JPS6387769A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6387769A
JPS6387769A JP62178225A JP17822587A JPS6387769A JP S6387769 A JPS6387769 A JP S6387769A JP 62178225 A JP62178225 A JP 62178225A JP 17822587 A JP17822587 A JP 17822587A JP S6387769 A JPS6387769 A JP S6387769A
Authority
JP
Japan
Prior art keywords
region
type
type region
semiconductor substrate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62178225A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sakai
潔 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62178225A priority Critical patent/JPS6387769A/en
Publication of JPS6387769A publication Critical patent/JPS6387769A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve the breakdown strength, the power gain, and high frequency characteristics by making a drain taking-out resistance lower without increasing an impurity concentration of a semiconductor substrate by a third region and making an equivalent internal resistance of a second region lower by a fourth region, thereby preparing a gate electrode even on a third region. CONSTITUTION:The difference between diffused depths of a P-type region 43 and an N-type region 44 comes to a channel length and it is well prepared for its length to be minimized. Such a configuration exhibits and excellent high frequency characteristic and then large power gain can be obtained by lowering a drain outflow resistance with the aid of an N-type region 42 located between P-type regions 43 and also lowering a real internal resistance of the P-type regions 43 (that is, an operating internal resistance of a second gate electrode 48) with the aid of a P-type region 43'. Further, a drain voltage is so fed to the surface of the N-type layer 42 through an N<-> type layer 51 surrounded by the P-type regions 43 that the drain breakdown strength becomes higher.

Description

【発明の詳細な説明】 本発明は、電界効果トランジスタに関する。[Detailed description of the invention] The present invention relates to field effect transistors.

電界効果トランジスタは、本質的に周波数特性に秀れ、
更に熱的にも安定であることから高周波高出力用途とし
て秀れた利点を有している。
Field-effect transistors inherently have excellent frequency characteristics,
Furthermore, since it is thermally stable, it has an excellent advantage in high-frequency, high-output applications.

高周波高出力用途に適した電界効果トランジスタの一例
として、N−型の半導体基板内に環状のP型領域と、さ
らにその内に形成された環状の1−型領域を有し、との
N+型領域内の半導体基板上にゲート酸化膜とその上の
ゲート電極とを備え、半導体基板。i面よはトツイ7電
極を有し、またN+領領域はソース電極を有するもので
ある。
As an example of a field effect transistor suitable for high frequency and high power applications, an N+ type field effect transistor having an annular P type region within an N- type semiconductor substrate and an annular 1- type region further formed within the N- type semiconductor substrate is used. A semiconductor substrate comprising a gate oxide film on the semiconductor substrate in a region and a gate electrode thereon. The i-plane has seven electrodes, and the N+ region has a source electrode.

本構造による電界効果トランジスタは、ゲート電極下に
ゲート酸化膜を介して存在する部分のP型領域がチャン
ネルとして動作し、電荷はこのチャンネルを通った後、
P型領域に囲まれた部分の半導体基板を通って、この半
導体基板の裏面のドレイン電極から取り出される。従っ
て、かかる電界効果トランジスタはチャンネル長がP型
領域とN+型領領域深さの差となシ、短かく規定される
ので高周波特性が優れ、高周波用途に適しており、電荷
がP型領域で囲まれる半導体基板の部分を通りて半導体
基板の裏面から取り出されるので、高い耐圧が得られる
。とのため、高耐圧高出力用途に適している。
In the field effect transistor with this structure, the P-type region that exists under the gate electrode via the gate oxide film operates as a channel, and after the charge passes through this channel,
It passes through a portion of the semiconductor substrate surrounded by the P-type region and is taken out from the drain electrode on the back surface of the semiconductor substrate. Therefore, in such a field effect transistor, the channel length is determined to be shorter than the difference in depth between the P type region and the N+ type region, so it has excellent high frequency characteristics and is suitable for high frequency applications, and the charge is in the P type region. Since it passes through the surrounded portion of the semiconductor substrate and is extracted from the back surface of the semiconductor substrate, a high breakdown voltage can be obtained. Therefore, it is suitable for high voltage and high output applications.

このような構成の他の利点は笛1に、ゲート電極下のチ
ャンネル部分とドレイン電極とが離れておシ、帰還容量
が非常に小さいことが挙げられる。
Another advantage of such a configuration is that the channel portion under the gate electrode and the drain electrode are separated from each other, and the feedback capacitance is extremely small.

