JPH0721934Y2 - Drive coupling device for four-wheel drive - Google Patents

Drive coupling device for four-wheel drive

Info

Publication number
JPH0721934Y2
JPH0721934Y2 JP1988129374U JP12937488U JPH0721934Y2 JP H0721934 Y2 JPH0721934 Y2 JP H0721934Y2 JP 1988129374 U JP1988129374 U JP 1988129374U JP 12937488 U JP12937488 U JP 12937488U JP H0721934 Y2 JPH0721934 Y2 JP H0721934Y2
Authority
JP
Japan
Prior art keywords
oil
rotor
pump chamber
suction
oil passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988129374U
Other languages
Japanese (ja)
Other versions
JPH0250525U (en
Inventor
善明 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP1988129374U priority Critical patent/JPH0721934Y2/en
Publication of JPH0250525U publication Critical patent/JPH0250525U/ja
Application granted granted Critical
Publication of JPH0721934Y2 publication Critical patent/JPH0721934Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Rotary Pumps (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、前,後輪間における駆動力の伝達手段とし
て、ベーンポンプの発生油圧を利用する4輪駆動用駆動
連結装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a four-wheel drive drive coupling device that utilizes the hydraulic pressure generated by a vane pump as a means for transmitting a driving force between front and rear wheels.

〔従来技術〕[Prior art]

4輪駆動車は、雪道、砂利道等の特殊な路面状況におい
て高い走行安定性が得られることは勿論、通常の路面に
おいても、加減速時及び高速走行時における安定性に優
れていることから、路面状況及び走行状態の如何に拘わ
らず快適な走行を実現できるものとして、近年、特に脚
光を浴びている。このような4輪駆動車としては、前,
後輪間に生じる回転速度差に応じて駆動力を配分する駆
動連結装置を、前,後輪間の伝動軸の中途に設けたもの
がその主流をなしており、このような駆動連結装置の一
種として、油圧ポンプ、特に、小型軽量化が容易である
と共に、耐久性に優れたベーンポンプの発生油圧を利用
するものがある。
A four-wheel drive vehicle not only provides high running stability on special road conditions such as snowy roads and gravel roads, but also has excellent stability on normal road surfaces during acceleration / deceleration and high-speed running. Therefore, in recent years, it has been particularly spotlighted as a device that can realize comfortable running regardless of the road surface condition and the running condition. As such a four-wheel drive vehicle,
A drive connecting device that distributes a driving force according to the rotational speed difference between the rear wheels is provided in the middle of the transmission shaft between the front and rear wheels, which is the mainstream. As one type, there is a hydraulic pump, in particular, one that utilizes the generated hydraulic pressure of a vane pump that is easy to reduce in size and weight and has excellent durability.

ベーンポンプは、周方向に略等配に配設された平板状の
ベーン複数枚を、半径方向への進退自在に装着してなる
短寸円筒形のロータと、偏肉環状をなすカムリングの両
側にサイドプレートを夫々装着し、これらに囲繞された
空間を内部に形成してなるケーシングとを備え、該ケー
シングの内部空間に前記ロータを同軸回動自在に収納し
て、ロータの外周面とカムリングの内周面との間に、こ
れらと両サイドプレートの側面とにより囲繞された複数
のポンプ室を形成し、各別のポンプ室への導入油を、共
にカムリングの内周面に摺接し互いに相隣するベーン間
に封止し、ロータの回転により回転させて昇圧せしめる
公知の構成を有するものであり、このベーンポンプを用
いてなる駆動連結装置は、前,後輪の一方に連なる軸体
に前記ロータを、また他方に連なる軸体に前記ケーシン
グを夫々同軸的に固着し、ロータとケーシングとの間
に、前,後輪間の回転速度差に相当する相対回転が生ず
るようになし、前記ポンプ室内部にこの相対回転速度に
応じた油圧を発生させ、ロータとケーシングとの間に前
記相対回転を抑止する方向に作用する摩擦力により駆動
力を伝達する構成としたものである。
The vane pump has a short cylindrical rotor that is equipped with a plurality of flat plate-shaped vanes that are arranged substantially equidistantly in the circumferential direction so as to be able to advance and retreat in the radial direction, and a cam ring that forms an eccentric annular A side plate is attached to each of the side plates, and a casing having a space surrounded by the side plate is formed therein. The rotor is coaxially and rotatably accommodated in the inner space of the casing, and the outer peripheral surface of the rotor and the cam ring. A plurality of pump chambers surrounded by these and the side surfaces of both side plates are formed between the inner peripheral surface and the inner peripheral surface, and the oil introduced into each separate pump chamber is slidably brought into contact with the inner peripheral surface of the cam ring. The drive coupling device using the vane pump has a known structure in which it is sealed between adjacent vanes and is rotated by the rotation of the rotor to increase the pressure. The rotor On the other hand, the casing is coaxially fixed to the shaft body connected to the other so that relative rotation corresponding to the difference in rotational speed between the front and rear wheels is generated between the rotor and the casing. The hydraulic pressure is generated according to the relative rotation speed, and the driving force is transmitted between the rotor and the casing by the frictional force acting in the direction of suppressing the relative rotation.

この駆動連結装置は、本願出願人による特開平1-153335
号公報に示されているように、圧油を油タンクより片側
のサイドプレートに固設された弁を介して前記各別のポ
ンプ室へ送給し、各ベーンに、これを表裏に貫通する小
径の絞り孔が夫々形成され、ベーン間に形成される封止
空間内にて昇圧される油の一部が、該空間の低圧側、即
ち、ロータの相対回転方向上流側に相隣する同様の封止
空間内に、前記絞り孔を通流して漏れ出すようになして
あり、また、ポンプ室からの送出油は、各ベーンが内挿
された収納溝の底部に導入され、各ベーンを進出方向に
押圧し、これらの先端をカムリングの内周面に押付ける
作用をなした後、ロータの側面とサイドプレートとの間
のわずかな間隙を通流して漏れ出し、低圧の油タンクに
還流するようになしてある。即ち、ロータとケーシング
との間に生じる相対回転に応じてポンプ室内部に発生す
る油圧は、前記絞り孔及びロータ,サイドプレート間の
間隙における通流抵抗、主として前者の通流抵抗に抗し
て発生するようになっている。
This drive coupling device is disclosed in Japanese Patent Application Laid-Open No. 1-153335 by the present applicant.
As described in Japanese Patent Laid-Open Publication No. JP-A-2003-242, pressure oil is supplied to each of the separate pump chambers through a valve fixed to a side plate on one side of an oil tank, and each vane penetrates through the front and back sides. Similarly, small squeezing holes are formed, and a part of the oil that is pressurized in the sealed space formed between the vanes is adjacent to the low pressure side of the space, that is, the upstream side in the relative rotation direction of the rotor. In the sealed space of the above, the throttle holes are made to flow through and leak out, and the oil delivered from the pump chamber is introduced into the bottom of the storage groove in which each vane is inserted, and each vane is removed. After pressing in the advancing direction and pressing these tips against the inner peripheral surface of the cam ring, it leaks out through a small gap between the side surface of the rotor and the side plate and returns to the low-pressure oil tank. I am supposed to do it. That is, the hydraulic pressure generated in the pump chamber in response to the relative rotation generated between the rotor and the casing resists the flow resistance in the gap between the throttle hole and the rotor and the side plate, mainly against the flow resistance of the former. It is supposed to occur.

