JPS6388313A - Dynamic pressure bearing - Google Patents

Dynamic pressure bearing

Info

Publication number
JPS6388313A
JPS6388313A JP23227286A JP23227286A JPS6388313A JP S6388313 A JPS6388313 A JP S6388313A JP 23227286 A JP23227286 A JP 23227286A JP 23227286 A JP23227286 A JP 23227286A JP S6388313 A JPS6388313 A JP S6388313A
Authority
JP
Japan
Prior art keywords
bearing
hard film
make
grooves
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23227286A
Other languages
Japanese (ja)
Inventor
Hiroaki Yamamura
山村 裕章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23227286A priority Critical patent/JPS6388313A/en
Publication of JPS6388313A publication Critical patent/JPS6388313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the abrasion resistance of the bearing in the caption by forming a rugged pattern made of a hard film, for generating lifting force, on at least any one of surfaces of a rotary shaft or the bearing. CONSTITUTION:Grooves 3 are formed after stretching the coating of a hard film 2 on the surface of a disc-type base 1 so as to obtain a spiral rugged pattern. The surface 1a of the base 1 is pre-finished to be flat and smooth so as to make the surface 2a of the hard film 2 smooth as well. Accordingly, it is possible to make the sliding resistance small at the time of starting and stopping of the rotation of a shaft. In addition, the rugged pattern forming surface is made of the hard material 2, so as to make the abrasion resistance high and restrict the depth change of the grooves 3 to the slight extent despite a long-term service. Therefore, it is possible to improve the service life of a dynamic pressure bearing.

Description

【発明の詳細な説明】 〔産業上の利用分身〕 本発明は精密機器などの軸受に使用される動圧軸受に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a hydrodynamic bearing used in bearings for precision instruments and the like.

〔従来の技術〕[Conventional technology]

ビデオテープレコーダやフロッピィディスクドライブな
どの精密機器において、回転軸の軸受部分には、回転精
度が高く騒音や振動の少ない動圧軸受を用いていた。こ
の動圧軸受は、第3図に示すように、軸の周囲に形成し
たラジアル軸受Rと軸の端面の軸受部に形成したスラス
ト軸受Sの2種類があるが、いずれもステンレスよりな
る軸または軸受に、エツチング法等によφ、深さ数μm
〜数十μm程度の溝を穿設して、所定の凹凸パターンを
形成したもので軸が回転すると凹凸バクーンにより揚力
が発生し、軸と軸受が非接触状恵で回転するようになっ
ているものであった。
In precision equipment such as video tape recorders and floppy disk drives, hydrodynamic bearings with high rotational accuracy and low noise and vibration have been used for the bearings of rotating shafts. As shown in Fig. 3, there are two types of hydrodynamic bearings: a radial bearing R formed around the shaft and a thrust bearing S formed on the end face of the shaft. The bearing has a diameter of several μm in depth by etching, etc.
- Grooves of approximately several tens of micrometers are drilled to form a predetermined uneven pattern. When the shaft rotates, the uneven backing generates lift, allowing the shaft and bearing to rotate without contact. It was something.

〔従来技術の問題点〕[Problems with conventional technology]

ところが、このような従来の動圧軸受は、軸、軸受がい
ずれもステンレスよりなっていたため摩耗が激しかった
。軸の回転中は非接触となるため摩耗はないが、回転の
開始時および停止時には軸と軸受が直接摺動するため何
度も使用しているうちに摩耗してしまい、特に凹凸バク
ーンを形成した面が摩耗すると溝が浅くなるため、動圧
軸受としての作用がなくなってしまうという不都合がお
った。
However, in such conventional hydrodynamic bearings, both the shaft and the bearing were made of stainless steel, which caused severe wear. While the shaft is rotating, there is no contact, so there is no wear, but since the shaft and bearings slide directly at the start and stop of rotation, they wear out over repeated use, forming especially uneven backbones. When this surface wears out, the grooves become shallower, resulting in the inconvenience that the bearing no longer functions as a hydrodynamic bearing.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記に鑑みて、本発明は回転軸または軸受の少なくとも
一方の表面に硬質膜を被着させ、揚力発生のための凹凸
パターンを形成して動圧軸受を構成したものである。
In view of the above, the present invention provides a hydrodynamic bearing by depositing a hard film on the surface of at least one of the rotating shaft or the bearing to form an uneven pattern for generating lift.

