JPS6386924A - Original exponent-vector converting circuit on galois body - Google Patents

Original exponent-vector converting circuit on galois body

Info

Publication number
JPS6386924A
JPS6386924A JP61232003A JP23200386A JPS6386924A JP S6386924 A JPS6386924 A JP S6386924A JP 61232003 A JP61232003 A JP 61232003A JP 23200386 A JP23200386 A JP 23200386A JP S6386924 A JPS6386924 A JP S6386924A
Authority
JP
Japan
Prior art keywords
circuit
outputted
alphan
exponent
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61232003A
Other languages
Japanese (ja)
Other versions
JPH0783277B2 (en
Inventor
Keiichi Iwamura
恵市 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61232003A priority Critical patent/JPH0783277B2/en
Priority to DE3751958T priority patent/DE3751958T2/en
Priority to EP87308648A priority patent/EP0262944B1/en
Priority to DE3789266T priority patent/DE3789266T2/en
Priority to DE3752367T priority patent/DE3752367T2/en
Priority to EP93201798A priority patent/EP0566215B1/en
Priority to EP96200874A priority patent/EP0723342B1/en
Publication of JPS6386924A publication Critical patent/JPS6386924A/en
Priority to US08/400,521 priority patent/US5590138A/en
Publication of JPH0783277B2 publication Critical patent/JPH0783277B2/en
Priority to US08/701,327 priority patent/US5774389A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detection And Correction Of Errors (AREA)
  • Error Detection And Correction (AREA)

Abstract

PURPOSE:to execute an exponent-vector conversion by a small circuit quantity, by constituting an exponent-vector converting circuit in a digital processing circuit, of a gate circuit and a multiplying circuit. CONSTITUTION:When a binary expression of a code length (n) has been sent in order of N0 N7, alphaN<0> alphaN<7>.<128> are outputted to a bus line Y, and sent to a multiplying circuit 2. From an output Z of the multiplying circuit 2, outputs multiplied by alphaN<0>-alphaN<7>.<128> are outputted successively. Its output is fetched in a register 3, and output to the other input terminal X of the multiplying circuit 2. Also, to X, the contents of the register are set in advance so that '1' is outputted, when Y has outputted alphaN<0> has been outputted first. When alphaN<7>.<128> has been outputted, alpha<n> is generated. A clock pulse HCK is outputted from a clock oscillator, while N0-N7 are being outputted. In this way, a conversion from an exponent expression (n) to a vector expression alpha<n> can be executed by a gate circuit and a multiplying circuit which have been simplified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はデジタル処理回路に関し、特にその符号化・復
号回路において用いられるガロア体(gaILois体
:加減乗除の四則演算が行える元の集合で元の数が有限
であるもの。通常、qを元の数としてGF(q)で表わ
す。)上の元の指数・ベクトル変換回路に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to digital processing circuits, and in particular to a Galois field (gaILois field), which is a set of elements that can perform four arithmetic operations such as addition, subtraction, multiplication, and division. (usually expressed as GF(q), where q is the number of elements).

〔従来技術〕[Prior art]

従来、ガロア体上の元の指数・ベクトル変換は処理が非
常に複雑であるので、指数・ベクトル変換回路としては
ROM (リードオンメモリー)に指数−ベクトル対応
テーブルを生成しておきそれにより変換処理を行なうの
が通常であった。
Conventionally, the exponent/vector conversion of the original on the Galois field is very complicated, so the exponent/vector conversion circuit generates an exponent/vector correspondence table in ROM (read-on memory) and performs the conversion process using that table. It was usual to do so.

〔従来技術の問題点〕[Problems with conventional technology]

しかしながらROMは回路構成が大きいので回路構成の
簡略化には不適であった。このためROMに変わる簡差
で回路量の小さい指数・ベクトル変換回路が望まれてい
た。
However, ROM has a large circuit configuration and is therefore unsuitable for simplifying the circuit configuration. For this reason, there has been a desire for an index/vector conversion circuit that is simple to replace the ROM and has a small amount of circuitry.

C問題点を解決するための手段) 本発明は、ROMを用いず、ゲート回路及び乗算回路に
よってガロア体上の元の指数・ベクトル変換を行なう簡
単な回路の指数・ベクトル変換回路を提供することを目
的とする。
Means for Solving Problem C) The present invention provides a simple exponent/vector conversion circuit that performs exponent/vector conversion of an element on a Galois field using a gate circuit and a multiplication circuit without using a ROM. With the goal.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

指数・ベクトル変換回路においては指数nはバイナリで
入力され、次のように表される。
In the exponent/vector conversion circuit, the exponent n is input in binary and is expressed as follows.

