JPS63101526A - Driving link device - Google Patents

Driving link device

Info

Publication number
JPS63101526A
JPS63101526A JP62041508A JP4150887A JPS63101526A JP S63101526 A JPS63101526 A JP S63101526A JP 62041508 A JP62041508 A JP 62041508A JP 4150887 A JP4150887 A JP 4150887A JP S63101526 A JPS63101526 A JP S63101526A
Authority
JP
Japan
Prior art keywords
oil
vane
side chamber
rotor
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62041508A
Other languages
Japanese (ja)
Other versions
JPH0663546B2 (en
Inventor
Takeo Hiramatsu
平松 健男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to US07/054,421 priority Critical patent/US4829769A/en
Priority to KR1019870005259A priority patent/KR920005421B1/en
Priority to EP19870108682 priority patent/EP0279891B1/en
Priority to DE8787108682T priority patent/DE3766701D1/en
Publication of JPS63101526A publication Critical patent/JPS63101526A/en
Publication of JPH0663546B2 publication Critical patent/JPH0663546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/27Arrangements for suppressing or influencing the differential action, e.g. locking devices using internally-actuatable fluid pressure, e.g. internal pump types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3505Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with self-actuated means, e.g. by difference of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To prevent any cavitation by providing a small passage which makes operating fluid flow out from a delivery side chamber to a suction side chamber. CONSTITUTION:Many channels 19b are formed in the outer periphery surface 19a of a rotor 19 at equal intervals in periphery direction on a vane pump VP. Vanes 18, that can make slidable contact with the inner periphery surface 20d of a cam ring 20a, are fitted in said channels. Three pump chambers 36-38 and suction/delivery ports 22-27 are mutually connected through the first oil passage OL1 and the second oil passage OL2 respectively. Hereupon, orifices 18c are provided on respective vanes 18 as small passages, therefore oil flows through orifices 18c from a delivery side chamber to a suction side chamber following the movement of vanes 18 in pump chambers 36-38 due to the relative rotation of the rotor 19 to the cam ring 20a. Thereby, generation of any cavitation in a suction side chamber is prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は2つの回転軸間を流体圧により連結して、両回
転軸間の回転速度差を減少させる駆動連結装置に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a drive coupling device that connects two rotating shafts using fluid pressure to reduce the difference in rotational speed between the two rotating shafts.

〈従来の技術〉 例えば、前輪及び後輪を同一のエンジンで駆動する四輪
駆動車において、前輪に連結された回転軸と後輪に連結
された回転軸とを油圧等の流体圧により連結する駆動連
結装置が開発され、既に出願きれている。
<Prior art> For example, in a four-wheel drive vehicle in which the front wheels and rear wheels are driven by the same engine, a rotating shaft connected to the front wheels and a rotating shaft connected to the rear wheels are connected by fluid pressure such as oil pressure. A drive coupling device has been developed and has already been filed.

第13図は上記従来の駆動連結装置を横断面で表す模式
図である。同図において、2゜は前輪に連結されている
第1の回転軸に連結されたハウジング、19は後輪に連
結されている第2の回転軸14に連結されると共にハウ
ジング20内に収容されたロータ、18はロータ19の
外周に多数(ここでは、10個)設けられてハウジング
20の内周面に摺接するベーン、36,37,38はそ
れぞれハウジング20とロータ19とにより画成された
ポンプ室、22,23,24,25,26゜27はポン
プ室36,37.38の両端部にそれぞれ開口した吸込
吐出口、OL、は吸込吐出口22,24,26を連通す
る第1油路、OL2は吸込吐出口23.・25,27を
連通する第2油路、30はそれぞれチェック弁28゜2
9を介して各油路OL、、OL、への流れのみ許容され
たオイル溜、33は第1油路OL、と第2油路OL、と
を連通する油路34に設けられたオリフィスである。そ
して、第1の回転軸と第2の回転軸14との間、すなわ
ちハウジング20とロータ19との間に回転速度差が生
じ、ハウジング20に対してロータ19が例えば図中矢
印で示す方向に相対的に回転すると、吸込吐出口22,
24.26が吐出口となってベーン18によってポンプ
室36゜37.38から第1油路OLエヘ作動油を吐出
する一方、吸込吐出口23,25.27が吸込口となっ
て第2油路OL2からポンプ室36゜37.38へ作動
油を吸込む、ポンプとして作動する。上記第1油路OL
、へ吐出された油は油路34を介して第2油路OL2へ
流入するのであるが、これに際してオリフィス33によ
り流量に応じた抵抗が付加される。したがって、前輪と
後輪との間にスリップが生じてハウジング20とロータ
19との間に回転速度差が生じた場合には、この回転速
度差による作1!I油の流量に応じた抵抗が付加され、
この回転速度差を減少させて4輪駆動状態が達成される
。尚、上記の作用に際して、ハウジング20やロータ1
9のシール部からの油洩れに対してオイル溜30から作
動油が補給される。
FIG. 13 is a schematic cross-sectional view of the conventional drive coupling device. In the figure, 2° is a housing connected to a first rotating shaft connected to the front wheel, and 19 is a housing connected to a second rotating shaft 14 connected to the rear wheel and housed in the housing 20. The rotor 18 is provided with a large number (10 vanes in this case) on the outer periphery of the rotor 19 and is in sliding contact with the inner peripheral surface of the housing 20. The vanes 36, 37, and 38 are defined by the housing 20 and the rotor 19, respectively. pump chambers, 22, 23, 24, 25, 26; 27 is a suction and discharge port opened at both ends of the pump chambers 36, 37, and 38, respectively; OL is a first oil port that communicates with the suction and discharge ports 22, 24, and 26; OL2 is the suction and discharge port 23.・Second oil passage connecting 25 and 27, 30 is each check valve 28°2
The oil reservoir 33 is an orifice provided in the oil passage 34 that communicates the first oil passage OL and the second oil passage OL. be. Then, a rotation speed difference occurs between the first rotation shaft and the second rotation shaft 14, that is, between the housing 20 and the rotor 19, and the rotor 19 moves in the direction shown by the arrow in the figure, for example, with respect to the housing 20. When relatively rotated, the suction and discharge ports 22,
24.26 serves as a discharge port, and the vane 18 discharges the hydraulic oil from the pump chamber 36°37.38 to the first oil passage OL, while the suction and discharge ports 23, 25.27 serve as suction ports, and the second oil It operates as a pump that sucks hydraulic oil from passage OL2 into pump chamber 36°37.38. The above first oil path OL
The oil discharged to the second oil passage OL2 flows through the oil passage 34, and at this time, resistance is applied by the orifice 33 according to the flow rate. Therefore, when a slip occurs between the front wheels and the rear wheels and a difference in rotational speed occurs between the housing 20 and the rotor 19, the difference in rotational speed causes the operation 1! Resistance is added according to the flow rate of I oil,
A four-wheel drive state is achieved by reducing this rotational speed difference. In addition, during the above action, the housing 20 and the rotor 1
Hydraulic oil is replenished from an oil reservoir 30 in case of oil leakage from the seal portion 9.