〔考案が解決しようとする課題〕 さて、自動車が加減速を行い、前,後輪の一方に大きい
荷重が作用する場合には前,後輪間に大きい回転速度差
が生じる。このように大きい回転速度差が生じた場合、
前記ロータとケーシングとの間の相対回転速度が大き
く、前記ポンプ室における圧油の吸入,吐出の時間間隔
が短くなり、これにより大流量の圧油が必要となる。
[Problems to be Solved by the Invention] When an automobile accelerates or decelerates and a large load is applied to one of the front and rear wheels, a large rotational speed difference occurs between the front and rear wheels. When such a large rotation speed difference occurs,
The relative rotation speed between the rotor and the casing is high, and the time interval between suction and discharge of the pressure oil in the pump chamber is short, which requires a large flow rate of pressure oil.

しかしながら前述の如き従来の駆動連結装置において
は、前記各別のポンプ室へ単一の経路により圧油を送給
しているため、圧油の最大送給流量が小さく、大流量の
圧油が必要となった場合、圧油流量が必要流量より不足
気味となり、これによって圧油中にキャビテーションが
発生する虞がある。このように圧油中にキャビテーショ
ンが発生した場合、前記ポンプ室で圧油が加圧されると
圧油中の気泡が消滅するため、ポンプ室内の圧力が低く
抑えられ、これによって十分な駆動力の伝達が前,後輪
間で行われなくなる等の問題があった。
However, in the conventional drive coupling device as described above, since the pressure oil is fed to each of the separate pump chambers by a single path, the maximum feed amount of the pressure oil is small, and the large amount of pressure oil is generated. When it becomes necessary, the flow rate of the pressure oil tends to be less than the required flow rate, which may cause cavitation in the pressure oil. When cavitation occurs in the pressure oil in this way, when the pressure oil is pressurized in the pump chamber, the bubbles in the pressure oil disappear, so the pressure in the pump chamber is kept low, and a sufficient driving force is thereby obtained. However, there was a problem that the transmission was not performed between the front and rear wheels.

本考案は斯かる事情に鑑みなされたものであり、ポンプ
室への圧油送給経路を複数設けることによって圧油の送
給流量を多くしてキャビテーションの発生を抑止し、加
減速時においても十分な駆動力の伝達を前,後輪間で行
うことが可能である4輪駆動用駆動連結装置を提供する
ことを目的とする。
The present invention has been made in view of such circumstances, and by providing a plurality of pressure oil supply paths to the pump chamber, the supply flow rate of the pressure oil is increased to suppress the occurrence of cavitation, and even during acceleration / deceleration. An object of the present invention is to provide a four-wheel drive drive coupling device capable of transmitting a sufficient driving force between the front and rear wheels.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案に係る4輪駆動用駆動連結装置は、表裏に貫通す
る絞り孔を夫々に有する板状のベーン複数枚を半径方向
への進退自在に備え、前,後輪の一方と連動回転する円
筒形のロータと、他方と連動回転する、偏肉環状をなす
カムリングの両側にサイドプレートを夫々装着してなる
ケーシングとを備え、前記ロータの外周面とカムリング
の内周面と両側のサイドプレートの側面とにより囲繞さ
れる複数のポンプ室を形成するように前記ロータをケー
シングに収納して、ベーンポンプを構成し、該ポンプ室
へ圧油を送り込み、前記絞り孔の通流抵抗に抗して発生
する油圧により、前,後輪を連結する4輪駆動用駆動連
結装置において、前記一方のサイドプレートに、前記複
数のポンプ室と貯油部とを各別に連通する複数の吸込油
路を設け、他方のサイドプレートに、前記複数のポンプ
室と貯油部とを各別に連通する複数の吐出油路と、各吐
出油路の途中に分流すると共に、前記貯油部に連通する
複数の連通油路とを設け、前記複数の吸込油路,前記複
数の連通油路毎に前記貯油部から前記ポンプ室への流入
のみを許容する吸込チェック弁を配設し、前記複数の吐
出油路毎に前記ポンプ室から前記貯油部への流出のみを
許容する吐出チェック弁を配設したことを特徴とする。
A drive connecting device for four-wheel drive according to the present invention comprises a plurality of plate-shaped vanes each having a throttle hole penetrating to the front and back so as to be able to advance and retreat in the radial direction, and a cylinder that rotates in conjunction with one of the front and rear wheels. -Shaped rotor and a casing that rotates in conjunction with the other and has side plates mounted on both sides of a cam ring having an uneven thickness annular shape, respectively, the outer peripheral surface of the rotor, the inner peripheral surface of the cam ring, and the side plates on both sides. The rotor is housed in a casing so as to form a plurality of pump chambers surrounded by the side surface, and a vane pump is formed, pressure oil is sent to the pump chambers, and it is generated against the flow resistance of the throttle hole. In the four-wheel drive drive connection device for connecting the front and rear wheels by the hydraulic pressure, the one side plate is provided with a plurality of suction oil passages that respectively communicate the plurality of pump chambers with the oil storage portion, and the other is provided. of The id plate is provided with a plurality of discharge oil passages that individually communicate the plurality of pump chambers and the oil storage portion, and a plurality of communication oil passages that divide the discharge oil passages in the middle and communicate with the oil storage portion. A suction check valve that allows only the inflow from the oil reservoir to the pump chamber is provided for each of the plurality of suction oil passages and each of the plurality of communication oil passages, and the pump chamber is provided for each of the plurality of discharge oil passages. A discharge check valve is provided which allows only the outflow to the oil reservoir.

