JPS6387564A - Heat pump type air conditioner utilizing hydrogen occluding alloy - Google Patents

Heat pump type air conditioner utilizing hydrogen occluding alloy

Info

Publication number
JPS6387564A
JPS6387564A JP23390586A JP23390586A JPS6387564A JP S6387564 A JPS6387564 A JP S6387564A JP 23390586 A JP23390586 A JP 23390586A JP 23390586 A JP23390586 A JP 23390586A JP S6387564 A JPS6387564 A JP S6387564A
Authority
JP
Japan
Prior art keywords
heat exchanger
hydrogen
auxiliary
auxiliary heat
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23390586A
Other languages
Japanese (ja)
Inventor
和幸 井口
野村 英男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP23390586A priority Critical patent/JPS6387564A/en
Publication of JPS6387564A publication Critical patent/JPS6387564A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、室内側熱交換器と、室外側熱交換器と、前記
室内側熱交換器から前記室外側熱交換器にわたって冷媒
を循環流動する圧縮機と、温度−水素圧力特性がそれぞ
れ異なる水素吸蔵合金を内蔵する第1.第2の補助熱交
換器が接続されるとともに、前記第27tff助熱交換
器を加熱する加熱機構が設けられて構成され、前記加熱
@構の停止時に前記第2NiivJ熱交換器側に水素を
吸蔵して蓄熱し、前記加、8機構の動作時に前記第2補
助熱交換器側から水素を放出して、前記第1補助熱交換
器側に水素を吸蔵して冷媒に放熱を行う補助加熱装置と
を備える水素吸蔵合金を利用するヒートポンプ式空気調
和機に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an indoor heat exchanger, an outdoor heat exchanger, and a method for circulating and flowing a refrigerant from the indoor heat exchanger to the outdoor heat exchanger. The first compressor has a built-in compressor and a hydrogen storage alloy with different temperature-hydrogen pressure characteristics. A second auxiliary heat exchanger is connected, and a heating mechanism is provided to heat the 27th TFF auxiliary heat exchanger, and when the heating @ mechanism is stopped, hydrogen is occluded in the second NiivJ heat exchanger side. an auxiliary heating device that stores heat, releases hydrogen from the second auxiliary heat exchanger side when the heating mechanism is operated, stores hydrogen in the first auxiliary heat exchanger side, and radiates heat to the refrigerant; The present invention relates to a heat pump air conditioner that uses a hydrogen storage alloy.

(従来の技術) この種の水素吸蔵合金を利用するヒートポンプ式空気調
和機としては、特開昭60−73266号公報に示すも
のがある。
(Prior Art) A heat pump type air conditioner using this type of hydrogen storage alloy is disclosed in Japanese Patent Application Laid-open No. 60-73266.

第6図はその空気調和機の冷媒回路図を示し、101は
室内側熱交換器、102は室外側熱交換器、l’03は
、室内側熱交換器101から室外側熱交換器102にわ
たって冷媒を循環流動する圧縮機である。
FIG. 6 shows a refrigerant circuit diagram of the air conditioner, in which 101 is an indoor heat exchanger, 102 is an outdoor heat exchanger, and l'03 is from the indoor heat exchanger 101 to the outdoor heat exchanger 102. This is a compressor that circulates and flows refrigerant.

圧縮機103と室内側熱交換器101との間と、室内側
熱交換器101と室外側熱交換器102との間に、デフ
ロスト用冷媒回路104が接続されるとともに、このデ
フロスト用冷媒回路104にデフロスト用開閉弁105
が介在され、このデフロスト用開閉弁105を開くこと
により、高温状態の冷媒の一部を室内側熱交換器101
を通さずに室外側熱交換器102に直接に流動するよう
になっている。
A defrosting refrigerant circuit 104 is connected between the compressor 103 and the indoor heat exchanger 101 and between the indoor heat exchanger 101 and the outdoor heat exchanger 102. Defrost on/off valve 105
By opening this defrost on-off valve 105, a part of the high-temperature refrigerant is transferred to the indoor heat exchanger 101.
It flows directly to the outdoor heat exchanger 102 without passing through it.