また、ロータ19のベーン18底部には油圧室59が設
けられており、油圧室59への油の流れのみを許容する
チェック弁39.40を介して油圧室59は第1iIl
h路OL、及び第2油路OL2に連通し得るようになっ
ている。したがって、第1油路OL、(逆回転の場合に
は第2油路0L2)からの吐出油がチェック弁39(4
0)を介して油圧室59に導びかれ、ポン、プ作動時に
ベーン18を押上げてハウジング20の内周面に圧接さ
せ、液密性を高めている。
Further, a hydraulic chamber 59 is provided at the bottom of the vane 18 of the rotor 19, and the hydraulic chamber 59 is connected to the first
It can communicate with the h path OL and the second oil path OL2. Therefore, the oil discharged from the first oil passage OL (or the second oil passage 0L2 in the case of reverse rotation) is transferred to the check valve 39 (4).
When the pump is operated, the vane 18 is pushed up and brought into pressure contact with the inner circumferential surface of the housing 20, thereby improving liquid tightness.

〈発明が解決しようとする問題点〉 上記のように、従来の駆動連結装置にあって、も、吐出
油圧を導びいてベーン18を押上げ、液密性を高めるよ
うにしているが、この機能倉十分に発揮し得ないという
問題があった。すなわち、ハウジング20内に形成され
ている第1油1@OL□又は第2油路OL2に吐出油を
全て導びいた後、吐出油を吸込側油路とな5る第2油路
OL、又は第1油路OL、に導ひくと共にベーン押上げ
用油圧室59に導びくようにしているため、第1油路O
L1.第2油路OL、等からなる回路に多量の作動油が
流通することとなる。このため、流路抵抗により油圧低
下が生じ、ポンプ室36.37,38内での吐出油圧に
対して油圧室59に供給された油圧が低下し、ベーン1
8とハウジング2゜内周面との間の液密が保持し得ない
場合があった。このような場合には、吐出油圧(トルク
伝達油圧)がある程度高くなるとベーン18が引込んで
ポンプ室の吐出側室から吸込側室へ吐出油の洩れが生じ
、ハウジング20とロータ19との間に第14図に示す
ような伝達トルクの変動が生じてしまう。
<Problems to be Solved by the Invention> As mentioned above, in the conventional drive coupling device, the discharge hydraulic pressure is guided to push up the vane 18 to improve liquid tightness. There was a problem that the functional warehouse could not be fully utilized. That is, after all the discharged oil is guided to the first oil 1@OL□ or the second oilway OL2 formed in the housing 20, the second oilway OL serves as a suction side oilway for the discharged oil, or the first oil passage OL, and also the vane push-up hydraulic chamber 59, so that the first oil passage O
L1. A large amount of hydraulic oil will flow through the circuit consisting of the second oil passage OL, etc. Therefore, the oil pressure decreases due to flow path resistance, and the oil pressure supplied to the oil pressure chamber 59 decreases with respect to the discharge oil pressure in the pump chambers 36, 37, and 38, and the vane 1
In some cases, it was not possible to maintain liquid tightness between the housing 8 and the inner peripheral surface of the housing 2. In such a case, when the discharge oil pressure (torque transmission oil pressure) becomes high to a certain extent, the vane 18 retracts and the discharge oil leaks from the discharge side chamber of the pump chamber to the suction side chamber, and the fourteenth Fluctuations in the transmitted torque as shown in the figure occur.

また、吐出側の吸込吐出口から第1油路OL、。Also, a first oil passage OL from the suction and discharge port on the discharge side.

第2油f%l0L2を通じて吸込側の吸込吐出口へ導び
かれる油圧はその流lに応じて大きな負圧状態となるた
め、吸込側の吸込吐出口近傍でキャビテーラ9ンが生じ
てしまうことがあり、これによっても伝達トルクの変動
が生じてしまう。
Since the hydraulic pressure led to the suction-side suction-discharge port through the second oil f%l0L2 becomes a large negative pressure state depending on the flow l, caviteller 9 may occur near the suction-side suction-discharge port. This also causes fluctuations in the transmitted torque.

本発明は上記従来の事情に鑑みなされたもので、ベーン
の液密性を保持すると共にキャビテーションの発生も防
止して安定したトルク伝達を達成することができるV動
連結装置を提供することを目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and it is an object of the present invention to provide a V-dynamic coupling device that can maintain the liquid-tightness of vanes and prevent cavitation from occurring, thereby achieving stable torque transmission. shall be.

く問題点を解決するための手段〉 本発明の駆動連結装置は、第1の回転軸に連結されるハ
ウジングと、第2の回転軸に連結されると共に前記ハウ
ジング内に収容されるロータと、前記ロータの外周面に
設けられろと共に前記ハウジングの内周面に設けられる
と共に前記ハウジングとにより画成されたポンプ室に吐
出側室と吸込側室とを仕切る多数のベーンとを備え、前
記第1の回転軸と前記第2の回転軸との回転速度差によ
る前記ハウジングと前記ロータとの相対回転で前記ベー
ンにより前記吐出側室で加圧された作動流体を該ベーン
の底部に導びいて当該ベーンを前記ハウジングの内周面
に圧接させると共に、前記吐出側室から前記吸込側室へ
前記作動流体を流出させる小通路を設けたことを特徴と
する。
Means for Solving the Problems> The drive coupling device of the present invention comprises: a housing coupled to a first rotating shaft; a rotor coupled to a second rotating shaft and housed in the housing; a plurality of vanes provided on the outer circumferential surface of the rotor and on the inner circumferential surface of the housing to partition the pump chamber defined by the housing into a discharge side chamber and a suction side chamber; The working fluid pressurized in the discharge side chamber is guided by the vane to the bottom of the vane due to the relative rotation between the housing and the rotor due to the rotational speed difference between the rotation shaft and the second rotation shaft, and the vane is activated. The present invention is characterized in that a small passage is provided which is brought into pressure contact with the inner circumferential surface of the housing and allows the working fluid to flow out from the discharge side chamber to the suction side chamber.