更に、第2に、電荷はP型領域で囲まれる部分の半導体
基板を通して取り出されるので、一般の圧高出力動作事
−町′能となる。しかしながら、射出は半導体基板とP
型領域とのP −N接合の逆討圧の大きさで決定される
。更に電力利得は半導体基板のP型領域に囲まれた部分
での内部抵抗で制約される。従って、高耐圧化のために
半導体基板の不純物濃度を下げると電力利得が減少し、
反対に高利得化のために半導体基板の不純物@変を上げ
ると耐圧が低下するという問題が生じる。更に、チャン
ネルとして作用するP型領域の不純物濃度は低いために
、このP型領域の内部抵抗は小さくできず、電力利得が
小さくできないという問題がある。
Furthermore, secondly, the charge is extracted through the semiconductor substrate in the portion surrounded by the P-type region, resulting in normal high voltage output operation. However, the injection
It is determined by the magnitude of the reverse pressure of the P-N junction with the type region. Furthermore, the power gain is limited by the internal resistance of the portion of the semiconductor substrate surrounded by the P-type region. Therefore, if the impurity concentration of the semiconductor substrate is lowered to increase the breakdown voltage, the power gain will decrease.
On the other hand, if the impurities in the semiconductor substrate are increased in order to increase the gain, a problem arises in that the breakdown voltage decreases. Furthermore, since the impurity concentration of the P-type region that acts as a channel is low, the internal resistance of this P-type region cannot be made small, resulting in the problem that the power gain cannot be made small.

本発明は、高耐圧で電力利得が大きく、かつ高周波特性
の優れた電界効果トランジスタを提供するものである。
The present invention provides a field effect transistor with high breakdown voltage, large power gain, and excellent high frequency characteristics.

本発明によれば、−導電型で第1の不純物濃度の半導体
基板領域と、この半導体基板領域の表面に、その所定部
をはさんで互いに対向する部分を有するように形成さ一
導電型で、第1の深さとを有するxiの領域と、この第
1の領域の互いに対向する部分内に、それぞれ形成され
た対向する部分を有する一導電型の第2の領域と、半導
体基板領域の所定部表面に形成された一導電型で第1の
不純物濃度よシ高い第3の不純物濃度の第3の領域と、
第2の領域の前記第3の領域とはよ反対側に第1の領域
に接して形成さ一導電型で第1の深さよりも深い第2の
深さ台を有する第4の領域と、第2の領域よシ第3の領
域側の第1の領域上および第3の領域上に絶縁膜を介し
て連続的に形成されたゲート電極と、第2の領域に接触
するソース電極と、半導体基板に接続するドレイン電極
とを有し、第1の領域に電位を与える!極は第4の領域
に接触している電界効果トランジスタを得る。
According to the present invention, a semiconductor substrate region having a -conductivity type and a first impurity concentration; , a second region of one conductivity type having opposing portions formed in mutually opposing portions of the first region, and a predetermined region of the semiconductor substrate. a third region of one conductivity type and having a third impurity concentration higher than the first impurity concentration formed on the surface of the portion;
a fourth region having a second depth platform of one conductivity type and deeper than the first depth formed in contact with the first region on the opposite side of the second region from the third region; a gate electrode continuously formed on the first region and the third region on the side of the third region from the second region with an insulating film interposed therebetween; and a source electrode in contact with the second region; It has a drain electrode connected to the semiconductor substrate and applies a potential to the first region! Obtain a field effect transistor whose pole is in contact with the fourth region.

かかる電界効果トランジスタによれば、第3の領域によ
って半導体基板の不純物濃度を上げなくとも、ドレイン
取出抵抗が減少し、第4の領域によって第2の領域の等
髄内部抵抗を小さくでき、高電力利得を得ることができ
る。また、半導体基板の不純物濃度を上げ表くて良いの
で耐圧の低下はなく、逆に第3の一領域上にもゲート電
極があるので高耐圧となる。
According to such a field effect transistor, the drain extraction resistance can be reduced by the third region without increasing the impurity concentration of the semiconductor substrate, and the isomedullary internal resistance of the second region can be reduced by the fourth region, and high power can be achieved. gain can be obtained. Further, since the impurity concentration of the semiconductor substrate can be increased, there is no drop in breakdown voltage, and on the contrary, since the gate electrode is also located on the third region, a high breakdown voltage can be achieved.

次に、本発明を図面を参照して、より詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

まず、本発明の基礎となる構造の電界効果トランジスタ
を、その製造工程を追って第1〜5図を参照して説明す
る。
First, a field effect transistor having a structure that is the basis of the present invention will be described with reference to FIGS. 1 to 5, following its manufacturing process.