圧縮機103の吐出側と室内側熱交換器101との間に
、水素吸蔵合金と水素を内蔵した第1補助熱交換器10
6が並列接続されるとともに、冷媒を第1補助熱交換器
106に流動する状態と流動しない状態とに切り換える
第1および第2開閉弁107,108が設けられている
。また、室外側熱交換器102と圧縮機103の吸い込
み側との間には、前記第1補助熱交換器106とは温度
−水素圧力特性の異なる水素吸蔵合金と水素を内蔵した
第2補助熱交換器109が並列接続されるとともに、そ
の第2補助熱交換器109と第1補助熱交換器106と
が連通接続され、かっ、冷媒を第2補助熱交換器109
に流動する状態と流動しない状態とに切り換える第3お
よび第4開閉弁110.111が設けらている。この第
2補助熱交換器109には、ファン112が付設されて
いる。 これらの構成により、暖房運転時、デフロスト
運転時および暖房立上り運転時それぞれにおいて、次の
ように動作するようになっている。
A first auxiliary heat exchanger 10 containing a hydrogen storage alloy and hydrogen is provided between the discharge side of the compressor 103 and the indoor heat exchanger 101.
6 are connected in parallel, and first and second on-off valves 107 and 108 are provided for switching between a state in which the refrigerant flows into the first auxiliary heat exchanger 106 and a state in which it does not flow. Further, between the outdoor heat exchanger 102 and the suction side of the compressor 103, a second auxiliary heat exchanger 106 is provided with a hydrogen storage alloy and hydrogen having different temperature-hydrogen pressure characteristics from the first auxiliary heat exchanger 106. The exchangers 109 are connected in parallel, and the second auxiliary heat exchanger 109 and the first auxiliary heat exchanger 106 are connected in communication, and the refrigerant is transferred to the second auxiliary heat exchanger 109.
Third and fourth on-off valves 110 and 111 are provided for switching between a flowing state and a non-flowing state. A fan 112 is attached to this second auxiliary heat exchanger 109. With these configurations, the following operations are performed during heating operation, defrost operation, and heating start-up operation.

■暖房運転時 第1および第4開閉弁107,111を開くとともに第
2および第3開閉弁tos、ttoを閉じ、室外側熱交
換器102を経て圧縮機103の吸い込み側に流動する
低温低圧の冷媒を第2補助熱交換器109に流動し、第
2補助熱交換器lO9を低温にしてその水素吸蔵合金に
水素を吸蔵し、第1補助熱交換器106から第2補助熱
交換器109に水素を移動する。このとき、ファン11
2は停止しておく。
■During heating operation, the first and fourth on-off valves 107 and 111 are opened, and the second and third on-off valves tos and tto are closed, allowing the low-temperature, low-pressure air flowing through the outdoor heat exchanger 102 to the suction side of the compressor 103. The refrigerant flows into the second auxiliary heat exchanger 109, lowers the temperature of the second auxiliary heat exchanger lO9, stores hydrogen in its hydrogen storage alloy, and transfers the refrigerant from the first auxiliary heat exchanger 106 to the second auxiliary heat exchanger 109. Transfer hydrogen. At this time, fan 11
2 is stopped.

■デフロスト運転時 第2および第3開閉弁108,110を開くとともに第
1および第4開閉弁107.Illを閉じ、かつ、デフ
ロスト用開閉弁105を開き、更に、ファン112を駆
動し、外気との熱交換により第2補助熱交換器109の
温度を上昇してその水素吸蔵合金から水素を放出させる
とともに、第1補助熱交換器106に移動し、第1補助
熱交換器106に吸蔵させて反応熱を発生させる。この
反応熱によって圧縮機103からの吐出ガス冷媒が加熱
され、この加熱された冷媒の一部を室外側熱交換器10
2に流動し、室外側熱交換器102を加熱して除霜を行
なう。
■During defrost operation, the second and third on-off valves 108 and 110 are opened, and the first and fourth on-off valves 107 are opened. Ill is closed, the defrost on-off valve 105 is opened, and the fan 112 is driven to increase the temperature of the second auxiliary heat exchanger 109 through heat exchange with the outside air, thereby releasing hydrogen from the hydrogen storage alloy. At the same time, it moves to the first auxiliary heat exchanger 106 and is stored in the first auxiliary heat exchanger 106 to generate reaction heat. The gas refrigerant discharged from the compressor 103 is heated by this heat of reaction, and a part of this heated refrigerant is transferred to the outdoor heat exchanger 10.
2 and heats the outdoor heat exchanger 102 to defrost the air.

■暖房立上り運転時 前記デフロスト用開閉弁105を閉じる以外はデフロス
ト運転時と同じであり、それにより、第1補助熱交換器
106によって加熱された冷媒を室内伸1熱交換器10
1に流動させ、暖房運転開始時における設定温度までの
上昇、即ち、温度の立上りを早くする。
■During heating start-up operation The operation is the same as the defrost operation except that the defrost on-off valve 105 is closed, and thereby the refrigerant heated by the first auxiliary heat exchanger 106 is transferred to the indoor expansion 1 heat exchanger 10.
1 to speed up the rise to the set temperature at the start of heating operation, that is, the rise in temperature.

(発明が解決しようとする問題点) しかしながら、このような構成を有する従来例の場合で
は、暖房運転時に第1補助熱交換器106から第2補助
熱交換器109に水素を移動して蓄熱を完了した後は、
暖房立ち上がり運転時とデフロスト運転時それぞれにお
いてのみ、第2補助熱交換器109から第1補助熱交換
器106に水素を移動して熱を放熱利用するだけであり
、全体の時間からすれば、わずかの時間しか補助加熱装
置を利用していないのが実状である。
(Problems to be Solved by the Invention) However, in the case of the conventional example having such a configuration, hydrogen is transferred from the first auxiliary heat exchanger 106 to the second auxiliary heat exchanger 109 during heating operation to store heat. Once completed,
Only during heating start-up operation and defrost operation, hydrogen is transferred from the second auxiliary heat exchanger 109 to the first auxiliary heat exchanger 106 and the heat is used for radiation, and the total time is small. The reality is that the auxiliary heating device is only used for a period of .