く作   用〉 ポンプ室の吐出側室からの吐出流体は主に小通路を通じ
てキャビテーションを生ずることなく吸込側室に導びか
れ、該小通路により付加される流体圧抵抗でハウジング
(第1の回転軸)とロータ(第2の回転軸)との間のト
ルク伝達がなされる。そして、ベーンの底部には上記と
は別の回路で吐出流体圧が導びかれるため、この回路を
流れる流量が少なくなって圧力低下が回避される。この
ため、吐出流体圧に近い流体圧がベーンの底部に導びか
れてベーンの押上げによる高い液密性が保持される。
Function> Discharged fluid from the discharge side chamber of the pump chamber is mainly guided to the suction side chamber through a small passage without causing cavitation, and the fluid pressure resistance added by the small passage causes the housing (first rotating shaft) to Torque is transmitted between the rotor and the rotor (second rotating shaft). Since the discharge fluid pressure is guided to the bottom of the vane through a circuit different from the one described above, the flow rate flowing through this circuit is reduced and a pressure drop is avoided. Therefore, fluid pressure close to the discharge fluid pressure is guided to the bottom of the vane, and high liquid tightness is maintained by pushing up the vane.

く実 施 例〉 本発明の一実施例を図面に基づいて説明する。本実施例
は駆動連結装置を4輪駆動車に適用したものであり、第
1図は駆動連結装置を横断面して表す模式図、第2図は
車両の駆動系を表す概略構成図、第3図は駆動連結装置
の縦断面図である。
Embodiment One embodiment of the present invention will be described based on the drawings. In this embodiment, the drive coupling device is applied to a four-wheel drive vehicle, and FIG. 1 is a schematic cross-sectional view of the drive coupling device, FIG. 2 is a schematic configuration diagram showing the drive system of the vehicle, and FIG. FIG. 3 is a longitudinal sectional view of the drive coupling device.

第2図に示すように、横置されたエンジン1に変速機2
が連結され、その出力軸3に取り付けたドライブギヤ(
または4速カウンタギヤ)4から駆動力が取り出されて
、ベーンポンプ型の駆動連結装置本体13のギヤカムリ
ング20eに伝達される。
As shown in Fig. 2, a transmission 2 is attached to an engine 1 placed horizontally.
are connected, and the drive gear (
The driving force is taken out from the 4-speed counter gear (4-speed counter gear) 4 and transmitted to the gear cam ring 20e of the vane pump type drive coupling device main body 13.

そして、ギヤカムリング20eは、ハウジング20を回
転駆動して、ハウジング20に接続する第1の回転軸(
外軸)11を介して、ギヤ7から前輪9用の差動値[1
0に′tE動力が伝達されて前輪9が駆動される。
The gear cam ring 20e rotates the housing 20 and connects to the first rotating shaft (
The differential value [1
'tE power is transmitted to the front wheel 9 to drive the front wheels 9.

すなわち、駆動連結装置本体13に伝達された駆動力が
、そのまま第1の回転軸11にギヤカムリング20θを
介して伝達され、さらに、ギヤ7、差動装置10を介し
て前輪9に伝達される。
That is, the driving force transmitted to the drive coupling device main body 13 is directly transmitted to the first rotating shaft 11 via the gear cam ring 20θ, and further transmitted to the front wheels 9 via the gear 7 and the differential device 10. .

この駆動連結装置本体13を経由した駆動力は、第1の
回転軸11に同軸的に配設される第2の回転軸(内軸)
14に伝達されるようになっており、回転取出方向を変
換するベベル歯車!1構15 、プロペラ軸12、ベベ
ル歯車機構15′を介して後輪16用の差動装置17に
駆動力が伝達され、後輪16を駆動する。
The driving force passing through this drive coupling device main body 13 is transferred to a second rotating shaft (inner shaft) coaxially arranged with the first rotating shaft 11.
14, a bevel gear that changes the direction of rotation! The driving force is transmitted to the differential gear 17 for the rear wheels 16 via the propeller shaft 12, the propeller shaft 12, and the bevel gear mechanism 15', thereby driving the rear wheels 16.

この駆動連結装置本体13は、第1図及び第3図に示す
ように、ベーンポンプvPとこれに付属する油圧回路2
1とで構成されており、ベーンポンプ■Pのロータ19
が、後輪16に駆動力を伝達する第2の回転軸14に連
結されるとともに、ハウジング20を構成するカムリン
グ部20aおよびフランジ20aが、前輪9に駆動力を
伝達する第1の回転軸11に連結されている。
As shown in FIGS. 1 and 3, this drive coupling device main body 13 includes a vane pump vP and a hydraulic circuit 2 attached thereto.
1 and the rotor 19 of the vane pump ■P.
is connected to the second rotating shaft 14 that transmits driving force to the rear wheel 16, and the cam ring portion 20a and flange 20a that constitute the housing 20 connect to the first rotating shaft 11 that transmits driving force to the front wheel 9. is connected to.

この油圧ポンプとしてのベーンポンプvPには、そのロ
ータ19の外周面19mに周方向に等間隔に多数(ここ
では、10個)の孔部19bが形成されていて、この多
数の孔部19bのそれぞれには、カムリング部20aの
内周面20dに摺接しうるベーン18が嵌挿されている
In the vane pump vP as this hydraulic pump, a large number (10 holes in this case) of holes 19b are formed at equal intervals in the circumferential direction on the outer peripheral surface 19m of the rotor 19, and each of the large number of holes 19b A vane 18 that can come into sliding contact with the inner circumferential surface 20d of the cam ring portion 20a is fitted into the cam ring portion 20a.