第1図は半導体基板41であり、ここでは数Ω〜数十Ω
程度の抵抗率を有するNWシリコン基板である。半導体
基板41上には基板41より低い抵抗率(数百mΩ〜数
十〇)のN型領域42がその厚さはIRnから数十μm
8度に形成されている。領域42の形成方法は、不純物
気相拡散、固相拡散、イオン打込、エピタキシャル成長
等によるものであり、そのプロセスの詳細は既知のもの
とし省略する。
FIG. 1 shows a semiconductor substrate 41, here several Ω to several tens of Ω.
It is a NW silicon substrate having a resistivity of approximately On the semiconductor substrate 41, there is an N-type region 42 having a resistivity lower than that of the substrate 41 (several hundred mΩ to several tens of Ω), and its thickness is from IRn to several tens of μm.
It is formed at 8 degrees. The region 42 is formed by impurity vapor phase diffusion, solid phase diffusion, ion implantation, epitaxial growth, etc., and the details of the process are known and will be omitted here.

第2図に示す如く、半導体基板41及びN型領域42上
には、第2のゲート領域となる環状のP型領域43を不
純物拡散あるいはイオン打込み等・11 により選択的に形11iれる。このP型領域43の拡散
層の深さは1prrr=什敷μm程度が望ましく、N型
領域42よりも深く形成される。
As shown in FIG. 2, on the semiconductor substrate 41 and the N-type region 42, an annular P-type region 43 which becomes a second gate region is selectively formed 11i by impurity diffusion or ion implantation. The depth of the diffusion layer of this P-type region 43 is desirably about 1 prrr=1 μm, and is formed deeper than the N-type region 42 .

次に第3図に示す如く、第2図のP型領域43の形成と
同様の方法でP型領域43の内部にソース領域となるべ
きN型領域44を形成する。P型領域43の拡散層の深
さり、とN型領域44の拡散層の深さり、との差(、L
l−L、”)が、電界効果トランジスタのチャンネル長
に相当し、b佃から数μm程度もしくは、それ以下に制
御する必要がある。
Next, as shown in FIG. 3, an N-type region 44 to become a source region is formed inside the P-type region 43 in the same manner as in the formation of the P-type region 43 in FIG. The difference between the depth of the diffusion layer of the P type region 43 and the depth of the diffusion layer of the N type region 44 (, L
l−L, ”) corresponds to the channel length of a field effect transistor, and it is necessary to control it to about several μm from b or less.

第4図はP型領域43のうち、互いに対向している部分
側の領域上にゲート絶縁膜となる絶縁物層45を形成し
た工程の図である。絶縁物層45の厚さは数百久〜数千
Xに形成される。
FIG. 4 is a diagram illustrating a step of forming an insulating layer 45 that will become a gate insulating film on regions of the P-type region 43 that are opposite to each other. The thickness of the insulator layer 45 is formed to be several hundred to several thousand times thicker.

次に第5図に示す如く、N型領域44上にはソース電極
46、絶縁物層45上には第1のゲート電極47を設置
し、更KP型領域43上には、第2のゲート電極48を
半導体基板41の下部面にはドレイン電極49を設置し
ている。電極材料としてはアルミニウム、←が侵出され
るが、特に第1のゲート電極47に斗シリコン等の半導
体、あるいは耐熱性の良好な金属、例えば、モリブデン
等を使用するととが望ましい。
Next, as shown in FIG. 5, a source electrode 46 is provided on the N-type region 44, a first gate electrode 47 is provided on the insulating layer 45, and a second gate electrode 47 is provided on the KP-type region 43. A drain electrode 49 is provided on the lower surface of the semiconductor substrate 41 . Although aluminum is used as the electrode material, it is particularly preferable to use a semiconductor such as silicon or a metal with good heat resistance, such as molybdenum, for the first gate electrode 47.

以上のような製造は、一般的に、シリコン基板にプレー
ナ技術を適用して行なわれ、最終的には高周波、高出力
用途に適した電界効果トランジスタが形成されることに
なる。
The above manufacturing is generally performed by applying planar technology to a silicon substrate, and ultimately a field effect transistor suitable for high frequency, high power applications is formed.