〔実施例〕〔Example〕

以下、本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a) (b)はスラスト軸受Sであり、円盤状
の基体lの表面に硬質膜2を被着させて溝3を形成して
、渦巻状の凹凸パターンとしである。基体1の表面1a
はあらかじめ平担でなめらかな面としであるため、硬質
膜2の表面2aもなめらかな面となり、軸の回転開始時
、停止時の摺動抵抗を小さくすることができる。また凹
凸パターンを形成した面が硬質物質よりなっているため
耐摩耗性が大きく、長期使用しても溝3の深さの変化が
小さい。
FIGS. 1(a) and 1(b) show a thrust bearing S, in which a hard film 2 is adhered to the surface of a disc-shaped base 1 to form grooves 3 to form a spiral pattern of protrusions and recesses. Surface 1a of base 1
Since the hard film 2 has a flat and smooth surface in advance, the surface 2a of the hard film 2 also becomes a smooth surface, and the sliding resistance at the time of starting and stopping rotation of the shaft can be reduced. Furthermore, since the surface on which the uneven pattern is formed is made of a hard material, it has high wear resistance, and the change in the depth of the grooves 3 is small even after long-term use.

次に他の実施例として、第2図(a) (blに示すラ
ジアル軸受Rは、基体10(回転軸)のなめらかな表面
10aに硬質膜20を被着して溝30を形成したもので
あり、第1図(a) (b)に示したスラスト軸受Sと
同様の効果を奏することができる。このラジアル軸受R
の場合硬質膜2の膜厚tの分だけ回転軸の半径が大きく
なるため、第2図(c)に示すように、あらかじめ基体
lOに膜厚【と同じ深さの凹部1θbを形成しておき、
該凹部lOb中に硬質膜20を被着させるようにしても
よい。
Next, as another example, the radial bearing R shown in FIG. This radial bearing R can achieve the same effect as the thrust bearing S shown in FIGS.
In this case, the radius of the rotation axis increases by the thickness t of the hard film 2, so as shown in Fig. 2(c), a recess 1θb with the same depth as the film thickness is formed in advance on the substrate lO. Ok,
A hard film 20 may be deposited in the recess lOb.

以下本発明に係る動圧軸受の製法を第1図(aJ(b)
に示したスラスト軸受Sを例にして説明する。
The manufacturing method of the hydrodynamic bearing according to the present invention is shown in Fig. 1 (aJ(b)) below.
This will be explained using the thrust bearing S shown in FIG.

まず、ステンレス、セラミックなどよりなる基体lを用
意し、表面!aを平担でなめらかな面とする。次にこの
表面la上の、溝8となる部分に、樹脂やフォトレジス
ト等によりマスクを付着させておき、全体に、SiC%
S i3.N4、Al2O3、ダイヤモンド、TiC,
TiNなどの硬質物質をスパッタリング法などで被着さ
せ硬質膜2を形成する。被着後、前記マスクを取り除け
ばマスク部分は硬質膜2が被着されていないため、溝3
となり、凹凸パターンが形成される。このとき、溝3の
深さは硬質膜2の膜厚tでスパッタリング時間を変える
ことにより、また溝3の形状はマスクの形状を変更する
ことで、それぞれ比較的容易に調整することができるた
め、回転軸の大きさ、回転数、荷重の大きさなどに応じ
て、最適の深さと形状を有した凹凸バクーンを形成する
ことができる。
First, prepare a base l made of stainless steel, ceramic, etc., and select the surface! Let a be a flat, smooth surface. Next, a mask is attached using resin, photoresist, etc. to the portions of this surface la that will become the grooves 8, and the entire surface is coated with SiC%
S i3. N4, Al2O3, diamond, TiC,
A hard film 2 is formed by depositing a hard material such as TiN by sputtering or the like. After deposition, if the mask is removed, the hard film 2 is not deposited on the masked portion, so the groove 3 is removed.
As a result, a concavo-convex pattern is formed. At this time, the depth of the groove 3 can be adjusted relatively easily by changing the sputtering time depending on the thickness t of the hard film 2, and the shape of the groove 3 can be adjusted relatively easily by changing the shape of the mask. It is possible to form a concavo-convex bag having an optimal depth and shape depending on the size of the rotating shaft, the number of rotations, the magnitude of the load, etc.

また、硬質膜2の表面2aは、回転開始、停止時の摩擦
を減らすために、表面粗さ0.8s以下のなめらかな面
としであるが、そのためには、基体lの表面1aiなめ
らかな面としておき、さらに必要に応じて硬質膜2形成
後、表面2af:@磨すれはよい。
In addition, the surface 2a of the hard film 2 is a smooth surface with a surface roughness of 0.8s or less in order to reduce friction when starting and stopping rotation. After forming the hard film 2 as necessary, the surface 2af: @ is polished.