さらに、ハウジング20のカバー20bとベーン18お
よびロータ19との軸方向の隙間が所定値以下となるよ
うに、各部が形成されてお抄、油膜が切れないようにな
っていて、ハウジング20のプレッシャリテーナ2Of
とベーン18およびロータ19との軸方向の隙間も、同
様に、所定値以下となるように、各部が形成されている
Further, each part is formed so that the axial clearance between the cover 20b of the housing 20 and the vanes 18 and rotor 19 is below a predetermined value, so that the oil film does not break and the pressure of the housing 20 is reduced. Retainer 2Of
Similarly, each part is formed so that the axial clearance between the vane 18 and the rotor 19 is equal to or less than a predetermined value.

そして、これら隙間の和が、所定値以下となるように設
定されている。
The sum of these gaps is set to be less than or equal to a predetermined value.

また、ベーンポンプVPは、その回転数に比例した油圧
を発生するものであり、ロータ19とカムリング部20
aとの間に相対回転、すなわち、第1の回転軸11と第
2の回転軸14との間に相対回転が生ずると油圧ポンプ
として機能して油圧を発生する。したがって、ベーンポ
ンプ■Pの吐出油の流れを制限することにより、油を介
してその静圧でロータ19とカムリング部20aとを剛
体のようにして一体に回転させることができる。
Further, the vane pump VP generates hydraulic pressure proportional to its rotation speed, and the vane pump VP generates hydraulic pressure proportional to its rotation speed, and is connected to the rotor 19 and the cam ring part 20.
When a relative rotation occurs between the first rotating shaft 11 and the second rotating shaft 14, the first rotating shaft 11 and the second rotating shaft 14 function as a hydraulic pump and generate hydraulic pressure. Therefore, by restricting the flow of oil discharged from the vane pump (P), the rotor 19 and the cam ring portion 20a can be rotated as a rigid body by the static pressure of the oil.

カムリング部20aとロータ19との間には、回転中心
線から120°間隔に3つのポンプ室36〜38が形成
され、また、回転方向基端側に位置しなとき吸込口とな
り先端側に位置したとき吐出口となる6個の吸込吐出口
22〜27がほぼ120′間隔に形成してあり、それぞ
れ同一機能をなす120°rR隔の吸込吐出口22,2
4,26と吸込吐出口23、25.27とが、それぞれ
第1油路OL!と第2油路OL2とで連通されている。
Three pump chambers 36 to 38 are formed between the cam ring part 20a and the rotor 19 at intervals of 120° from the rotation center line, and when they are not located on the base end side in the rotational direction, they serve as suction ports and are located on the distal end side. Six suction and discharge ports 22 to 27, which serve as discharge ports when
4, 26 and the suction/discharge ports 23, 25.27 are the first oil passages OL! and a second oil passage OL2.

ここで、上記ベーン1Bには小通路としてそれぞれオリ
フィス18cが設けられており、ロータ19とカムリン
グ部20aとの相対回転によるポンプ室36〜38内で
のベーン18の移動に伴って、ポンプ室36〜38の吐
出側室から吸込側室へオリフィス18cを通じて油が流
れ、第1油路OL、又は第2油路OL。
Here, each of the vanes 1B is provided with an orifice 18c as a small passage, and as the vane 18 moves within the pump chambers 36 to 38 due to the relative rotation between the rotor 19 and the cam ring portion 20a, the pump chamber 36 Oil flows from the discharge side chamber to the suction side chamber through the orifice 18c, and the oil flows through the first oil passage OL or the second oil passage OL.

へは後述するベーン押上げに供するに足る少量の流量が
あるだけである。なお、オリフィス18cの個数又は径
は後述するトルク伝達特性(第4図参照)に応じて適宜
設定されるものであり、また、オリフィス18cの設置
位置は少なくともポンプ室36〜3B内でベーン18が
最大リフトした時に開口する位置であれば良い。
There is only a small amount of flow to the vane, which will be described later. The number or diameter of the orifice 18c is appropriately set according to the torque transmission characteristics (see Fig. 4) described later, and the installation position of the orifice 18c is such that the vane 18 is located at least within the pump chambers 36 to 3B. Any position that opens when the maximum lift is achieved is sufficient.

また、第1油路OLlと第2油路OL、との間に、それ
ぞれチェック弁28.29を介してトランスミッシ冒ン
ケース44の底部のオイルF!l(オイルタンク)3G
が連通され、オイル@aOから各油路OL1.OL2へ
の流れのみが許容される。
Also, the oil F at the bottom of the transmission case 44 is connected between the first oil passage OLl and the second oil passage OL via check valves 28 and 29, respectively. l (oil tank) 3G
are communicated with each other from oil @aO to each oil path OL1. Only flow to OL2 is allowed.

また、ベーンポンプvPのハウジング2Gを構成するカ
バー20bおよび7ランジ20aは、それぞれベアリン
グ41.42を介してトランスミッシ重ンケース44に
軸支されている。
Further, the cover 20b and seven flange 20a that constitute the housing 2G of the vane pump vP are each pivotally supported by the transmission heavy case 44 via bearings 41 and 42.

ベーンポンプvPのq−夕19にスプライン係合部14
aを介して連結された第20回転軸14は、スプライン
保合部14aの両側において、ブッシング(軸受)45
.46を介してそれぞれカバー20bおよびプレッシャ
リテーナ20fに軸支されている。
Spline engagement part 14 on q-19 of vane pump vP
The 20th rotating shaft 14 connected via a has bushings (bearings) 45 on both sides of the spline retaining portion 14a.
.. The cover 20b and the pressure retainer 20f are respectively pivotally supported via 46.