ところで第5図に示すような構造は、全体の大きさが極
小であることから第2のゲート電極48をP型領域43
上に設置することが実際上困難であシ、本発明によれば
第6図に示す如く、P型領域43を形成する第2図の工
程の前に同じP型領域43′をあらかじめ2厘領域43
に接する位置に形成しておき、この領域43′上VCg
2のゲート電極48を設置するようにしている。このP
型領域43′によって、第2のゲー1[ff148と接
触する部分が広くな夛、P型領域43.43’の内部抵
抗が減少し電力利得が高くなる。又、ドレイン領域の型
層52にドレイン電極49をN−壓rr151上にN型
142を形成することが良い。
By the way, in the structure shown in FIG. 5, since the overall size is extremely small, the second gate electrode 48 is connected to the P-type region 43.
According to the present invention, as shown in FIG. 6, before the step of FIG. 2 for forming the P-type region 43, two layers of the same P-type region 43' are formed. area 43
VCg on this region 43'
Two gate electrodes 48 are installed. This P
Since the type region 43' has a wide contact area with the second gate 1 [ff148], the internal resistance of the P type region 43, 43' is reduced and the power gain is increased. Further, it is preferable to form the drain electrode 49 on the type layer 52 of the drain region and the N type 142 on the N type layer 151.

本発明によれ7ば、P型領域43とN型領域44との拡
散深さの差がチャンネル長となシ、これを極めて小さく
できるので高周波特性が優れている@また、P型領域4
3間のN2W領域42によってドレイン導出抵抗を小さ
くでき、P型領域43′によってP型領域43の実質的
内部抵抗(即ち、第2ゲート1!極48の動作内部抵抗
)を小さくできるので電力利得を大きくできる。ドレイ
ン電圧は、P型領域43で囲まれるN−型層51を介し
てN型層42表面に与えられるので、ドレイン耐圧が高
くなる。このgffXN型層42は、比較的不純物濃度
が高くP型領域43からの空乏層が伸びにくくなってい
るが、この上のゲート電極には、ゲート電圧(これはド
レイン電位よシもソース電位に近い)が与えられている
ので、空乏層を伸びやすくしている。従って、ドレイン
耐圧がよシー層高くなっている。
According to the present invention, the difference in diffusion depth between the P-type region 43 and the N-type region 44 is the channel length, and this can be made extremely small, resulting in excellent high frequency characteristics.
The drain lead resistance can be reduced by the N2W region 42 between the electrodes 3 and 43, and the effective internal resistance of the P-type region 43 (that is, the operational internal resistance of the second gate 1! pole 48) can be reduced by the P-type region 43', resulting in power gain. can be made larger. Since the drain voltage is applied to the surface of the N-type layer 42 through the N-type layer 51 surrounded by the P-type region 43, the drain breakdown voltage becomes high. This gffXN type layer 42 has a relatively high impurity concentration, making it difficult for the depletion layer to grow from the P type region 43, but the gate electrode above this layer has a gate voltage (this is equal to both the drain potential and the source potential). ) is given, making it easier for the depletion layer to grow. Therefore, the drain breakdown voltage is higher than that of the lower layer.

体の電導型は全て反対のものが用いられる。また、P型
領域43やN型領域44は望ましくは丸い環状に形成さ
れるが他の形状の環状でもよく、マた対向する2つの領
域に形成し、外部配線でこれらを接続したもので同様の
効果が期待される。
All opposite conductivity types of the body are used. Further, the P-type region 43 and the N-type region 44 are preferably formed in a round ring shape, but they may be formed in other shapes, or they may be formed in two opposing regions and connected by external wiring. is expected to have the following effects.

以上、説明してきたように本発明によれば高周波特性が
より改善され、しかも高耐圧で高出力用途に適した電界
効果トランジスタを容易に実現しうるものである。
As described above, according to the present invention, it is possible to easily realize a field effect transistor that has improved high frequency characteristics, has a high breakdown voltage, and is suitable for high output applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は、本発明の基礎となる構造の電界効果
トランジスタの製造の各工程における断面図、第6図は
本発明の一実施例の断面図である。 49・・・・・・ドレイン電極、46・・・・・・第1
ゲート電極、48・・・・・・第2ゲート電極、47・
・・・・・ソース電極、41・・・・・・半導体基板、
12,43.43’・・・・・・P型答1目 茶20 第 3 目 第48 不5図 4ダ 第 6 図
1 to 5 are cross-sectional views at each step of manufacturing a field effect transistor having a structure that is the basis of the present invention, and FIG. 6 is a cross-sectional view of one embodiment of the present invention. 49...Drain electrode, 46...First
Gate electrode, 48... Second gate electrode, 47.
... Source electrode, 41 ... Semiconductor substrate,
12,43.43'...P type answer 1st eye brown 20th 3rd eye 48th F5 figure 4 da 6th figure

