... Oil path (fluid path) 62... Orifice 63... Communication path

Claims (1)

【特許請求の範囲】 1) 相対回転可能な入出力軸間に設けられ、前記両軸
の回転速度差に応じた量の流体を流動させる流量発生手
段を備え、前記流体の流動抵抗により前記入出力軸間の
伝達トルクが制御されるトルク伝達装置において、 前記流量発生手段は、入出力軸の一方と一体的に形成さ
れ内周部にカム面を有する第1回転部材と、入出力軸の
他方と一体的に形成され前記カム面内に挿入される第2
回転部材と、該第2回転部材に支持されると共に前記カ
ム面と周接し前記両回転部材の相対回転時に径方向に往
復動するカム体と、該カム体の往復動に伴ない体積変化
する複数の流体室と、第2回転部材に形成され各流体室
間をオリフィスを介して連結する流体路と、前記カム体
の往復動行程で同位相の複数の流体室を互いに連通する
連通路と、を備えた手段であることを特徴とするトルク
伝達装置。
[Scope of Claims] 1) A flow rate generating means is provided between input and output shafts that are relatively rotatable, and flows an amount of fluid corresponding to the rotational speed difference between the two shafts, and the flow resistance of the fluid causes the flow resistance of the fluid to flow. In a torque transmission device in which transmission torque between output shafts is controlled, the flow rate generation means includes a first rotating member that is integrally formed with one of the input and output shafts and has a cam surface on the inner circumference; a second cam integrally formed with the other cam and inserted into the cam surface;
a rotating member; a cam body supported by the second rotating member and in circumferential contact with the cam surface and reciprocating in the radial direction when the two rotating members rotate relative to each other; and a volume changing as the cam body reciprocates; a plurality of fluid chambers, a fluid path formed in the second rotating member and connecting the respective fluid chambers via an orifice, and a communication path that communicates the plurality of fluid chambers in the same phase with each other during a reciprocating stroke of the cam body. A torque transmission device characterized by being a means comprising:
JP61232090A 1986-09-30 1986-09-30 Torque transmission device Expired - Lifetime JPH0819972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232090A JPH0819972B2 (en) 1986-09-30 1986-09-30 Torque transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232090A JPH0819972B2 (en) 1986-09-30 1986-09-30 Torque transmission device

Publications (2)

Publication Number Publication Date
JPS6388328A true JPS6388328A (en) 1988-04-19
JPH0819972B2 JPH0819972B2 (en) 1996-03-04

Family

ID=16933842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232090A Expired - Lifetime JPH0819972B2 (en) 1986-09-30 1986-09-30 Torque transmission device

Country Status (1)

Country Link
JP (1) JPH0819972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284601A (en) * 1989-04-26 1990-11-22 Nippon Sekiei Glass Kk Method and glass vessel for preventing bumping
JP2010052519A (en) * 2008-08-27 2010-03-11 Hitachi Automotive Systems Ltd Reservoir for fluid pressure control unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018106003A2 (en) * 2016-12-06 2018-06-14 한국원자력연구원 Engine oil pump
KR101978737B1 (en) * 2016-12-06 2019-05-15 한국원자력연구원 Oil pump of engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323125U (en) * 1986-07-31 1988-02-16
JPS63101526A (en) * 1986-05-28 1988-05-06 Mitsubishi Motors Corp Driving link device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101526A (en) * 1986-05-28 1988-05-06 Mitsubishi Motors Corp Driving link device
JPS6323125U (en) * 1986-07-31 1988-02-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284601A (en) * 1989-04-26 1990-11-22 Nippon Sekiei Glass Kk Method and glass vessel for preventing bumping
JP2010052519A (en) * 2008-08-27 2010-03-11 Hitachi Automotive Systems Ltd Reservoir for fluid pressure control unit

Also Published As

Publication number Publication date
JPH0819972B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US4905808A (en) Torque transmission device for a four-wheel drive vehicle
US4727966A (en) Differential with differential motion limiting mechanism
JPS62286838A (en) Torque transmission device
US5056640A (en) Torque transmission device for a four-wheel drive vehicle
JP2941077B2 (en) Driving force transmission device for four-wheel drive vehicles
JPH01250625A (en) Driving coupler
US4921085A (en) Rotational speed differential responsive type joint
JPS6388328A (en) Torque transmitter
JPS63101567A (en) Speed difference responsive type coupling
JPH0532667Y2 (en)
JPH0289821A (en) Rotation difference-sensitive type joint
JPH0623782Y2 (en) Rotation sensitive joint
JPH051722Y2 (en)
JP2748538B2 (en) Rotational differential fitting
JP2701448B2 (en) Rotational difference sensitive differential limiter
JP2521822Y2 (en) Driving force transmission device for four-wheel drive vehicles
JPH0716907Y2 (en) Rotation sensitive joint
JP2701449B2 (en) Rotational difference sensitive differential limiter
JP3007451B2 (en) Hydraulic power transmission
JPH01255726A (en) Rotational difference sensitive type coupling
JPS63101568A (en) Speed difference responsive type coupling
JP2646809B2 (en) Final reducer
JPH0547864Y2 (en)
JP3467278B2 (en) Driving force transmission device for four-wheel drive vehicles
JPH02159423A (en) Hydraulic power transmission coupling

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term