〔作用〕[Action]

本考案にあっては片側のサイドプレートにポンプ室への
圧油の吸込油路を、また他側のサイドプレートに一部の
油路を共有する吐出油路,連通油路を設け、ポンプ室へ
は前記吸込油路及び連通油路を通じて圧油を吸込めるよ
うにしたから圧油の供給量に十分な余裕を持たせること
が可能となり、供給圧油の不足に起因するキャビテーシ
ョンの発生等の不都合を防止し得、また複数の吸込油
路,吐出油路,連通油路夫々に個別にチェック弁を設け
て、貯油部と連通せしめることとしたからチェック弁自
体の容量が小さくて済み,高い応答性を得ることが可能
となる。
According to the present invention, one side plate is provided with a suction oil passage for pressure oil to the pump chamber, and the other side plate is provided with a discharge oil passage and a communication oil passage that share a part of the oil passage. Since the pressure oil can be sucked in through the suction oil passage and the communication oil passage, it becomes possible to provide a sufficient margin for the pressure oil supply amount, and cavitation caused by the shortage of the supplied pressure oil, etc. It is possible to prevent inconvenience, and a separate check valve is provided for each of the plurality of suction oil passages, discharge oil passages, and communication oil passages so that they can communicate with the oil reservoir, so the capacity of the check valve itself can be small and high. Responsiveness can be obtained.

〔実施例〕〔Example〕

以下本考案をその実施例を示す図面に基づいて詳述す
る。第1図は本考案に係る4輪駆動用駆動連結装置(以
下本案装置という)の縦断面図、第2図は第1図のII-I
I線による横断面図である。
Hereinafter, the present invention will be described in detail with reference to the drawings showing an embodiment thereof. FIG. 1 is a longitudinal sectional view of a drive connecting device for four-wheel drive (hereinafter referred to as the device of the present invention) according to the present invention, and FIG. 2 is II-I of FIG.
It is a cross-sectional view taken along the line I.

図において1は、前,後輪の一方と連動回転する入力軸
であり、また2は、他方と連動回転する出力軸である。
本案装置は、この入力軸1と出力軸2との間に介装され
たベーンポンプ3の発生圧力により、両軸の回転速度
差、即ち、前,後輪間に生じる回転速度差に応じて、入
力軸1から出力軸2へ駆動力の伝達を行うものである。
FRベースの4輪駆動車においては、入力軸1が、主たる
駆動輪である後輪又は駆動源であるエンジンに連なり、
出力軸2が前輪に連なることは言うまでもなく、後輪か
ら前輪への駆動力の伝達が、本案装置を介して行われる
ようになしてある。
In the figure, 1 is an input shaft that rotates in conjunction with one of the front and rear wheels, and 2 is an output shaft that rotates in conjunction with the other.
In the proposed device, due to the pressure generated by the vane pump 3 interposed between the input shaft 1 and the output shaft 2, the rotational speed difference between the two shafts, that is, the rotational speed difference generated between the front and rear wheels, The driving force is transmitted from the input shaft 1 to the output shaft 2.
In a FR-based four-wheel drive vehicle, the input shaft 1 is connected to the rear wheel, which is the main drive wheel, or the engine, which is the drive source,
It goes without saying that the output shaft 2 is connected to the front wheels, and the driving force is transmitted from the rear wheels to the front wheels via the device of the present invention.

ベーンポンプ3は、短寸の円筒体に、半径方向に所定の
深さを有する複数本の収納溝30b,30b…を周方向に略等
配をなして形成し、これらの収納溝30b,30b…の夫々
に、これらの底部との間に介装された各一対のコイルば
ね30c,30c…にて半径方向外向きに付勢した状態にて、
矩形平板状をなす各別のベーン30a,30a…を摺動自在に
内挿せしめてなるロータ30と、偏肉筒状をなすカムリン
グ31の両側に、サイドプレート32,33を後述する如く固
着してなるケーシングとを主たる構成要素とする。
In the vane pump 3, a plurality of storage grooves 30b, 30b ... Having a predetermined depth in the radial direction are formed in a short cylindrical body in a substantially equal arrangement in the circumferential direction, and the storage grooves 30b, 30b. In the state of being urged outward in the radial direction by the pair of coil springs 30c, 30c ...
Side plates 32 and 33 are fixed to both sides of a rotor 30 having slidably inserted vanes 30a, 30a ... Is a main component.

カムリング31は、ロータ30の外径よりもやや大なる直径
の円に、3個所の凹部を周方向に等配をなして設け、第
2図に示す如き軸断面形状をなす空洞部31aを、その軸
心位置に形成してあり、ロータ30と略等しい軸長寸法を
有する部材であり、また、サイドプレート32,33は、そ
の軸心位置に後述するロータ軸36の支承孔を共に有し、
前者は薄肉の、後者は厚肉の中抜き円板状をなす部材で
ある。これらのサイドプレート32,33は、カムリング31
の両側を挾持する態様にて、これと同軸的に位置決めさ
れて、サイドプレート32のカムリング31と逆側にて、こ
れらと同軸的に位置決めされ、薄肉円板の一側に短寸円
筒を連設してなる軸封部材34と共に、軸封部材34,サイ
ドプレート32,カムリング31をこの順に貫通し、サイド
プレート33に形成された図示しない各別のねじ孔に螺合
する複数の固定ボルト35,35…により一体的に結合さ
れ、ベーンポンプ3のケーシングを構成している。前記
出力軸2は、これの端部に形成された円板形フランジ20
を、複数の固定ボルト21,21…によりサイドプレート33
のカムリング31と逆側の側面に固定せしめて、前記ケー
シングに同軸的に固着されており、該ケーシングは、出
力軸2の回転、即ち前輪の回転に応じてその軸心回りに
回転するようになしてある。
The cam ring 31 is provided in a circle having a diameter slightly larger than the outer diameter of the rotor 30 by equidistantly arranging three concave portions in the circumferential direction, and forming a hollow portion 31a having an axial sectional shape as shown in FIG. It is a member formed at the axial center position and having an axial length dimension substantially equal to that of the rotor 30, and the side plates 32, 33 both have bearing holes for the rotor shaft 36 described later at the axial center positions. ,
The former is a thin-walled member, and the latter is a thick-walled hollow disk-shaped member. These side plates 32, 33 are attached to the cam ring 31.
Is positioned coaxially with both sides of the side plate 32 on the side opposite to the cam ring 31 of the side plate 32 and coaxially with them, and a short cylinder is connected to one side of the thin disk. Along with the shaft sealing member 34 that is installed, the shaft sealing member 34, the side plate 32, the cam ring 31 are penetrated in this order, and a plurality of fixing bolts 35 that are screwed into respective screw holes (not shown) formed in the side plate 33. , 35 ... Are integrally connected to form a casing of the vane pump 3. The output shaft 2 has a disc-shaped flange 20 formed at the end thereof.
Side plate 33 with a plurality of fixing bolts 21, 21 ...
Is fixed to the casing on the side opposite to the cam ring 31 and is coaxially fixed to the casing. The casing rotates around its axis in response to the rotation of the output shaft 2, that is, the rotation of the front wheel. Yes.