Claims (1)

【特許請求の範囲】[Claims]  一導電型で第1の不純物濃度の半導体基体領域と、該
半導体基体領域の表面にその所定部をはさんで互いに対
向する部分を有するように形成された他の導電型で第1
の深さを有する第1の領域と、該第1の領域の互いに対
向する前記部分内にそれぞれ形成された部分を有する前
記一導電型の第2の領域と、前記第1の領域の互いに対
向する前記部分間の前記半導体基体領域の表面に形成さ
れた前記一導電型で、前記第1の不純物濃度よりも高い
第2の不純物濃度を有する第3の領域と、前記第2の領
域の前記第3の領域とは反対側に形成された前記他の導
電型で前記第1の深さより深い第2の深さを有し、前記
第1の領域と接触する第4の領域と、前記第2の領域よ
り前記第3の領域側の前記第1の領域の表面および前記
第3の領域の表面に絶縁膜を介して連続的に形成された
ゲート電極と、前記第2の領域に接触するソース電極と
、前記半導体基体領域に接続するドレイン電極とを有し
、前記第1の領域へ電位を与える電極は、前記第4の領
域に接触することを特徴とする電界効果トランジスタ。
A semiconductor body region of one conductivity type and a first impurity concentration, and a first semiconductor body region of another conductivity type formed so as to have portions facing each other across a predetermined portion on the surface of the semiconductor body region.
a first region having a depth of a third region of the one conductivity type and having a second impurity concentration higher than the first impurity concentration formed on the surface of the semiconductor substrate region between the portions; a fourth region of the other conductivity type formed on the opposite side of the third region and having a second depth deeper than the first depth and in contact with the first region; a gate electrode that is continuously formed on the surface of the first region and the surface of the third region on the side of the third region from the second region with an insulating film interposed therebetween; and a gate electrode that contacts the second region. A field effect transistor comprising a source electrode and a drain electrode connected to the semiconductor substrate region, wherein the electrode applying a potential to the first region contacts the fourth region.
JP62178225A 1987-07-17 1987-07-17 Field effect transistor Pending JPS6387769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62178225A JPS6387769A (en) 1987-07-17 1987-07-17 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62178225A JPS6387769A (en) 1987-07-17 1987-07-17 Field effect transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6594377A Division JPS54885A (en) 1977-06-03 1977-06-03 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS6387769A true JPS6387769A (en) 1988-04-19

Family

ID=16044777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62178225A Pending JPS6387769A (en) 1987-07-17 1987-07-17 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6387769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477130A (en) * 1993-07-07 1995-12-19 Sanyo Electric Co., Ltd. Battery pack with short circuit protection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046081A (en) * 1973-08-28 1975-04-24
JPS5185381A (en) * 1975-01-24 1976-07-26 Hitachi Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046081A (en) * 1973-08-28 1975-04-24
JPS5185381A (en) * 1975-01-24 1976-07-26 Hitachi Ltd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477130A (en) * 1993-07-07 1995-12-19 Sanyo Electric Co., Ltd. Battery pack with short circuit protection

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
JPH0336311B2 (en)
JPH02263473A (en) Semiconductor device and semiconductor storage device
JP2573736B2 (en) High breakdown voltage low resistance semiconductor device and method of manufacturing the same
JPH04239778A (en) Field-effect transistor and its manufacture
JPH0526352B2 (en)
JPS6159852A (en) Manufacture of semiconductor device
US5485028A (en) Semiconductor device having a single crystal semiconductor layer formed on an insulating film
JPS63287064A (en) Mis type semiconductor device and manufacture thereof
US10062778B2 (en) Semiconductor device
JPS6387769A (en) Field effect transistor
JP3109274B2 (en) Semiconductor device and manufacturing method thereof
JP4275763B2 (en) Power semiconductor device employing field plate and method of manufacturing the same
JPS6055995B2 (en) Junction field effect transistor
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
JPS62122175A (en) Semiconductor device
TW460944B (en) Laterally diffused metal oxide semiconductor with gradient doped source/drain and manufacturing method thereof
JP3082800B2 (en) Semiconductor device and manufacturing method thereof
JPH0523497B2 (en)
JPS61187273A (en) Semiconductor device
JP2654056B2 (en) Method for manufacturing semiconductor device
JPH03793B2 (en)
JPH1098111A (en) Mos semiconductor device and manufacture thereof
JPS60177672A (en) Hetero junction bi-polar semiconductor device
JPH0334378A (en) Mos type field effect transistor