そして、ベーン1Bはその底部18bから吐出油圧を受
けてその先端部18aがカムリング部20mの内周面2
0dに圧接され液密性が保たれるようになっている。す
なわち、ロータ19とカバー20bとが摺接する軸方向
摺動部56および四−夕19とプレッシャリテーナ20
fとが摺接する軸方向摺動部56に、第3図に示すよう
に、円環状の油圧″1159゜59が形成されて、これ
ら油圧室59,59が四−夕19の孔部19bに連通す
るとともに、これら油圧室59,59への油の流れのみ
を許容するチェック弁39,40を介して第1油路OL
、および第2油路OL、に連通し得るようになっている
。したがって、吐出口となる吸込吐出口22〜z7から
第1油路OL!又は第2油@OL、に導びかれな高圧の
吐出油圧がチェック弁39又は40を介して油圧室59
,59に導びかれ、これにてベーン18が押上げられて
液密性が保たれる。
The vane 1B receives discharge hydraulic pressure from its bottom portion 18b, and its tip portion 18a is connected to the inner circumferential surface of the cam ring portion 20m.
0d to maintain liquid tightness. That is, the axial sliding portion 56 where the rotor 19 and the cover 20b are in sliding contact, and the rotor 19 and the pressure retainer 20
As shown in FIG. 3, an annular hydraulic pressure of 1159° 59 is formed in the axial sliding portion 56 in sliding contact with The first oil passage OL communicates with the first oil passage OL via check valves 39 and 40 that allow oil to flow only to these oil pressure chambers 59 and 59.
, and the second oil passage OL. Therefore, the first oil path OL! Or, the high-pressure discharge hydraulic pressure that is not guided to the second oil @OL flows into the hydraulic chamber 59 via the check valve 39 or 40.
, 59, which pushes up the vane 18 and maintains liquid tightness.

さらに、彎−夕19の両端面には、第1図中の2点鎖線
で示すようなスプリング63またはリング等を軸部62
を介して5つずつ取り付けて、ベーン18の底部18b
を押圧するようにしてもよい。
Furthermore, a spring 63 or a ring or the like as shown by the two-dot chain line in FIG.
5 at a time through the bottom 18b of the vane 18.
You may also press the button.

ビお、図中の符号19eはロータ19の内径側底部、4
3は第1の回転軸を軸支するベアリングを示しており、
47はパルセージ。
Reference numeral 19e in the figure indicates the bottom of the inner diameter side of the rotor 19;
3 indicates a bearing that supports the first rotating shaft,
47 is Palsage.

ンボリエーム、48はオイルガイド、49はフィルタ、
50はマグネット、51はボルト、をそれぞれ示してい
る。
48 is an oil guide, 49 is a filter,
50 indicates a magnet, and 51 indicates a bolt.

上記構成の駆動連結装置によれば、車両の通常の直進状
態において、前輪9と後輪16との間に回転速度差がほ
とんどなく、第1の回転軸11と第2の回転軸14との
間に回転速度差が生じない場合には、ベーンポンプvP
での油圧の発生はなく、後輪16には駆動力が伝達され
ない前輪9のみによる前輪駆動状態となる。
According to the drive coupling device configured as described above, when the vehicle is in a normal straight-ahead state, there is almost no difference in rotational speed between the front wheels 9 and the rear wheels 16, and there is little difference in rotational speed between the first rotational shaft 11 and the second rotational shaft 14. If there is no rotational speed difference between the vane pump vP
No oil pressure is generated at this time, and the front wheels are driven only by the front wheels 9, with no driving force being transmitted to the rear wheels 16.

また、前輪9にスリップ等が生じて前輪9の回転速度が
後輪16に較べて大きくなり、第1の回転軸11と第2
の回転軸14との間に回転速度差が生じた場合には、ベ
ーンポンプvPで油圧が発生してこの回転速度差を減少
又はなくした4輪駆動状態となる。この場合、第1図中
に矢印Bで示す方向にハウジング20に対して相対的に
ロータ19が回転することとなり、吸込吐出口22,2
4.26が吐出側、吸込吐出口23,25,27が吸込
側となる。なお、第1図中の実線矢印は吐出油の流れを
示し、破線矢印は吸込部の流れを示している。そして、
ポンプ室36〜38の吐出側室から吸込側室へオリフィ
ス18cを通して油が流れるのであるが、回転軸11゜
14間の回転速度差が太き(なって、油の流量が多くな
るに従ってオリフィス18aでの流尋抵抗が増えること
から、上記回転速度差が減少され、第4図に実線で示す
ような二次曲線的特性をもって後輪16にも駆動力が伝
達される。
In addition, slipping or the like occurs in the front wheels 9, and the rotational speed of the front wheels 9 becomes larger than that of the rear wheels 16, causing the first rotation shaft 11 and the second
When a rotational speed difference occurs between the rotating shaft 14 and the rotating shaft 14, hydraulic pressure is generated in the vane pump vP, resulting in a four-wheel drive state in which this rotational speed difference is reduced or eliminated. In this case, the rotor 19 rotates relative to the housing 20 in the direction shown by arrow B in FIG.
4.26 is the discharge side, and the suction and discharge ports 23, 25, and 27 are the suction side. In addition, the solid line arrow in FIG. 1 shows the flow of discharged oil, and the broken line arrow shows the flow of the suction part. and,
Oil flows from the discharge side chamber of the pump chambers 36 to 38 to the suction side chamber through the orifice 18c, but the rotational speed difference between the rotating shafts 11 and 14 increases (as the oil flow rate increases, the oil flows through the orifice 18a). Since the flow resistance increases, the rotational speed difference is reduced, and the driving force is also transmitted to the rear wheels 16 with a quadratic characteristic as shown by the solid line in FIG.