本発明は、このような事情に鑑みてなされたものであっ
て、水素吸蔵合金を利用する補助加熱装置の冷媒に対す
る放熱を、暖房立ち上がり運転時やデフロスト運転時の
みならず、通常の暖房運転にも行い、暖房運転時に冷媒
を効率良く加熱できるようにすることを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to dissipate heat to the refrigerant of an auxiliary heating device that uses a hydrogen storage alloy not only during heating start-up operation or defrost operation, but also during normal heating operation. The purpose is to efficiently heat the refrigerant during heating operation.

(問題点を解決するための手段) 本発明は、このような目的を達成するために、冒頭に記
載した水素吸蔵合金を利用するヒートポンプ式空気調和
機において、前記第2補助熱交換器(2)の水素吸蔵合
金に所定量の水素が吸蔵された状態で、前記加熱機構(
5)を駆動し、かっ、その第2補助熱交換器(2)の水
素吸蔵合金から所定量の水素を放出した状態で前記加熱
機構(5)の駆動を停止する制御手段(18)を備える
構成とした。
(Means for Solving the Problems) In order to achieve such an object, the present invention provides a heat pump type air conditioner using the hydrogen storage alloy described at the beginning, in which the second auxiliary heat exchanger (2 ) with a predetermined amount of hydrogen stored in the hydrogen storage alloy of the heating mechanism (
5) and stopping the driving of the heating mechanism (5) in a state in which a predetermined amount of hydrogen is released from the hydrogen storage alloy of the second auxiliary heat exchanger (2). The structure is as follows.

(作用) 上記構成によれば、補助加熱装置(A)において、加熱
機構(5)を停止して、第2補助熱交換器(2)の水素
吸蔵合金が所定量の水素を吸蔵すると(蓄熱)、制御手
段(18)によって加熱機構(5)を駆動じ、第2補助
熱交換器(2)側から水素を放出させ、その水素を第1
補助熱交換器(1)の水素吸蔵合金に吸蔵させて、そこ
で発生する反応熱を冷媒に与える(放熱)。補助加熱装
置(A)は、この蓄熱と放熱の動作を自動的に繰り返し
、冷媒を効率良く加熱する。
(Function) According to the above configuration, in the auxiliary heating device (A), when the heating mechanism (5) is stopped and the hydrogen storage alloy of the second auxiliary heat exchanger (2) stores a predetermined amount of hydrogen (heat storage ), the heating mechanism (5) is driven by the control means (18) to release hydrogen from the second auxiliary heat exchanger (2) side, and the hydrogen is transferred to the first auxiliary heat exchanger (2).
It is stored in the hydrogen storage alloy of the auxiliary heat exchanger (1), and the reaction heat generated there is given to the refrigerant (heat radiation). The auxiliary heating device (A) automatically repeats this heat storage and heat radiation operation to efficiently heat the refrigerant.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、本発明の補助加熱装置A(点線で図示)を用
いた空気調和機Bの回路構成図である。
FIG. 1 is a circuit diagram of an air conditioner B using an auxiliary heating device A (indicated by dotted lines) of the present invention.

補助加熱装置Aは、第1水素吸蔵合金Mlと水素とを内
蔵する第1補助熱交換器lと、第2水素吸蔵合金M2と
水素とを内蔵する第2補助熱交換器2と、副補助熱交換
器1.2を気密に接続し、途中部に開閉弁3を備える水
素流動バイブ4と、第2補助熱交換器2の加熱機構とし
ての外気送風ファン5とから構成されている。第1水素
吸蔵合金Mlと第2水素吸蔵合金M2としては、第2図
のグラフに示すように、温度−水素圧力特性の異なるも
のを用いている。
The auxiliary heating device A includes a first auxiliary heat exchanger 1 containing a first hydrogen storage alloy Ml and hydrogen, a second auxiliary heat exchanger 2 containing a second hydrogen storage alloy M2 and hydrogen, and a sub-auxiliary heat exchanger 2 containing a second hydrogen storage alloy M2 and hydrogen. The heat exchanger 1.2 is airtightly connected to the hydrogen flow vibrator 4, which is provided with an on-off valve 3 in the middle, and an outside air blowing fan 5 as a heating mechanism for the second auxiliary heat exchanger 2. As the first hydrogen storage alloy Ml and the second hydrogen storage alloy M2, alloys having different temperature-hydrogen pressure characteristics are used, as shown in the graph of FIG.