第1図に示す如く、前記ケーシングの外側には、サイド
プレート33の外周及び軸封部材34の円筒部外周にその一
部を外嵌せしめて、薄肉筒状をなす囲繞部材38が装着し
てあり、ベーンポンプ3の作動油は、該囲繞部材38と、
ケーシングの外周面との間に環状をなして形成される貯
油部たる油タンクT内に封入してある。
As shown in FIG. 1, on the outside of the casing, a part of the outer periphery of the side plate 33 and the outer periphery of the cylindrical portion of the shaft sealing member 34 are externally fitted, and a surrounding wall member 38 having a thin tubular shape is mounted. Yes, the operating oil of the vane pump 3 is the same as the surrounding member 38,
It is enclosed in an oil tank T which is an oil storage portion formed in an annular shape with the outer peripheral surface of the casing.

前記ロータ30は、カムリング31の空洞部31aと、サイド
プレート32,33とにて囲繞された空間に内挿してあり、
サイドプレート32及び同33の前記支承孔に夫々内嵌固定
された針状ころ軸受32a及び玉軸受33aにて支承されたロ
ータ軸36に、両支承位置間にて外嵌させ、これとスプラ
イン結合させてある。ロータ軸36は、軸封部材34の円筒
部内周に装着されたオイルシール34a及びXリング34bに
より外周を封止させ、サイドプレート32側に適長突出さ
せてあり、この突出端部に同心的に形成した連結フラン
ジ37を、複数の固定ボルト11,11…により、前記入力軸
1の端部に形成された円板形フランジ10に固着せしめ、
入力軸1と同軸的に連結されている。而して、ロータ30
は、ロータ軸36を介して入力軸1に連結され、入力軸1
の回転、即ち、後輪の回転に連動してその軸心回りに回
転する。
The rotor 30 is inserted in the space surrounded by the cavity 31a of the cam ring 31 and the side plates 32, 33,
A rotor shaft 36 supported by needle roller bearings 32a and ball bearings 33a, which are fixedly fitted in the supporting holes of the side plates 32 and 33, respectively, are externally fitted between the two bearing positions, and are spline-coupled with the bearing shafts. I am allowed. The outer circumference of the rotor shaft 36 is sealed by an oil seal 34a and an X ring 34b mounted on the inner circumference of the cylindrical portion of the shaft sealing member 34, and the rotor shaft 36 is projected to the side plate 32 side by an appropriate length. The connecting flange 37 formed in the above is fixed to the disc-shaped flange 10 formed at the end of the input shaft 1 by a plurality of fixing bolts 11, 11 ,.
It is coaxially connected to the input shaft 1. Thus, the rotor 30
Is connected to the input shaft 1 through the rotor shaft 36,
The rotation of the rear wheel, that is, the rotation of the rear wheel, rotates about its axis.