次に、第1図に示したスラスト軸受Sを基体lをステン
レスで、硬質膜2をSiC%S i3N、、 、TiN
Next, the thrust bearing S shown in FIG.
.

A I 2.03でそれぞれ試作し、比較例として硬質
膜2を被着しないステンレスよりなる従来のものを用い
て、耐摩耗試験を行なった。溝3の深さは3μmとし、
潤滑油としてグリースを用いて、2000回転/分で回
転させ、普通より重い500gの荷重を加えることによ
り、強制的に摩耗を発生させ、回転時間と溝3の深さの
関係を調べた結果は第4図に示す通りであった。
Prototypes were made with A I 2.03, and a conventional one made of stainless steel without the hard film 2 was used as a comparative example, and a wear resistance test was conducted. The depth of groove 3 is 3 μm,
Using grease as a lubricant, we rotated at 2000 rpm and applied a load of 500g, which is heavier than normal, to forcibly cause wear.The results of investigating the relationship between rotation time and depth of groove 3 are as follows. It was as shown in Figure 4.

第4図より、従来の硬質膜2を被着しないスラスト軸受
は600時間程度で溝8の深さが18m以下に摩耗して
しまい800時間後には溝3がなくなってしまった。そ
れに対し、本発明実施例に係るスラスト軸受は、いずれ
も摩耗が少なく、特に硬質膜2としてSiCを用いたも
のは、1000時間後も、1.5μm程度しか摩耗して
おらず充分使用可能な状態であった。なお、この実験は
荷重を大きくして強制的に摩耗を発生させた時間圧縮試
験であるから、通常の使用をした場合は、もっと長時間
使用できることはいうまでもない。
From FIG. 4, it can be seen that in the conventional thrust bearing not coated with hard film 2, the groove 8 was worn to a depth of 18 m or less in about 600 hours, and the groove 3 disappeared after 800 hours. In contrast, all of the thrust bearings according to the examples of the present invention have little wear, and in particular, the one using SiC as the hard film 2 shows wear of only about 1.5 μm even after 1000 hours, making it fully usable. It was a state. Note that this experiment was a time compression test in which wear was forcibly caused by increasing the load, so it goes without saying that the product can be used for a longer period of time under normal use.

以上の実験は、スラスト軸受Sについてのみ示したが、
ラジアル軸受Rの場合でも全く同様であり、硬質膜2の
材質として、TiC,ダイヤモンドなどを用いた場合で
もほぼ同様の傾向を示し、優れた結果であった。また基
体lの材質としてステンレスのみを示したがセラミック
など、他の材質を用いても同様であった。
The above experiment was shown only for thrust bearing S, but
The results were exactly the same in the case of the radial bearing R, and even when TiC, diamond, or the like was used as the material for the hard film 2, almost the same tendency was exhibited, and the results were excellent. Further, although only stainless steel is shown as the material of the base 1, other materials such as ceramic may also be used.

なお、上記実施例においては回転軸又は軸受の一方のみ
に硬′X膜を被着し、溝を形成する例をあげたが、これ
に限らず、回転軸と軸受の双方に最適形状の溝形状を形
成しておくことによって比較的低回転の回転軸において
も所定の揚力を発生させることが可能である。
In addition, in the above embodiment, an example was given in which the hard X film was coated on only one of the rotating shaft or the bearing to form a groove, but the invention is not limited to this. By forming the shape, it is possible to generate a predetermined lift force even on a rotating shaft that rotates at a relatively low speed.

〔発明の効果〕〔Effect of the invention〕

叙上のように本発明によれば、回転軸または羽受の夕な
くとも一方の表面に硬X膜よりなる揚尤発生のための凹
凸パターンを形成して動圧軸受全構成したことによって
、凹凸パターンを形成した面の#摩耗性が大きいため長
期間使用しても溝の深さの変化が少なく寿命を長くでき
るだけでなく凹凸パターンを形成した面がなめらかであ
り回転開始時の摺動抵抗が小さいため、反応特性が良い
As described above, according to the present invention, the whole structure of the hydrodynamic bearing is formed by forming a concavo-convex pattern made of a hard X film on at least one surface of the rotating shaft or the blade bearing to generate lift. The surface with the uneven pattern is highly abrasive, so even after long-term use, there is little change in the depth of the groove, resulting in a longer service life.The surface with the uneven pattern is smooth, which reduces sliding resistance at the start of rotation. It has good reaction characteristics because of its small value.