ここで、吸込吐出口22,24,26から第1油路OL
、、チェック弁39を介して油圧室59,59に導びか
れる吐出油圧によりベーン18の先端部がカムリング部
20mの内周[20dへ圧接されているのであるが、上
記のように吐出油はほとんどオリフィス18cを通じて
流れ、油圧室59.59への吐出油の流量が少ないこと
から、第1油路OL、チェック弁39での圧力低下を生
ずることなく高圧状態のまま吐出油圧が油圧室59,5
9に導びかれて、ベーン18の高い液密性にてトルク変
動を生ずることなく駆動力の伝達がなされる。また、吐
出側室から吸込側室へ供給される油も、従来のように第
1油路OL、、第2油@QL、という長い油路を通して
送給される形式ではないので、吸込側室でのキャビテー
シ璽ンの発生が防止されてこの点からもトルク変動の発
生が防止されている。なお、オイル溜30からは従来と
同様にハウジング20やロータ19のシール部からの油
洩れに対して作動油が補給される。また、上記の4輪駆
動特性はオリフィス18cの個数や径を増加することに
よって第4図中にSで示すように緩やかにすることがで
きる一方、これとは逆に設定することによって同図中に
Hで示すように反応を説(することができる。ちなみに
、オリフィス18cの径を0.5 m 1回転速度差を
I Q Orpmとしたときの吐出油圧はZOOkg/
c+/ (伝達トルク50kgmに相当)であった。
Here, from the suction discharge ports 22, 24, 26 to the first oil path OL.
,,The tip of the vane 18 is pressed against the inner circumference [20d] of the cam ring part 20m by the discharged oil pressure guided to the hydraulic chambers 59, 59 via the check valve 39, but as mentioned above, the discharged oil is Since most of the oil flows through the orifice 18c and the flow rate of the discharged oil to the hydraulic chambers 59 and 59 is small, the discharged hydraulic pressure remains in a high pressure state without causing a pressure drop in the first oil passage OL and the check valve 39. 5
9, the driving force is transmitted without causing torque fluctuation due to the high liquid tightness of the vane 18. In addition, the oil supplied from the discharge side chamber to the suction side chamber is not supplied through long oil passages such as the first oil passage OL and the second oil @QL as in the conventional system, so there is no cavity in the suction side chamber. Since the occurrence of warpage is prevented, torque fluctuation is also prevented from occurring. Note that hydraulic oil is replenished from the oil reservoir 30 in case of oil leakage from the seal portion of the housing 20 or the rotor 19, as in the conventional case. In addition, while the above-mentioned four-wheel drive characteristics can be made gentler as shown by S in FIG. The reaction can be explained as shown by H. By the way, when the diameter of the orifice 18c is 0.5 m and the difference in rotational speed is I Q Orpm, the discharge oil pressure is ZOOkg/
c+/ (equivalent to a transmission torque of 50 kgm).

一方、上記とは逆に前輪9の回転速度に較べて後輪16
の回転速度が大きくなる場合には、ベーンポンプvPに
上記とは逆方向への油の流れが生じ、吸込吐出口22,
24,26が吸込側、吸込吐出口2:l、25,2?が
吐出側となって第2油MaOL2、チェック弁40を介
して油圧室59.59に吐出油圧が導びかれるが、上記
と同様な作用により4輪駆動状態が達成される。なお、
このようにベーンポンプvPに逆回転が生ずることによ
って、万一オリフィス18cにゴミが詰った場合にあっ
てもこのゴミは自動的に除去されることとなって、メン
テナンスが容易である0第5図(a)は本発明の他の一
実施例に係るベーンを表す正面図、第5図fb)はその
ベーンを用いた駆動連結装置の縦断面図である。本実施
例は、ベーン18にオリフィスを設ける代わりに該ベー
ン18の先端角部に切欠き18dを設け、これによって
、カムリング部20aの内周面20dとカバー20bの
内壁面との角部にポンプ室36〜38の吐出側室から吸
込側室へ油を流出させる小通路を形成している。この小
通路の断面積は約0.3膿の円に相当し、このような小
通路によっても吐出側室から吸込側室へ流れる油に所定
の流体圧抵抗を与えて、前記オリフィス18cと同等の
作用効果を奏する。尚、切欠き18dをベーン18の上
記とは左右反対側の角部に設けてカムリング部20aの
内周面20dとプレッシャリテーナ2Ofの内壁面との
角部に小通路を設けても勿論良い。
On the other hand, contrary to the above, the rotational speed of the rear wheel 16 is higher than that of the front wheel 9.
When the rotational speed of the vane pump vP increases, oil flows in the opposite direction to the above, and the suction and discharge ports 22,
24, 26 are suction side, suction discharge port 2: l, 25, 2? is on the discharge side, and the discharge hydraulic pressure is guided to the hydraulic chambers 59 and 59 via the second oil MaOL2 and the check valve 40, and the four-wheel drive state is achieved by the same action as described above. In addition,
By causing the vane pump vP to rotate in the reverse direction in this way, even if the orifice 18c should become clogged with dirt, this dirt will be automatically removed, making maintenance easy. (a) is a front view showing a vane according to another embodiment of the present invention, and FIG. 5fb) is a longitudinal sectional view of a drive coupling device using the vane. In this embodiment, instead of providing an orifice in the vane 18, a notch 18d is provided at the tip corner of the vane 18, and thereby the pump is provided at the corner between the inner peripheral surface 20d of the cam ring portion 20a and the inner wall surface of the cover 20b. A small passage is formed through which oil flows from the discharge side chambers of the chambers 36 to 38 to the suction side chambers. The cross-sectional area of this small passage corresponds to a circle of approximately 0.3 pus, and such a small passage also provides a predetermined fluid pressure resistance to the oil flowing from the discharge side chamber to the suction side chamber, and has the same effect as the orifice 18c. be effective. Of course, the notch 18d may be provided at the corner of the vane 18 on the left and right sides opposite to the above, and a small passage may be provided at the corner between the inner circumferential surface 20d of the cam ring portion 20a and the inner wall surface of the pressure retainer 2Of.

第6図〜第8図はそれぞれ上記と同様な観点から小通路
を形成するための態様を示すベーンの正面図である。す
なわち、第6′Igに示すものはベーン18の先端縁に
切欠き18eを設け、第7図、第8図に示すものはベー
ン18の側縁に切欠き18f、18gを設けたものであ
り、これら切欠き18e、18f。
FIGS. 6 to 8 are front views of vanes showing aspects for forming small passages from the same viewpoint as above. That is, the one shown in No. 6'Ig has a notch 18e on the tip edge of the vane 18, and the one shown in FIGS. 7 and 8 has notches 18f and 18g on the side edge of the vane 18. , these notches 18e, 18f.

18gによっても上記切欠き18dと同じくオリフィス
18cと同等の作用効果を奏する。
18g also provides the same effect as the orifice 18c as well as the notch 18d.