このようにケーシングに内挿されたロータ30の外周面
と、カムリング31の前記空洞部31aの内周面との間に
は、3個所の凹部の形成位置に、前記両面と、サイドプ
レート32,33の側面とにて囲繞され、第2図に示す如
く、変形三日月形の軸断面形状をなす3つのポンプ室4
0,40,40が形成され、各ポンプ室40には、三日月形の両
端部に夫々位置して、サイドプレート32側に開口する一
対の吸込口40a,40a(第2図では説明の便宜上相対回転
方向の上流側に位置する吸込口を40a1、下流側に位置す
る吸込口を40a2として示してある。以下同じ)と、サイ
ドプレート33側に開口する一対の吐出口40b,40b(第2
図では相対回転方向の上流側に位置する吐出口を40b1
下流側に位置する吐出口を40b2として示してある。以下
同じ)とが夫々形成してある。3つのポンプ室40,40,40
の各吸込口40a,40a…は、これらの形成位置に夫々対応
させてサイドプレート32に固設され、ポンプ室40への流
入のみを許容する各別の第1吸込チェック弁41,41…、
軸封部材34のサイドプレート32との密着面に、各チェッ
ク弁41,41…の入口部を連通させる態様にて形成された
環状油室42、及び軸封部材34の円板部を厚さ方向に貫通
して形成された吸込油路43により、油タンクTに連通さ
せてあり、一方、吐出口40b,40b…は、これらの形成位
置に一端を開口させ、半径方向内側に折り返す態様に
て、サイドプレート33に形成された各別の吐出油路44,4
4…、及び該油路44,44…の中途に夫々固設され、ポンプ
室40からの流出のみを許容する各別の吐出チェック弁4
5,45…を介して、ロータ30の側面に形成された環状溝46
に連通させてある。この環状溝46は、第2図に示す如
く、前記収納溝30b,30b…の底部を相互に連通する態様
をなして形成されている。また、前記吐出口40b,40b…
の出側の吐出油路44,44…には、入口部を油タンクTに
連通させてサイドプレート33に固設された各別の第2吸
込チェック弁49,49…の出口部が連通され、該第2吸込
チェック弁49,49…はベーンポンプ3の吸込時にのみ、
油タンクTの圧油を吐出油路44,44…を経て吐出口40b,4
0b…よりポンプ室40へ送給する。また、サイドプレート
32の支承孔とロータ軸36との間の環状空間は、支承部材
34の円筒部を内外に貫通する連通孔47によって、また、
サイドプレート33の支承孔とロータ軸36との間の環状空
間は、サイドプレート33を半径方向に貫通する連通孔48
によって、夫々、油タンクTに連通させてあり、油タン
クT内の封入油が、針状ころ軸受32a及び玉軸受33aの潤
滑のために導入されている。
As described above, between the outer peripheral surface of the rotor 30 inserted in the casing and the inner peripheral surface of the hollow portion 31a of the cam ring 31, the two surfaces, the side plates 32, The three pump chambers 4 which are surrounded by the side surface of 33 and have a modified crescent-shaped axial cross-sectional shape as shown in FIG.
0, 40, 40 are formed, and in each pump chamber 40, a pair of suction ports 40a, 40a (which are located at both ends of the crescent moon and open to the side plate 32 side) are shown in FIG. The suction port located on the upstream side in the rotation direction is shown as 40a 1 , and the suction port located on the downstream side is shown as 40a 2. The same applies hereinafter), and a pair of discharge ports 40b, 40b (first at the side plate 33 side). Two
In the figure, the discharge port located on the upstream side in the relative rotation direction is 40b 1 ,
The outlet located on the downstream side is shown as 40b 2 . The same shall apply hereinafter) are formed respectively. Three pump rooms 40,40,40
The respective suction ports 40a, 40a ... Of the respective first suction check valves 41, 41, which are fixed to the side plate 32 so as to correspond to their forming positions and allow only the inflow into the pump chamber 40,
An annular oil chamber 42 formed in such a manner that the inlet portions of the check valves 41, 41 ... Are communicated with the contact surface of the shaft sealing member 34 with the side plate 32, and the disc portion of the shaft sealing member 34 has a thickness. Are connected to the oil tank T by a suction oil passage 43 formed so as to penetrate in the direction, while the discharge ports 40b, 40b ... Have one end opened at these formation positions and are folded inward in the radial direction. The separate oil discharge passages 44, 4 formed on the side plate 33.
4 and the respective discharge check valves 4 that are fixedly provided in the middle of the oil passages 44, 44 ... and allow only the outflow from the pump chamber 40.
An annular groove 46 formed on the side surface of the rotor 30 via 5,45.
It is in communication with. As shown in FIG. 2, the annular groove 46 is formed in such a manner that the bottom portions of the storage grooves 30b, 30b ... Are communicated with each other. Further, the discharge ports 40b, 40b ...
The outlets of the second suction check valves 49, 49, which are fixed to the side plate 33 and have their inlets communicated with the oil tank T, are communicated with the discharge oil passages 44, 44. , The second suction check valves 49, 49 ... Only when the vane pump 3 is sucking,
The pressure oil in the oil tank T is discharged through the discharge oil passages 44, 44 ...
It is sent to the pump chamber 40 from 0b. Also the side plate
The annular space between the bearing holes of 32 and the rotor shaft 36 is a bearing member.
By the communication hole 47 that penetrates the cylindrical portion of 34 in and out,
An annular space between the bearing hole of the side plate 33 and the rotor shaft 36 is provided with a communication hole 48 that penetrates the side plate 33 in the radial direction.
The oil filled in the oil tank T is introduced to lubricate the needle roller bearing 32a and the ball bearing 33a.

而して、吐出口40bから送出される圧油は、各別の吐出
油路44及び前記環状溝46を介して、収納溝30b,30b…の
底部に導入され、前記コイルばね30c,30c…の付勢力と
の相乗作用により、ベーン30a,30a…を半径方向外向き
に押圧すべく作用し、ロータ30の両側面と、サイドプレ
ート32,33の側面との間のわずかな間隙を通過して、前
記支承孔内に漏れ出し、連通孔47,48を経て油タンクT
に還流する。
Thus, the pressure oil delivered from the discharge port 40b is introduced to the bottom of the storage grooves 30b, 30b ... Through the separate discharge oil passages 44 and the annular groove 46, and the coil springs 30c, 30c ... Synergistically with the urging force of the blades, the vanes 30a, 30a ... are pressed outward in the radial direction, passing through a slight gap between the side surfaces of the rotor 30 and the side surfaces of the side plates 32, 33. And leaks into the bearing hole, passes through the communication holes 47 and 48, and then reaches the oil tank T.
Reflux to.

前記各ベーン30a,30a…の夫々には、第1図に示す如
く、これらの先端近傍の幅方向中央に位置して、絞り孔
5が形成してある。この絞り孔5は、ベーン30aを厚さ
方向に貫通する態様にて極小径の貫通孔50を形成し、こ
れの一側に、これと略同心をなす円錐形の面取り部51を
連設してなり、前記絞り孔5を通流する後述する如き2
方向の流れに対し、相異なる通流抵抗を与える形状を具
備している。絞り孔5においては、徐々に縮径する面取
り部51を経て貫通孔50に流入し、他側の開口部から流出
する流れと、極小径の貫通孔50に直接流入し、徐々に拡
径する面取り部51を経て流出する流れとがある。前者に
おいては、流入損失がわずかであることから、その通流
抵抗は、実質的に貫通孔50における摩擦損失と流出損失
との加算値となるのに対し、後者においては、この加算
値に、極細径の貫通孔50への流入に伴う損失と面取り部
51における拡流に伴う損失とを加算したものとなり、前
者の通流抵抗は、後者のそれよりも大幅に小さい。
As shown in FIG. 1, each of the vanes 30a, 30a ... Has a throttle hole 5 formed at the center in the width direction near the tips thereof. The throttle hole 5 forms a through hole 50 having an extremely small diameter so as to penetrate the vane 30a in the thickness direction, and a conical chamfered portion 51 which is substantially concentric with the through hole 50 is continuously provided on one side of the through hole 50. 2 which flows through the throttle hole 5 as described later.
It has a shape that gives different flow resistance to the directional flow. In the throttle hole 5, the flow gradually flows into the through hole 50 through the chamfered portion 51 and gradually flows out from the opening on the other side, and then directly flows into the extremely small through hole 50 to gradually expand the diameter. There is a flow that flows out through the chamfered portion 51. In the former case, since the inflow loss is small, the flow resistance is substantially the addition value of the friction loss in the through hole 50 and the outflow loss, whereas in the latter case, the addition value is Loss and chamfer due to inflow into extra-fine through hole 50
The flow resistance of the former is much smaller than that of the latter, since it is the sum of the loss due to the diversion at 51.