それからαnを生成するために次のように分解される。It is then decomposed as follows to generate αn.

n=N7・12B+N8・64+N5・32+N4・1
6+N3・8+N2・4+N1・2+NO・1 α0=αN?、12a・αN6°64  ・αN5−3
2  ・αN4・16− a N 3°a 、 a N
 2°4・αN1−2・αN。
n=N7・12B+N8・64+N5・32+N4・1
6+N3・8+N2・4+N1・2+NO・1 α0=αN? , 12a・αN6°64・αN5-3
2 ・αN4・16- a N 3°a, a N
2°4・αN1−2・αN.

従って、Ni (i=o・・・7)が1のときα2“1
を出力し、0のとき1を出力する回路を構成し、その出
力を順次束じていけばよい。そのブロック図を第1図に
示し、その動作タイミングを第2図に示す。符号長nの
バイナリ−表現がNO→N7の順で送られてきたときパ
スラインYにはαNO−αN?弓28が出力され乗算回
路2に送られる。乗算回路2の出力Zからは順次αN0
〜αN?弓211を乗じた出力が出力される。その出力
をレジスタ3にとりこみ、乗算回路2のもう一つの入力
端子Xに出力する。ただし、Xには、最初YがαN0を
出力した時1を出力するようにレジスタの内容をセット
しておく。αN7°126が出力されたときα0が生成
される。
Therefore, when Ni (i=o...7) is 1, α2"1
It is sufficient to construct a circuit that outputs 1 when the value is 0, and then sequentially bundles the outputs. Its block diagram is shown in FIG. 1, and its operation timing is shown in FIG. When a binary representation of code length n is sent in the order NO→N7, the path line Y has αNO−αN? The bow 28 is output and sent to the multiplication circuit 2. From the output Z of the multiplier circuit 2, αN0
~αN? The output multiplied by the bow 211 is output. The output is taken into the register 3 and outputted to the other input terminal X of the multiplication circuit 2. However, the contents of the register are set in X so that 1 is output when Y first outputs αN0. When αN7°126 is output, α0 is generated.

HCKは、NO〜N7が出力されている間図示しないク
ロック発振器から出力されているクロックパルスである
HCK is a clock pulse that is output from a clock oscillator (not shown) while NO to N7 are being output.

ここでNO〜Nフに従ってαN0〜N7弓26を出力す
る指数/ベクトル回路1の構成を第3図に示す。
FIG. 3 shows the configuration of the index/vector circuit 1 which outputs the αN0 to N7 bows 26 according to NO to N.

この回路は従来はROMによって生成されていたが本実
施例ではゲート回路によって構成しである。尚、第3図
において口はExclusive  OR(排他的論理
和)回路、+はパスラインを示す。第3図の回路は既約
多項式がp (x)”x’ +x4 +x3 +x” 
+1の場合においてN i = 1  (i =O→7
) (Dとき順次a=(010ooooo)、 α” 
= (00100000)。
Conventionally, this circuit was generated by a ROM, but in this embodiment, it is constructed by a gate circuit. In FIG. 3, the opening indicates an exclusive OR (exclusive OR) circuit, and the symbol + indicates a pass line. In the circuit of Figure 3, the irreducible polynomial is p (x)"x' +x4 +x3 +x"
+1, N i = 1 (i = O → 7
) (When D, sequentially a=(010oooooo), α”
= (00100000).

a’ = (00001000)、aa−(10111
000)、a′6=(00110010)、a”=(1
0111001)、a64=(11111010)、a
”’ = (totoooot)を出力し、N1=0の
とき1を出力するゲート回路構成になっている。
a' = (00001000), aa-(10111
000), a′6=(00110010), a”=(1
0111001), a64=(11111010), a
The gate circuit has a configuration that outputs ``' = (totoooot) and outputs 1 when N1=0.

以上の構成によって、指数表現nから、ベクトル表現α
0への変換を簡略化されたゲート回路と乗算回路によっ
て行なうことができる。
With the above configuration, from the exponential representation n, the vector representation α
Conversion to 0 can be performed by simplified gate circuits and multiplier circuits.