空気調和機Bは、室内側熱交換器6と、室外側熱交換器
7と、室内側熱交換器6から室外側熱交換器7にわたっ
て冷媒を循環流動する圧縮機8とを基本的に備え、圧縮
機8と室内側熱交換器6間の流路と、室外側熱交換器7
と圧縮機8間の流路を2箇所で切り換えるように、第1
1第2の2つの四路切換弁9.lOが設けられている。
The air conditioner B basically includes an indoor heat exchanger 6, an outdoor heat exchanger 7, and a compressor 8 that circulates and flows a refrigerant from the indoor heat exchanger 6 to the outdoor heat exchanger 7. , a flow path between the compressor 8 and the indoor heat exchanger 6, and the outdoor heat exchanger 7.
The first
1 second two four-way switching valves 9. lO is provided.

室内側熱交換器6と室外側熱交換器7間には減圧膨張機
構llが、圧縮機8の吸入側にはアキュムレータ12が
それぞれ配置されている。第1.第2の四路切換弁9.
10間の一方の流路には、バイパス流路13が設けられ
ている。バイパス流路13と、このバイパス流路13と
並列に位置する主流路とには、開閉弁14.15がそれ
ぞれ付設されている。
A decompression expansion mechanism 11 is disposed between the indoor heat exchanger 6 and the outdoor heat exchanger 7, and an accumulator 12 is disposed on the suction side of the compressor 8. 1st. Second four-way switching valve9.
A bypass flow path 13 is provided in one of the flow paths between the two. On-off valves 14 and 15 are attached to the bypass flow path 13 and the main flow path located in parallel with the bypass flow path 13, respectively.

また、圧縮機8の吐出側と、減圧膨張機構11と室外側
熱交換器7間とを接続するようにデフロスト流路16が
設けられ、デフロスト流路16には開閉弁17が付設さ
れている。
Further, a defrost passage 16 is provided to connect the discharge side of the compressor 8, the decompression expansion mechanism 11, and the outdoor heat exchanger 7, and the defrost passage 16 is provided with an on-off valve 17. .

そして、補助加熱装置Aの第1補助熱交換器lは、第1
.第2の四路切換弁9.10間の他方の流路に熱交換が
可能なように介在され、第2補助熱交換器2は、第1.
第2の四路切換弁9,10間の一方の流路、すなわち、
前記したバイパス流路13と並列に位置する主流路に熱
交換が可能なように介在されている。
The first auxiliary heat exchanger l of the auxiliary heating device A is the first auxiliary heat exchanger l.
.. The second auxiliary heat exchanger 2 is interposed in the other flow path between the second four-way switching valves 9 and 10 to enable heat exchange.
One flow path between the second four-way switching valves 9 and 10, that is,
It is interposed in the main flow path located in parallel with the bypass flow path 13 described above so as to enable heat exchange.

次に、この実施例の作用について説明する。Next, the operation of this embodiment will be explained.

■ 暖房運転時 第1.第2の四路切換弁9.10を、第1図の実線で示
すように切り換え、開閉弁3,15を開き、開閉弁14
.17を閉じた状態で圧縮機8を運転すると、冷媒は、
圧縮機8−第1四路切換弁9−第1補助熱交換器1−第
2四路切換弁l〇−室内側熱交換器6−減圧膨張機構1
1−室外側熱交換器7−第2四路切換弁1〇−第2補助
熱交換器2−第1四路切換弁9−アキュムレータ12−
圧縮機8と循環流動し、室外側熱交換器7で吸収した熱
を室内側熱交換器6で室内に放出して暖房を行う。
■ During heating operation 1st. The second four-way switching valve 9.10 is switched as shown by the solid line in FIG.
.. When the compressor 8 is operated with 17 closed, the refrigerant is
Compressor 8 - First four-way switching valve 9 - First auxiliary heat exchanger 1 - Second four-way switching valve l - Indoor heat exchanger 6 - Decompression expansion mechanism 1
1-Outdoor heat exchanger 7-Second four-way switching valve 10-Second auxiliary heat exchanger 2-First four-way switching valve 9-Accumulator 12-
It circulates with the compressor 8, and the heat absorbed by the outdoor heat exchanger 7 is released into the room by the indoor heat exchanger 6 to perform heating.

l8は、外気送風ファン5の制御手段としてのCPUで
あり、所定のタイミングで駆動出力を出し、この駆動出
力により、第3図に示すように、リレーコイル19を励
磁し、これによってリレー接点20を閉じて外気送風フ
ァン5を駆動するように構成されており、次に、このC
PU18の動作を、第4図のフローチャートを用いて説
明する。
18 is a CPU as a control means for the outside air blowing fan 5, which outputs a drive output at a predetermined timing, and the drive output excites the relay coil 19 as shown in FIG. is configured to drive the outside air blowing fan 5 by closing the C.
The operation of the PU 18 will be explained using the flowchart shown in FIG.