以上の如く構成された本案装置の動作につき次に説明す
る。入力軸1と出力軸2との間に回転速度差が生じてい
ない場合、前者と連動回転するロータ30と後者と連動回
転するカムリング31との間の相対回転は生じず、各ポン
プ室40,40…内の油は、ロータ30及びカムリング31の回
転に伴って回転するのみであり、油圧の発生はなく、入
力軸1から出力軸2への駆動力の伝達は行われない。こ
れは、一定速度にて理想的な直進走行が行われている場
合に相当するが、実際の走行の際、このような状態が生
じることは稀であり、入力軸1と出力軸2との間には、
常時ある程度の回転速度差が生じており、特に、前,後
輪の一方が空転状態にある場合、又は加減速時等、前,
後輪の一方に大きい荷重が作用する場合等には大きい回
転速度差が生じる。このように回転速度差が生じた場
合、ロータ30とカムリング31との間に第2図に矢印aで
示したように、相対回転が生じ、油タンクT内の油は、
吸込油路43及び第1吸込チェック弁41と、第2吸込チェ
ック弁49とを介して、前記相対回転方向上流側に開口す
る吸込口40a及び吐出口40bからポンプ室40内部に導入さ
れる。そして、この油は、互いに相隣する2枚のベーン
30a,30a間に、これらと、ロータ30の外周面、カムリン
グ31の内周面、及びサイドプレート32,33とにて囲繞さ
れて形成される空間内に封止され、ロータ30が前記相対
回転方向に回転せしめられてポンプ室40内の油が昇圧す
ると、ポンプ室40内の相対回転方向下流側に開口する吐
出口40b2から送出される。この時吐出油路44に連通して
いる第2吸込チェック弁49は、吐出油圧によって閉止
し、送出された油は、吐出油路44,吐出チェック弁45及
び環状溝46を経て、収納溝30b,30b…の底部に導入さ
れ、これらに内挿されたベーン30a,30a…をカムリング3
1の内周面に押付けるべく作用する。更にロータ30が相
対回転させられると、ベーン30aはカムリング31内周面
によって押下げられ、収納溝30b内の油はロータ30と、
サイドプレート32又は33の側壁との間の間隙から低圧状
態に維持された前記支承孔内に漏れ出し、針状ころ軸受
32a又は玉軸受33aの潤滑作用をなし、連通孔47又は48を
通流して油タンクTに還流する。
The operation of the device of the present invention configured as described above will be described below. When there is no difference in rotational speed between the input shaft 1 and the output shaft 2, relative rotation does not occur between the rotor 30 interlockingly rotating with the former and the cam ring 31 interlockingly rotating with the latter, and each pump chamber 40, The oil in 40 only rotates with the rotation of the rotor 30 and the cam ring 31, no hydraulic pressure is generated, and the driving force is not transmitted from the input shaft 1 to the output shaft 2. This corresponds to the case where ideal straight running is performed at a constant speed, but such a state rarely occurs during actual running, and the input shaft 1 and the output shaft 2 are In between
There is always some difference in rotational speed, especially when one of the front and rear wheels is idling, or during acceleration or deceleration.
When a large load acts on one of the rear wheels, a large rotational speed difference occurs. When the rotational speed difference is generated in this manner, relative rotation occurs between the rotor 30 and the cam ring 31 as indicated by an arrow a in FIG. 2, and the oil in the oil tank T is
It is introduced into the pump chamber 40 through the suction oil passage 43, the first suction check valve 41, and the second suction check valve 49 from the suction port 40a and the discharge port 40b which are open on the upstream side in the relative rotation direction. And this oil is made up of two vanes next to each other.
The rotor 30 is sealed in a space surrounded by 30a and 30a, the outer peripheral surface of the rotor 30, the inner peripheral surface of the cam ring 31, and the side plates 32 and 33, and the rotor 30 is relatively rotated. When the pressure of the oil in the pump chamber 40 is increased by being rotated in the direction, the oil is discharged from the discharge port 40b 2 opening in the pump chamber 40 on the downstream side in the relative rotation direction. At this time, the second suction check valve 49 communicating with the discharge oil passage 44 is closed by the discharge hydraulic pressure, and the discharged oil passes through the discharge oil passage 44, the discharge check valve 45 and the annular groove 46, and then the storage groove 30b. Cam rings 3 are installed on the bottoms of the vanes 30a, 30b, and inserted into the vanes 30a, 30a.
It works to press against the inner surface of 1. When the rotor 30 is further rotated relatively, the vane 30a is pushed down by the inner peripheral surface of the cam ring 31, and the oil in the storage groove 30b is transferred to the rotor 30.
The needle roller bearing leaks from the gap between the side plate 32 or the side wall of the side plate 33 into the bearing hole maintained at a low pressure.
32a or the ball bearing 33a serves as a lubricant, and flows through the communication hole 47 or 48 to return to the oil tank T.