また、硬質膜の膜厚やマスクの形状を変化させることに
より、溝の深さ、形状を容易に調整でき所定の凹凸パタ
ーンを形成することができるなど、多くの特長を有した
動圧軸受を提供することができる。
In addition, by changing the thickness of the hard film and the shape of the mask, the depth and shape of the groove can be easily adjusted and a predetermined uneven pattern can be formed. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明実施例に係る動圧軸受を示す斜視
図、第1図(b)は同図(ai中のx−X線断面図であ
る。第2図(a)は本発明の他の実施例を示す斜視図、
第2図(blは同図(al中のY−Y線断面図、第2図
(c)は本発明の他の実施例を示す断面図である。 第3図は従来の動圧軸受を示す断面図である。 鴫  第4図は、回転時開と溝の深さの関係を示すクリ
アである。 1.10・・・・・・基体、2,2o・・・・・・硬質
膜、8゜30・・・・・・溝。
FIG. 1(a) is a perspective view showing a hydrodynamic bearing according to an embodiment of the present invention, and FIG. 1(b) is a sectional view taken along the line x-X in the same figure (ai. A perspective view showing another embodiment of the present invention,
Figure 2 (bl is a cross-sectional view taken along the line Y-Y in the figure (al), and Figure 2 (c) is a cross-sectional view showing another embodiment of the present invention. Figure 3 shows a conventional hydrodynamic bearing. Figure 4 is a clear diagram showing the relationship between the opening during rotation and the depth of the groove. 1.10...Base, 2,2o...Hard film , 8゜30...groove.

Claims (1)

【特許請求の範囲】[Claims] 回転軸または軸受の少なくとも一方の表面に硬質膜より
なる揚力発生のための凹凸パターンを形成したことを特
徴とする動圧軸受。
1. A hydrodynamic bearing characterized in that a pattern of protrusions and recesses made of a hard film is formed on at least one surface of the rotating shaft or the bearing for generating lift.
JP23227286A 1986-09-30 1986-09-30 Dynamic pressure bearing Pending JPS6388313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23227286A JPS6388313A (en) 1986-09-30 1986-09-30 Dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23227286A JPS6388313A (en) 1986-09-30 1986-09-30 Dynamic pressure bearing

Publications (1)

Publication Number Publication Date
JPS6388313A true JPS6388313A (en) 1988-04-19

Family

ID=16936640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23227286A Pending JPS6388313A (en) 1986-09-30 1986-09-30 Dynamic pressure bearing

Country Status (1)

Country Link
JP (1) JPS6388313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366298A (en) * 1992-12-03 1994-11-22 Ebara Corporation Hydrodynamic bearing
JP2008045209A (en) * 2006-08-17 2008-02-28 Taida Electronic Ind Co Ltd Hydrodynamic bearing and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366298A (en) * 1992-12-03 1994-11-22 Ebara Corporation Hydrodynamic bearing
JP2008045209A (en) * 2006-08-17 2008-02-28 Taida Electronic Ind Co Ltd Hydrodynamic bearing and its manufacturing method

Similar Documents

Publication Publication Date Title
US5366298A (en) Hydrodynamic bearing
JP3043294B2 (en) Conical fluid bearing, head drum having the same, and spindle motor
US4966789A (en) Process of manufacturing seal members having a low friction coefficient
JP2728202B2 (en) Hemispherical type fluid bearing
US5478622A (en) Magnetic disk
JP3291552B2 (en) Seal or bearing
US20020057855A1 (en) Hydrodynamic bearings and boundary lubricated system with dlc bumps
US5957587A (en) Air dynamic bearing
JPS6388313A (en) Dynamic pressure bearing
JPH10292867A (en) Gas seal device
JPH07317752A (en) Dynamical pressure gas bearing
JPS5989823A (en) Fluid bearing device
US4929499A (en) Use of nickel-phosphorous undercoat for particulate media in magnetic storage devices
US6064130A (en) Motor having dynamic pressure bearing, and rotator device having the motor as driving source
JPH0276925A (en) Anti-wear sliding member
JPH0712763Y2 (en) Gas seal
JP2000346059A (en) Dynamic pressure gas bearing
JPH06341429A (en) Dynamic pressure gas bearing
JP2001304259A (en) Static pressure gas bearing spindle
US8622844B2 (en) Tapered shaft coating
JPS63111313A (en) Sliding device
JP3782857B2 (en) Ceramic hydrodynamic bearing
KR200156684Y1 (en) Air dynamic bearing
JPH0665463B2 (en) Guide roller for ultra-precision polishing
JP2001214936A (en) Manufacturing method for aerodynamic or hydrodynamic bearing and bearing manufactured thereby