圧縮機8の吐出する高温冷媒による第1補助熱交換器l
の加熱の開始に伴って、カウンタをスタートしくS l
 )、カウントが所定値mに達したかどうかを判別する
(S2)。判別信号がNoの場合はカウントを継続し、
その間においては高温冷媒で加熱することにより第1補
助熱交換器1側から水素を放出させ、また、室外側熱交
換器7からの低温冷媒によって冷却することにより第2
補助熱交換器2の水素吸蔵合金に水素を吸蔵させる(蓄
熱)。
First auxiliary heat exchanger l using high temperature refrigerant discharged from compressor 8
When heating starts, start the counter.
), it is determined whether the count has reached a predetermined value m (S2). If the discrimination signal is No, continue counting,
During that time, hydrogen is released from the first auxiliary heat exchanger 1 side by heating with a high temperature refrigerant, and hydrogen is released from the second auxiliary heat exchanger 1 by heating with a high temperature refrigerant, and by cooling with a low temperature refrigerant from the outdoor heat exchanger 7.
The hydrogen storage alloy of the auxiliary heat exchanger 2 stores hydrogen (heat storage).

即ち、ここでは、第2補助熱交換器2の第2水素吸蔵合
金M2に所定量の水素が吸蔵されるに足る時間だけ蓄熱
を行なうのである。
That is, here, heat is stored for a time sufficient to store a predetermined amount of hydrogen in the second hydrogen storage alloy M2 of the second auxiliary heat exchanger 2.

判別信号がYESの場合は、手駆動出力を出して(S3
)外気送風ファン5を駆動する。その後、カウンタを一
部リセット(S4)してから、再度カウンタをスタート
しくS5)、カウントが所定値nに達したかどうかを判
別する(S6)。判別信号がNoの場合はカウントを継
続し、その間においては、外気送風ファン5か駆動して
第2補助熱交換器2を外気により加熱し、第2補助熱交
換器2側から水素を放出さけ、この水素を第1補助熱交
換器lの第1水素吸蔵合金Mlに吸蔵させて、冷媒に与
える反応熱を発生させる(放熱)。
If the determination signal is YES, output the hand drive output (S3
) Drive the outside air blower fan 5. Thereafter, the counter is partially reset (S4) and then restarted (S5), and it is determined whether the count has reached a predetermined value n (S6). If the determination signal is No, the count continues, and during that time, the outside air blower fan 5 is driven to heat the second auxiliary heat exchanger 2 with outside air to prevent hydrogen from being released from the second auxiliary heat exchanger 2 side. , this hydrogen is stored in the first hydrogen storage alloy Ml of the first auxiliary heat exchanger l to generate reaction heat to be given to the refrigerant (heat radiation).

即ち、ここでは、第1補助熱交換器lの第1水素吸蔵合
金Mlに所定量の水素が吸蔵されるに足る時間だけ放熱
を行なうのである。
That is, here, heat is released only for a time sufficient to store a predetermined amount of hydrogen in the first hydrogen storage alloy Ml of the first auxiliary heat exchanger l.

判別信号かYESの場合は、駆動出力を停止して(S7
)外気送風ファン5の駆動を停止し、その後にカウンタ
をリセット(S8)してから、ステップlに戻し、以上
の動作を繰り返す。
If the determination signal is YES, stop the drive output (S7
) After stopping the drive of the outside air blowing fan 5 and then resetting the counter (S8), the process returns to step 1 and the above operations are repeated.

このようにして、暖房運転時においては、所定時間(例
えば10分)の蓄熱動作と、所定時間(例えば5分)の
放熱動作とを順次繰り返し行う。
In this manner, during heating operation, a heat storage operation for a predetermined time (for example, 10 minutes) and a heat dissipation operation for a predetermined time (for example, 5 minutes) are sequentially repeated.

■ 暖房立ち上がり運転時 第1.第2の四路切換弁9.10を、第1図の点線で示
すように切り換え、開閉弁3,14を開き、開閉弁15
.17を閉じた状態で圧縮機8を運転するとともに外気
送風ファン5を動作させると、冷媒は、圧縮機8−第1
四路切換弁9−バイパス流路13−第2四路切換弁l〇
−室内側熱交換器6−減圧膨張機構11−室外側熱交換
器7−第2四路切換弁10−第1補助熱交換器l−第1
四路切換弁lO−アキュムレータ12−圧縮機8と冷媒
を循環流動する。
■ 1st during heating start-up operation. The second four-way switching valve 9.10 is switched as shown by the dotted line in FIG.
.. When the compressor 8 is operated with the compressor 17 closed and the outside air blowing fan 5 is also operated, the refrigerant flows through the compressor 8-first
Four-way switching valve 9 - Bypass flow path 13 - Second four-way switching valve l〇 - Indoor heat exchanger 6 - Decompression expansion mechanism 11 - Outdoor heat exchanger 7 - Second four-way switching valve 10 - First auxiliary Heat exchanger l-1st
The refrigerant is circulated through the four-way switching valve lO, the accumulator 12, and the compressor 8.