さて、前記の如く、ポンプ室40内に導入されて相隣する
2枚のベーン30a,30a間に形成される空間に封止された
油は、前記相対回転に伴って回転せしめられて昇圧し、
一部は、相対回転方向上流側の一方のベーン30aに形成
された絞り孔5を通流して、前記空間に相隣し、これよ
りも低圧状態にある同様の空間内に漏れ出し、残部は、
他方のベーン30aの絞り孔5から該空間に漏れ出した油
と共に、吐出油路44,吐出チェック弁45及び環状溝46を
経て、ロータ30とサイドプレート32,33間の間隙を通過
して低圧部に漏れ出す。従って、ポンプ室40内部の発生
油圧の高低は、絞り孔5における通流抵抗及び前記間隙
における通流抵抗の和の大小に対応する。一方、このよ
うにポンプ室40内に油圧が発生すると、この油圧に応じ
た摩擦力が、ロータ30の外周面とカムリング31の内周面
との間に前記相対回転を抑止する方向に作用し、ロータ
30とケーシングとの間、即ち、入力軸1と出力軸2との
間にトルク伝達がなされ、4輪駆動状態が実現される。
従って、入力軸1から出力軸2への伝達トルクの大小
は、ポンプ室40内の油圧の高低に対応し、前記絞り孔5
及び間隙における通流抵抗の和の大小に対応する。
As described above, the oil introduced into the pump chamber 40 and sealed in the space formed between the two adjacent vanes 30a, 30a is rotated by the relative rotation and the pressure is increased. ,
A part of the gas flows through the throttle hole 5 formed in the one vane 30a on the upstream side in the relative rotation direction, leaks into the same space adjacent to the above space and in a lower pressure state than this, and the rest is ,
Along with the oil leaking from the throttle hole 5 of the other vane 30a into the space, it passes through the discharge oil passage 44, the discharge check valve 45, and the annular groove 46, passes through the gap between the rotor 30 and the side plates 32, 33, and is low pressure. Leaks to the department. Therefore, the level of the generated hydraulic pressure inside the pump chamber 40 corresponds to the sum of the flow resistance in the throttle hole 5 and the flow resistance in the gap. On the other hand, when the hydraulic pressure is generated in the pump chamber 40 in this way, a frictional force corresponding to the hydraulic pressure acts between the outer peripheral surface of the rotor 30 and the inner peripheral surface of the cam ring 31 in a direction of suppressing the relative rotation. , Rotor
Torque is transmitted between 30 and the casing, that is, between the input shaft 1 and the output shaft 2, and the four-wheel drive state is realized.
Therefore, the magnitude of the transmission torque from the input shaft 1 to the output shaft 2 corresponds to the level of the hydraulic pressure in the pump chamber 40, and the throttle hole 5
And the sum of the flow resistances in the gap.

なお、ケーシングに対するロータ30の相対回転の方向
は、入力軸1の回転速度と、出力軸2の回転速度とのい
ずれが大であるかにより定まり、入力軸1の回転速度が
大である場合、前記相対回転は、入力軸1及び出力軸2
の回転方向、即ち、ロータ30及びケーシングの回転方向
と同方向に生じ、出力軸2の回転速度が大である場合、
前記相対回転は、同じく逆方向に生じる。前者を正回転
とし、後者を逆回転とする場合、ベーン30a,30a…の装
着は、逆回転時において高圧となる側、即ち相対回転方
向下流側に面取り部51が位置するように行う。これは前
輪の回転速度が大となる旋回走行時に、前輪に伝達され
る駆動力を小さく抑え、また、通常走行時において前,
後輪に回転速度差が生じた場合に十分な伝達トルクが得
られるようにするためである。
The direction of relative rotation of the rotor 30 with respect to the casing is determined by which of the rotational speed of the input shaft 1 and the rotational speed of the output shaft 2 is higher. When the rotational speed of the input shaft 1 is high, The relative rotation is based on the input shaft 1 and the output shaft 2.
Occurs in the same direction as the rotation direction of the rotor 30 and the casing, and the rotation speed of the output shaft 2 is high,
The relative rotation likewise occurs in opposite directions. When the former is set to the normal rotation and the latter is set to the reverse rotation, the vanes 30a, 30a ... Are mounted so that the chamfered portion 51 is located on the high pressure side during the reverse rotation, that is, on the downstream side in the relative rotation direction. This suppresses the driving force transmitted to the front wheels to a low level during turning traveling in which the rotational speed of the front wheels is high, and in the normal traveling
This is so that sufficient transmission torque can be obtained when a difference in rotational speed occurs between the rear wheels.

本装置においてはサイドプレート32に第1吸込チェック
弁41,41…、サイドプレート33に第2吸込チェック弁49,
49…を夫々固設し、ベーンポンプ3の吸込時にはこれら
の弁を介して吸込口40a及び吐出口40bより圧油を吸い込
めるためポンプ室40内へ送給できる圧油の流量が多く、
前,後輪の回転速度差が大きくなる加減速時等の大流量
の圧油送給量が必要とされる場合において、不足なく圧
油が供給可能であり、前,後輪間に十分な駆動力の伝達
がなされる。
In this device, the side plate 32 has first suction check valves 41, 41 ..., and the side plate 33 has second suction check valves 49, 41.
49 are fixed respectively, and when the vane pump 3 is sucking, the pressure oil can be sucked into the pump chamber 40 through these valves so that a large amount of pressure oil can be sent to the pump chamber 40.
When a large flow rate of pressure oil is required, such as during acceleration / deceleration, where the difference in rotational speed between the front and rear wheels becomes large, pressure oil can be supplied without a shortage, and sufficient pressure oil can be supplied between the front and rear wheels. The driving force is transmitted.

また、ポンプ室40への吸込チェック弁を従来装置よりも
増設することにより、各吸込チェック弁の容量は従来の
ものよりも小さくすることが可能であり、各吸込チェッ
ク弁が小型化できる。また、これにより駆動連結装置の
小型化が可能である。
Further, by adding more suction check valves to the pump chamber 40 than in the conventional device, the capacity of each suction check valve can be made smaller than that of the conventional device, and each suction check valve can be miniaturized. This also allows the drive coupling to be miniaturized.

〔効果〕〔effect〕

以上の如く本考案装置にあっては片側のサイドプレート
にポンプ室への圧油の吸込油路を、また他側のサイドプ
レートに一部の油路を共有する吐出油路,連通油路を設
け、ポンプ室へは前記吸込油路及び連通油路を通じて圧
油を吸込めるようにしたから、圧油の供給量に十分な余
裕を持たせることが可能となり、供給圧油の不足に起因
するキャビテーションの発生等の不都合を防止し得る。
As described above, in the device of the present invention, one side plate is provided with a suction oil passage for pressure oil to the pump chamber, and the other side plate is provided with a discharge oil passage and a communicating oil passage sharing a part of the oil passage. Since the pressure oil can be sucked into the pump chamber through the suction oil passage and the communication oil passage, it is possible to provide a sufficient margin for the pressure oil supply amount, which is caused by the shortage of the pressure oil supply. Inconveniences such as cavitation can be prevented.