第9図は本発明の更に他の一実施例に係る駆動連結装置
を横断面して表す模式図、第10図はその駆動連結装置
の縦断面図である。本実施例は、ベーン18に小通路を
設ける代わりに、カムリング部20aの内周g20dの
各ポンプ室36〜38に臨む部分に溝18hを設け、こ
れによって各ポンプ室36〜38の吐出側室から吸込側
室へ油を流出させる小通路を形成している。この小通路
の断面積も約0.3間の円に相当し、このような通路に
よっても吐出側室から吸込側室へ流れる油に所定の流体
圧抵抗を与えて前記オリフィス18cと同等の作用効果
を奏する。
FIG. 9 is a schematic cross-sectional view of a drive coupling device according to yet another embodiment of the present invention, and FIG. 10 is a longitudinal sectional view of the drive coupling device. In this embodiment, instead of providing a small passage in the vane 18, a groove 18h is provided in a portion of the inner circumference g20d of the cam ring portion 20a facing each of the pump chambers 36 to 38, thereby allowing the discharge side chambers of each of the pump chambers 36 to 38 to be A small passageway is formed through which oil flows out into the suction side chamber. The cross-sectional area of this small passage also corresponds to a circle of approximately 0.3 mm, and such a passage also provides a predetermined fluid pressure resistance to the oil flowing from the discharge side chamber to the suction side chamber, and achieves the same effect as the orifice 18c. play.

第11図は上記と同様な観点から小通路を形成した更に
他の一実施例に係る駆動連結装置を横断面して表す模式
図、第12図はその駆動連結装置の縦断面図である。本
実施例は、カバー20bの内壁面に円環状の溝18iを
設けるか或いはプレッシャリテーナ20fの内壁面に円
環状の溝18jを設けるかして、これによって各ポンプ
室36〜38の吐出側室から吸込側室へ油を流出させる
小通路を形成している。本実施例では溝18i、18j
は円環状であるため、溝18hを設けるより加工が容易
である。尚、第12図には溝18iと溝18jとを両方
設けた態様を示しであるが、いずれか一方だけでも良い
FIG. 11 is a schematic cross-sectional view of a drive coupling device according to yet another embodiment in which a small passage is formed from the same viewpoint as the above, and FIG. 12 is a longitudinal sectional view of the drive coupling device. In this embodiment, an annular groove 18i is provided on the inner wall surface of the cover 20b or an annular groove 18j is provided on the inner wall surface of the pressure retainer 20f, thereby allowing air to flow from the discharge side chambers of each pump chamber 36 to 38. A small passageway is formed through which oil flows out into the suction side chamber. In this embodiment, the grooves 18i, 18j
Since it is annular, it is easier to process than providing the groove 18h. Although FIG. 12 shows an embodiment in which both the groove 18i and the groove 18j are provided, only one of them may be provided.

尚、上記実施例で示したオリフィス18C1切欠き18
d〜18g1溝18h〜18jの他の態様によって小通
路を形成しても良く、また、各態様により形成された小
通路を幾つか組合せて適用するとともできる。
Note that the orifice 18C1 notch 18 shown in the above embodiment
The small passages may be formed by other modes of the grooves 18h to 18j of d to 18g, or a combination of several small passages formed by each mode may be applied.

上記実施例は4輪駆動車に適用したものであるが、本発
明の駆動連結装置は一般的な動力源と被駆動機との連結
に用いることも勿論可能である。
Although the above embodiment is applied to a four-wheel drive vehicle, the drive coupling device of the present invention can of course be used for coupling a general power source and a driven machine.

〈発明の効果〉 本発明の駆動連結装置によれば、ポンプ室で発生した流
体圧油圧)に極めて近い流体圧(油圧)をベーン底部に
導びくことができるため、ベーンの液密性を高く保持し
てトルク変動のない状態で2軸間の回転速度差を自動的
に減少させつつ駆動力伝達を達成することができる。さ
らにポンプ室の吐出側室から吸込側室へ小通路を通して
作動流体を送給するようにしであるので、吸込側室での
負圧状態発生を回避してキャビチーシラン発生を防止す
ることができる。また、本発明を4輪駆動車に適用した
場合に(よ、小型、簡単且つ低コストな構造にて自動的
に4輪駆動状態を達成することができろ。
<Effects of the Invention> According to the drive coupling device of the present invention, fluid pressure (hydraulic pressure) that is extremely close to the fluid pressure (hydraulic pressure) generated in the pump chamber can be guided to the bottom of the vane, thereby increasing the fluid tightness of the vane. It is possible to achieve driving force transmission while automatically reducing the rotational speed difference between the two shafts in a state where there is no torque fluctuation. Furthermore, since the working fluid is fed from the discharge side chamber of the pump chamber to the suction side chamber through the small passage, it is possible to avoid the generation of a negative pressure state in the suction side chamber and prevent the generation of cavity silane. Furthermore, when the present invention is applied to a four-wheel drive vehicle, it is possible to automatically achieve a four-wheel drive state with a small, simple, and low-cost structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る駆動連結装置を横断面
して表す模式図、第2図は本発明を適用した車両の駆動
系を表す概略構成図、第3図は駆動連結装置の縦断面図
、第4図は回転速度差と伝達トルクとの関係を表すグラ
フ、第5図(alは本発明の他の一実施例に係るベーン
を表す正面図、第5図(b)はそのベーンを用いた駆動
連結装置の縦断面図、第6図〜第8図(fそれぞれ小通
路を形成する態様を示すベーンの正面図、第9図は本発
明の更に他の一実施例に係る駆動連結装置を横断面に表
す模式図、第10図はその駆動連結装置の縦断面図、第
11図は本発明の更に他の一実施例に係る駆動連結装置
を横断面に表す模式図、第12図はその駆動連結装置の
縦断面図、第13図は従来の駆動連結装置の模式図、第
14図は伝達トルクの変動を表すグラフである。 図  面  中、 11は第1の回転軸、 14は第2の回転軸、 18はベーン、 18cはオリフィス1 18d〜18gは切欠き、 18h〜18jは溝、 19はロータ、 20はハウジング、 20aはカムリング部、 36.37.38はポンプ室、 59は油圧室である。
Fig. 1 is a schematic cross-sectional view of a drive coupling device according to an embodiment of the present invention, Fig. 2 is a schematic configuration diagram showing a drive system of a vehicle to which the present invention is applied, and Fig. 3 is a drive coupling device. FIG. 4 is a graph showing the relationship between rotational speed difference and transmitted torque; FIG. 5 is a front view of a vane according to another embodiment of the present invention; FIG. 5(b) 6 to 8 (f) are a front view of the vane each showing an aspect of forming a small passage, and FIG. 9 is a longitudinal sectional view of a drive coupling device using the vane, and FIG. FIG. 10 is a vertical cross-sectional view of the drive coupling device according to the present invention, and FIG. 11 is a schematic cross-sectional view of the drive coupling device according to another embodiment of the present invention. Fig. 12 is a longitudinal sectional view of the drive coupling device, Fig. 13 is a schematic diagram of the conventional drive coupling device, and Fig. 14 is a graph showing fluctuations in transmission torque. 14 is a second rotating shaft, 18 is a vane, 18c is an orifice 1, 18d to 18g are notches, 18h to 18j are grooves, 19 is a rotor, 20 is a housing, 20a is a cam ring portion, 36.37. 38 is a pump chamber, and 59 is a hydraulic chamber.