このとき、外気送風ファン5によって第2補助熱交換器
2を加熱することにより、第2水素吸蔵合金M2から水
素を放出させ、一方、低温冷媒の流動によって第1補助
熱交換器lを冷却することにより、第1水素吸蔵合金M
lに水素を吸蔵して熱を発生させ、低温冷媒の加熱を行
なう(放熱)。
At this time, by heating the second auxiliary heat exchanger 2 with the outside air blowing fan 5, hydrogen is released from the second hydrogen storage alloy M2, and on the other hand, the first auxiliary heat exchanger l is cooled by the flow of the low-temperature refrigerant. By this, the first hydrogen storage alloy M
1 absorbs hydrogen and generates heat, which heats the low-temperature refrigerant (heat radiation).

この状態において、第1補助熱交換器lか冷却されてい
るので、第1水素吸蔵合金M Iの平衡圧は低く保たれ
、大きな移動差圧により効率良く水素が移動する。第1
水素吸蔵合金M2への水素の吸蔵完了後、開閉弁3を閉
じるとともに外気送風ファン5を停止する。この状態で
は、上記第1補助熱交換器lの低温冷媒の加熱により冷
媒温度が高められているため、設定温度に迅速に到達す
ることができる。
In this state, since the first auxiliary heat exchanger l is being cooled, the equilibrium pressure of the first hydrogen storage alloy M I is kept low, and hydrogen is efficiently transferred due to the large transfer differential pressure. 1st
After hydrogen storage in the hydrogen storage alloy M2 is completed, the on-off valve 3 is closed and the outside air blowing fan 5 is stopped. In this state, the refrigerant temperature is raised by heating the low-temperature refrigerant in the first auxiliary heat exchanger l, so that the set temperature can be quickly reached.

■ デフロスト運転時 開閉弁17を開く以外は全て■の状態と同様にして運転
を行い、圧縮機8からの吐出冷媒の一部をデフロスト流
路16介して室外側熱交換器7に直接的に流動し、これ
により、室外側熱交換器7の除霜を行なう。
■ During defrost operation, the operation is carried out in the same manner as in (■) except that the on-off valve 17 is opened, and a portion of the refrigerant discharged from the compressor 8 is directly supplied to the outdoor heat exchanger 7 via the defrost passage 16. This causes the outdoor heat exchanger 7 to be defrosted.

上述したように、■の暖房立ち上かり運転時と■のデフ
ロスト運転時においては、冷媒の加熱のための補助加熱
装置Aの放熱がなされるので、両運転時の開始前には補
助加熱装置Aに蓄熱が行なわれている必要がある。従っ
て、■の暖房運転時に、蓄熱した時点で次の放熱を停止
しておく必要があり、その停止は、CPU18のスター
トスイッチをOFFにするか、補助加熱装置Aの水素流
動バイブ4の開閉弁3を、蓄熱後に閉じることによって
行なえばよい。
As mentioned above, during the heating start-up operation (■) and the defrost operation (■), heat is radiated from the auxiliary heating device A for heating the refrigerant. Heat must be stored in A. Therefore, during the heating operation in (■), it is necessary to stop the next heat radiation when heat is stored, and this can be done by turning off the start switch of the CPU 18 or by turning off the on-off valve of the hydrogen flow vibrator 4 of the auxiliary heating device A. Step 3 may be performed by closing after storing heat.

制御手段I8としては、上記したものの池に、外気送風
ファン5を所定時間間隔で駆動および駆動停止する機械
式タイマーを用いてもよく、さらに第2補助熱交換器2
の水素濃度や、水素流動バイブ4における水素移動量を
測定して、第2補助熱交換器2側への水素の吸蔵完了を
検知し、その検知信号に基づいて外気送風ファン5を駆
動または駆動停止するようなものであってもよい。
As the control means I8, a mechanical timer that drives and stops the outside air blowing fan 5 at predetermined time intervals may be used in addition to the above-mentioned one, and furthermore, a mechanical timer that drives and stops the outside air blowing fan 5 at predetermined time intervals may be used.
The hydrogen concentration and the amount of hydrogen transferred in the hydrogen flow vibrator 4 are measured to detect the completion of hydrogen occlusion to the second auxiliary heat exchanger 2 side, and the outside air blowing fan 5 is driven or driven based on the detection signal. It may be something like stopping.

上記した実施例においては、第1.第2の四路切換弁9
.1)(を切り換えるとともに開閉弁14゜■5を適宜
開閉することにより、暖房立ち上がり運転時およびデフ
ロスト運転時には、第1補助熱交換器lに低温冷媒を流
動し、しかも、暖房運転時には第1補助熱交換器lに高
温冷媒を流動するとともに、第2補助熱交換器2に低温
冷媒を流動させ、補助加熱装置Aの蓄熱と放熱とを効率
良く行なえ利点がある。
In the embodiment described above, the first. Second four-way switching valve 9
.. 1) By switching the switch and opening and closing the on-off valve 14゜■5 as appropriate, low-temperature refrigerant flows into the first auxiliary heat exchanger l during heating start-up operation and defrost operation. There is an advantage in that high-temperature refrigerant flows through the heat exchanger 1 and low-temperature refrigerant flows through the second auxiliary heat exchanger 2, allowing the auxiliary heating device A to store and dissipate heat efficiently.