また複数の吸込油路,吐出油路,連通油路夫々に個別に
チェック弁を設けて、貯油部と連通せしめることとした
からチェック弁自体の容量が小さくて済み,高い応答性
を得ることが可能となる等本考案は優れた効果を奏す
る。
In addition, a check valve is provided for each of the plurality of suction oil passages, discharge oil passages, and communication oil passages so that the check valves can communicate with the oil storage portion, so the capacity of the check valve itself can be small and high responsiveness can be obtained. The present invention has an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本案装置の縦断面図、第2図は第1図のII-II
線による横断面図である。 3……ベーンポンプ、5……絞り孔、30……ロータ、30
a……ベーン、31……カムリング、32,33……サイドプレ
ート、41……第1吸込チェック弁、49……第2吸込チェ
ック弁、40……ポンプ室
FIG. 1 is a vertical sectional view of the device of the present invention, and FIG. 2 is II-II of FIG.
It is a cross-sectional view by a line. 3 ... Vane pump, 5 ... Throttle hole, 30 ... Rotor, 30
a …… Vane, 31 …… Cam ring, 32,33 …… Side plate, 41 …… First suction check valve, 49 …… Second suction check valve, 40 …… Pump chamber

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】表裏に貫通する絞り孔を夫々に有する板状
のベーン複数枚を半径方向への進退自在に備え、前,後
輪の一方と連動回転する円筒形のロータと、他方と連動
回転する、偏肉環状をなすカムリングの両側にサイドプ
レートを夫々装着してなるケーシングとを備え、前記ロ
ータの外周面とカムリングの内周面と両側のサイドプレ
ートの側面とにより囲繞される複数のポンプ室を形成す
るように前記ロータをケーシングに収納して、ベーンポ
ンプを構成し、該ポンプ室へ圧油を送り込み、前記絞り
孔の通流抵抗に抗して発生する油圧により、前,後輪を
連結する4輪駆動用駆動連結装置において、 前記一方のサイドプレートに、前記複数のポンプ室と貯
油部とを各別に連通する複数の吸込油路を設け、他方の
サイドプレートに、前記複数のポンプ室と貯油部とを各
別に連通する複数の吐出油路と、各吐出油路の途中に分
流すると共に、前記貯油部に連通する複数の連通油路と
を設け、前記複数の吸込油路,前記複数の連通油路毎に
前記貯油部から前記ポンプ室への流入のみを許容する吸
込チェック弁を配設し、前記複数の吐出油路毎に前記ポ
ンプ室から前記貯油部への流出のみを許容する吐出チェ
ック弁を配設したことを特徴とする4輪駆動用駆動連結
装置。
1. A cylindrical rotor, which is provided with a plurality of plate-shaped vanes each having a throttle hole penetrating to the front and back sides so as to be able to advance and retreat in the radial direction, and interlocks with the other of the front and rear wheels. And a casing formed by mounting side plates on both sides of a rotating cam ring having an uneven thickness ring, respectively, and a plurality of casings surrounded by an outer peripheral surface of the rotor, an inner peripheral surface of the cam ring and side surfaces of both side plates. The rotor is housed in a casing so as to form a pump chamber to form a vane pump, pressure oil is sent to the pump chamber, and the front and rear wheels are driven by the hydraulic pressure generated against the flow resistance of the throttle hole. In the four-wheel drive drive connection device for connecting the plurality of suction oil passages, the one side plate is provided with a plurality of suction oil passages that respectively communicate the plurality of pump chambers and the oil storage portion, and the other side plate is provided with the plurality of suction oil passages. A plurality of discharge oil passages that respectively communicate the pump chamber and the oil storage portion, and a plurality of communication oil passages that divide the discharge oil passage in the middle and communicate with the oil storage portion, and the plurality of suction oil passages are provided. A suction check valve that allows only an inflow from the oil reservoir to the pump chamber for each of the plurality of communication oil passages, and an outflow from the pump chamber to the oil reservoir for each of the plurality of discharge oil passages. A drive coupling device for four-wheel drive, which is provided with a discharge check valve that allows only the above.
JP1988129374U 1988-09-30 1988-09-30 Drive coupling device for four-wheel drive Expired - Lifetime JPH0721934Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988129374U JPH0721934Y2 (en) 1988-09-30 1988-09-30 Drive coupling device for four-wheel drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988129374U JPH0721934Y2 (en) 1988-09-30 1988-09-30 Drive coupling device for four-wheel drive

Publications (2)

Publication Number Publication Date
JPH0250525U JPH0250525U (en) 1990-04-09
JPH0721934Y2 true JPH0721934Y2 (en) 1995-05-17

Family

ID=31383594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988129374U Expired - Lifetime JPH0721934Y2 (en) 1988-09-30 1988-09-30 Drive coupling device for four-wheel drive

Country Status (1)

Country Link
JP (1) JPH0721934Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663546B2 (en) * 1986-05-28 1994-08-22 三菱自動車工業株式会社 Drive coupling device

Also Published As

Publication number Publication date
JPH0250525U (en) 1990-04-09

Similar Documents

Publication Publication Date Title
JPH0530485U (en) Vane pump
US6017202A (en) Bi-directional gerotor-type fluid pump
JPS5844874B2 (en) hydraulic power transmission device
JPH0629628B2 (en) Drive coupling device
US4347047A (en) Hydraulic pump for power steering
US5074825A (en) Hydraulic transmission coupling apparatus
JP3676583B2 (en) Power transmission device for four-wheel drive vehicle
US4347048A (en) Hydraulic pump for power steering
JPH0721934Y2 (en) Drive coupling device for four-wheel drive
US3600108A (en) Rotary pump
JPH04237675A (en) Power steering system
JPH08159237A (en) Rotary swash plate type axial piston pump and four-wheel drive vehicle using this pump
JP2545575B2 (en) Drive coupling device
JPH085389Y2 (en) Drive coupling device
JPH02138524A (en) Driving connection device for four-wheel drive
US2910052A (en) Hydraulically operated transmission
JP2565705Y2 (en) Driving force transmission device for four-wheel drive vehicles
JP2002301943A (en) Power transmission system for four-wheel drive vehicle
JPH0562105B2 (en)
JPH0638185Y2 (en) Drive coupling device for four-wheel drive
JPH0618823Y2 (en) Drive coupling device for four-wheel drive
JPH0740704Y2 (en) Vane pump
JPH0629543Y2 (en) Drive coupling device for four-wheel drive
JPS6016793Y2 (en) pump equipment
JPH02120521A (en) Driving coupling device for four-wheel drive