Claims (3)

【特許請求の範囲】[Claims] (1)第1の回転軸に連結されるハウジングと、第2の
回転軸に連結されると共に前記ハウジング内に収容され
るロータと、前記ロータの外周面に設けられると共に前
記ハウジングの内周面に摺接して該ロータと該ハウジン
グとにより画成されたポンプ室に吐出側室と吸込側室と
を仕切る多数のベーンとを備え、前記第1の回転軸と前
記第2の回転軸との回転速度差による前記ハウジングと
前記ロータとの相対回転で前記ベーンにより前記吐出側
室で加圧された作動流体を該ベーンの底部に導びいて当
該ベーンを前記ハウジングの内周面に圧接させると共に
、前記吐出側室から前記吸込側室へ前記作動流体を流出
させる小通路を設けたことを特徴とする駆動連結装置。
(1) A housing connected to a first rotating shaft, a rotor connected to a second rotating shaft and housed in the housing, and a rotor provided on an outer circumferential surface of the rotor and an inner circumferential surface of the housing. a plurality of vanes slidingly in contact with each other to partition a discharge side chamber and a suction side chamber into a pump chamber defined by the rotor and the housing, the rotation speed of the first rotation shaft and the second rotation shaft; Due to the relative rotation between the housing and the rotor due to the difference, the working fluid pressurized in the discharge side chamber is guided by the vane to the bottom of the vane to press the vane against the inner circumferential surface of the housing, and the discharge A drive coupling device characterized in that a small passage is provided for causing the working fluid to flow out from the side chamber to the suction side chamber.
(2)小通路をベーンに設けたことを特徴とする特許請
求の範囲第1項記載の駆動連結装置。
(2) The drive coupling device according to claim 1, characterized in that a small passage is provided in the vane.
(3)小通路をポンプ室の壁面を形成する部材に設けた
ことを特徴とする特許請求の範囲第1項記載の駆動連結
装置。
(3) The drive coupling device according to claim 1, wherein the small passage is provided in a member forming a wall surface of the pump chamber.
JP62041508A 1986-05-28 1987-02-26 Drive coupling device Expired - Lifetime JPH0663546B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/054,421 US4829769A (en) 1986-05-28 1987-05-26 Hydraulic transmission coupling apparatus
KR1019870005259A KR920005421B1 (en) 1986-05-28 1987-05-27 Hydraulic transmission coupling apparatus
EP19870108682 EP0279891B1 (en) 1987-02-26 1987-06-16 Power transmission apparatus for vehicle
DE8787108682T DE3766701D1 (en) 1987-02-26 1987-06-16 POWER TRANSMISSION FOR A VEHICLE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12122886 1986-05-28
JP61-121228 1986-05-28

Publications (2)

Publication Number Publication Date
JPS63101526A true JPS63101526A (en) 1988-05-06
JPH0663546B2 JPH0663546B2 (en) 1994-08-22

Family

ID=14806069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62041508A Expired - Lifetime JPH0663546B2 (en) 1986-05-28 1987-02-26 Drive coupling device

Country Status (2)

Country Link
JP (1) JPH0663546B2 (en)
KR (1) KR920005421B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388328A (en) * 1986-09-30 1988-04-19 Nissan Motor Co Ltd Torque transmitter
JPH0250525U (en) * 1988-09-30 1990-04-09
JPH02135725U (en) * 1989-04-14 1990-11-13
JPH02150431U (en) * 1989-05-19 1990-12-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137658A1 (en) * 2020-12-25 2022-06-30 日立Astemo株式会社 Variable displacement pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388328A (en) * 1986-09-30 1988-04-19 Nissan Motor Co Ltd Torque transmitter
JPH0250525U (en) * 1988-09-30 1990-04-09
JPH02135725U (en) * 1989-04-14 1990-11-13
JPH02150431U (en) * 1989-05-19 1990-12-26

Also Published As

Publication number Publication date
JPH0663546B2 (en) 1994-08-22
KR920005421B1 (en) 1992-07-03
KR870010997A (en) 1987-12-19

Similar Documents

Publication Publication Date Title
JP3748755B2 (en) Power transmission device for four-wheel drive vehicle
US3590954A (en) Differential mechanism
US4909371A (en) Four wheel driving power
EP2550467B1 (en) Hydraulic coupling having improved hydraulic porting path design
US4829769A (en) Hydraulic transmission coupling apparatus
JPH0557131B2 (en)
JPS63101526A (en) Driving link device
JP3676583B2 (en) Power transmission device for four-wheel drive vehicle
KR890001336B1 (en) Differential with differential motion limiting mechanism
CN110873164A (en) Differential pump type limited slip device
JP2545574B2 (en) Oil-sealed drive coupling device
KR920007462B1 (en) Power transmission apparatus for vehicle of four-wheeled drive type
JP2545575B2 (en) Drive coupling device
JPH0620829B2 (en) Vehicle power transmission device
JPH0620827B2 (en) Transfer clutch device for four-wheel drive vehicle
JPH0324903Y2 (en)
JPH0721934Y2 (en) Drive coupling device for four-wheel drive
JP2001354043A (en) Rotational speed difference sensitive type coupling, and differential unit using the same
JPH07108839A (en) Power transmission for sour-wheel drive vehicle
JP2002301943A (en) Power transmission system for four-wheel drive vehicle
JPS60219484A (en) Vane pump
JPH09144841A (en) Differential device
JPH0658106B2 (en) Rotating hydraulic pump casing structure
JP2670785B2 (en) 4 wheel drive vehicle
JPH0617710B2 (en) Differential limiting device for front-rear differential mechanism in four-wheel drive vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term