第5図は、他の実施例を示し、このものでは補助加熱装
置Aの第1補助熱交換器lのみを、室外側熱交換器7と
アキュムレータ12間に介在し、外気送風ファン5の停
止時に第2浦助熱交換器2側に蓄熱し、動作時に第1補
助熱交換器l側で放熱するように構成されている。
FIG. 5 shows another embodiment, in which only the first auxiliary heat exchanger l of the auxiliary heating device A is interposed between the outdoor heat exchanger 7 and the accumulator 12, and the outside air blowing fan 5 is stopped. It is configured so that heat is stored on the second auxiliary heat exchanger 2 side during operation, and heat is radiated on the first auxiliary heat exchanger l side during operation.

本発明としては、例えば、室外側熱交換器が直列に2台
用いられる場合は、その中間の冷媒流路に第1補助熱交
換器lを介在してもよく、要するに、圧縮機8に吸い込
まれる低温冷媒を流動する位置でさえあれば、各種の位
置に介在できる。
In the present invention, for example, when two outdoor heat exchangers are used in series, the first auxiliary heat exchanger l may be interposed in the intermediate refrigerant flow path. It can be placed in various locations as long as the location allows the low-temperature refrigerant to flow.

また、本発明は、上述のようなデフロスト流路16を備
えない場合にも適用でき、この場合であれば第1.第2
の四路切換弁9.1)(を切り換え、高温冷媒を室内側
熱交換器6を通す前に室外側熱交換器7に流動する、い
わゆる逆サイクル冷房運転状態にして除霜するようにす
れば良い。
Further, the present invention can be applied to a case where the defrost channel 16 as described above is not provided, and in this case, the first. Second
The four-way selector valve 9.1) (of Good.

(発明の効果) 以上のように、本発明によれば、補助加熱装置(A)は
、第2補助熱交換器(2)の水素吸蔵合金に所定mの水
素が吸蔵されて蓄熱されると、制御手段(18)により
加熱機構(5)を駆動し、第2補助熱交換器(2)を加
熱して水素を放出させ、第1補助熱交換器(1)の水素
吸蔵合金に吸蔵させて自動的に冷媒に放熱を行えるから
、暖房立ち上がり運転時やデフロスト運転時のみならず
、通常の暖房運転時にも、補助加熱装置(A)の放熱が
有効に利用でき、暖房運転時において、加熱機+R(5
)により外部からの熱を利用し、冷媒に対する加熱を効
率良く行えるようになった。
(Effects of the Invention) As described above, according to the present invention, the auxiliary heating device (A) is capable of storing a predetermined amount of hydrogen in the hydrogen storage alloy of the second auxiliary heat exchanger (2) and storing heat therein. , the heating mechanism (5) is driven by the control means (18), the second auxiliary heat exchanger (2) is heated to release hydrogen, and the hydrogen is stored in the hydrogen storage alloy of the first auxiliary heat exchanger (1). Since the heat can be automatically radiated to the refrigerant, the heat radiated from the auxiliary heating device (A) can be effectively used not only during heating start-up operation and defrost operation, but also during normal heating operation. machine + R (5
), it has become possible to efficiently heat the refrigerant using external heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の補助加熱装置を使用した空気調和機
の実施例の冷媒回路図、第2図は、用いる水素吸蔵合金
の特性を示すグラフ、第3図は、要部電気回路図、第4
図は制御手段の動作を示すフローチャート、第5図は他
の実施例の冷媒回路図、第6図は、従来例の冷媒回路図
である。 Aは補助加熱装置、Bは空気調和機、 1は第1補助熱交換器、2は第2補助熱交換器、5は外
気送風ファン(加熱機構)、 6は室内側熱交換器、7は室外側熱交換器。 8は圧縮機、18はCPU(制御手段)。
Fig. 1 is a refrigerant circuit diagram of an example of an air conditioner using the auxiliary heating device of the present invention, Fig. 2 is a graph showing the characteristics of the hydrogen storage alloy used, and Fig. 3 is a main part electric circuit diagram. , 4th
5 is a flowchart showing the operation of the control means, FIG. 5 is a refrigerant circuit diagram of another embodiment, and FIG. 6 is a refrigerant circuit diagram of a conventional example. A is an auxiliary heating device, B is an air conditioner, 1 is a first auxiliary heat exchanger, 2 is a second auxiliary heat exchanger, 5 is an outside air blower fan (heating mechanism), 6 is an indoor heat exchanger, 7 is an indoor heat exchanger Outdoor heat exchanger. 8 is a compressor, and 18 is a CPU (control means).

Claims (1)

【特許請求の範囲】[Claims] (1)室内側熱交換器(6)と、 室外側熱交換器(7)と、 前記室内側熱交換器(6)から前記室外側熱交換器(7
)にわたって冷媒を循環流動する圧縮機(8)と、 温度−水素圧力特性がそれぞれ異なる水素吸蔵合金を内
蔵する第1、第2の補助熱交換器(1)(2)が接続さ
れるとともに、前記第2補助熱交換器(2)を加熱する
加熱機構(5)が設けられて構成され、前記加熱機構(
5)の停止時に前記第2補助熱交換器(2)側に水素を
吸蔵して蓄熱し、前記加熱機構(5)の動作時に前記第
2補助熱交換器(2)側から水素を放出して、前記第1
補助熱交換器(1)側に水素を吸蔵して冷媒に放熱を行
う補助加熱装置(A)とを備える水素吸蔵合金を利用す
るヒートポンプ式空気調和機において、 前記第2補助熱交換器(2)の水素吸蔵合金に所定量の
水素が吸蔵された状態で、前記加熱機構(5)を駆動し
、かつ、その第2補助熱交換器(2)の水素吸蔵合金か
ら所定量の水素を放出した状態で前記加熱機構(5)の
駆動を停止する制御手段(18)を備えることを特徴と
する水素吸蔵合金を利用するヒートポンプ式空気調和機
(1) An indoor heat exchanger (6), an outdoor heat exchanger (7), and from the indoor heat exchanger (6) to the outdoor heat exchanger (7).
), and first and second auxiliary heat exchangers (1) and (2) containing hydrogen storage alloys having different temperature-hydrogen pressure characteristics are connected, A heating mechanism (5) for heating the second auxiliary heat exchanger (2) is provided and configured, and the heating mechanism (
5) when the second auxiliary heat exchanger (2) is stopped, hydrogen is stored and stored in the second auxiliary heat exchanger (2), and when the heating mechanism (5) is operated, hydrogen is released from the second auxiliary heat exchanger (2). Then, the first
In a heat pump air conditioner using a hydrogen storage alloy, the second auxiliary heat exchanger (2 ) with a predetermined amount of hydrogen stored in the hydrogen storage alloy, the heating mechanism (5) is driven, and a predetermined amount of hydrogen is released from the hydrogen storage alloy of the second auxiliary heat exchanger (2). 1. A heat pump type air conditioner using a hydrogen storage alloy, characterized in that the heat pump type air conditioner is equipped with a control means (18) that stops driving the heating mechanism (5) in a state in which the heating mechanism (5) is heated.
JP23390586A 1986-09-30 1986-09-30 Heat pump type air conditioner utilizing hydrogen occluding alloy Pending JPS6387564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23390586A JPS6387564A (en) 1986-09-30 1986-09-30 Heat pump type air conditioner utilizing hydrogen occluding alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23390586A JPS6387564A (en) 1986-09-30 1986-09-30 Heat pump type air conditioner utilizing hydrogen occluding alloy

Publications (1)

Publication Number Publication Date
JPS6387564A true JPS6387564A (en) 1988-04-18

Family

ID=16962419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23390586A Pending JPS6387564A (en) 1986-09-30 1986-09-30 Heat pump type air conditioner utilizing hydrogen occluding alloy

Country Status (1)

Country Link
JP (1) JPS6387564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113439A (en) * 2005-10-19 2007-05-10 Hitachi High-Technologies Corp Pump system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113439A (en) * 2005-10-19 2007-05-10 Hitachi High-Technologies Corp Pump system

Similar Documents

Publication Publication Date Title
JP2504437B2 (en) air conditioner
JPS6332263A (en) Auxiliary heating apparatus utilizing hydrogen occluding alloy
JPS6387564A (en) Heat pump type air conditioner utilizing hydrogen occluding alloy
JP3267597B2 (en) Heating overload operation control method for multi-air conditioner combined with cooling and heating
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JPH0349034B2 (en)
JPS63187042A (en) Air conditioner
JPS63306377A (en) Defrostation controller for heat pump type air conditioner
JPH0233108Y2 (en)
JPS60144569A (en) Controller for operation of air conditioner
JPS5971963A (en) Heat pump type refrigeration cycle
JPS62102059A (en) Defrostation operation controller for air conditioner
JPS60144549A (en) Method of controlling defrosting operation of air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS6023648Y2 (en) air conditioner
JPH0656274B2 (en) Refrigeration cycle equipment
JPS63131968A (en) Heat pump type air conditioner
JPS62299665A (en) Refrigerator
JPS6179959A (en) Heat pump type air conditioner
JPH0370151B2 (en)
JPS62293056A (en) Heat pump type air conditioner
JPS5971962A (en) Heat pump type refrigeration cycle
JPS60142171A (en) Method of controlling operation of heat pump type floor heating apparatus
JPS62293052A (en) Heat pump type air conditioner
JPS6329163A (en) Heat pump type air conditioner utilizing hydrogen occluding alloy