第1 図(D 例ではα0生成までにNoNN7をシリ
アルに出力するために8クロツク入カ必要であるが、ク
ロック入力数を少なくしたい場合NO〜N7をパラレル
に出力し、乗算回路をそれに応じて複数もっことによっ
てクロック人力にすることもできる。その場合回路量が
多少本実施例より多くなる。
Figure 1 (D) In the example, 8 clock inputs are required to serially output NoNN7 by the time α0 is generated, but if you want to reduce the number of clock inputs, output NO~N7 in parallel and adjust the multiplication circuit accordingly. The clock can also be manually operated by using a plurality of clocks.In that case, the amount of circuitry will be somewhat larger than in this embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の指数・ベクトル変換回路
はゲート回路及び乗算回路によって構成したので小さい
回路量で指数・ベクトル変換を行なうことができるとい
う効果を奏する。
As explained above, since the exponent/vector conversion circuit of the present invention is constituted by a gate circuit and a multiplication circuit, it has the advantage of being able to perform exponent/vector conversion with a small amount of circuitry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る指数・ベクトル変換回路
のブロック図、第2図は第1図のブロック図の動作タイ
ミングチャート、第3図は指数/ベクトル回路の構成を
示す図である。 1 −−−−−一指数/ベクトル回路 2 −−−一−−乗算回路 3−−−−−−レジスタ
FIG. 1 is a block diagram of an index/vector conversion circuit according to an embodiment of the present invention, FIG. 2 is an operation timing chart of the block diagram of FIG. 1, and FIG. 3 is a diagram showing the configuration of the index/vector circuit. . 1 ----1 index/vector circuit 2 ----1 multiplication circuit 3 -------Register

Claims (1)

【特許請求の範囲】 ガロア体GF(2^m)上の元の指数のバイナリ表現 n=2^m^−^1・N_m_−_1+2^m^−^2
・N_m_−_2+・・・+2・N_1+N_0 のNi(i=0・・・m−1)=1に対応して▲数式、
化学式、表等があります▼を出力し、Ni=0に対応し
て1を 出力する回路手段と、該回路手段の出力を順次乗算する
乗算回路とから構成され、nのベクトル表現 ▲数式、化学式、表等があります▼ を生成出力することを特徴としたガロア体上の元の指数
・ベクトル変換回路。
[Claims] Binary representation of original index on Galois field GF(2^m) n=2^m^-^1・N_m_-_1+2^m^-^2
・Corresponding to Ni (i=0...m-1)=1 of N_m_-_2+...+2・N_1+N_0 ▲ Formula,
It consists of a circuit means that outputs ▼ and outputs 1 in response to Ni=0, and a multiplier circuit that sequentially multiplies the output of the circuit means, and a vector representation of n ▲ Mathematical formula, chemical formula , tables, etc. ▼ An original exponent/vector conversion circuit on a Galois field, which is characterized by generating and outputting .
JP61232003A 1986-09-30 1986-09-30 Original representation format conversion circuit on Galois field Expired - Fee Related JPH0783277B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP61232003A JPH0783277B2 (en) 1986-09-30 1986-09-30 Original representation format conversion circuit on Galois field
EP93201798A EP0566215B1 (en) 1986-09-30 1987-09-29 Error correction apparatus
EP87308648A EP0262944B1 (en) 1986-09-30 1987-09-29 Error correction apparatus
DE3789266T DE3789266T2 (en) 1986-09-30 1987-09-29 Error correction device.
DE3752367T DE3752367T2 (en) 1986-09-30 1987-09-29 Error correction unit
DE3751958T DE3751958T2 (en) 1986-09-30 1987-09-29 Error correction device
EP96200874A EP0723342B1 (en) 1986-09-30 1987-09-29 Error correction apparatus
US08/400,521 US5590138A (en) 1986-09-30 1995-03-07 Error correction apparatus
US08/701,327 US5774389A (en) 1986-09-30 1996-08-23 Error correction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232003A JPH0783277B2 (en) 1986-09-30 1986-09-30 Original representation format conversion circuit on Galois field

Publications (2)

Publication Number Publication Date
JPS6386924A true JPS6386924A (en) 1988-04-18
JPH0783277B2 JPH0783277B2 (en) 1995-09-06

Family

ID=16932418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232003A Expired - Fee Related JPH0783277B2 (en) 1986-09-30 1986-09-30 Original representation format conversion circuit on Galois field

Country Status (1)

Country Link
JP (1) JPH0783277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205272A (en) * 2011-03-28 2012-10-22 Toshiba Corp Reed-solomon decoder and reception apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205272A (en) * 2011-03-28 2012-10-22 Toshiba Corp Reed-solomon decoder and reception apparatus
US9077382B2 (en) 2011-03-28 2015-07-07 Kabushiki Kaisha Toshiba Reed-solomon decoder and reception apparatus

Also Published As

Publication number Publication date
JPH0783277B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JP4460047B2 (en) Galois field multiplication system
Lee A high-speed low-complexity Reed-Solomon decoder for optical communications
JPH07507411A (en) Digital filter using coefficients that are powers of 2
JPH0834408B2 (en) IIR Digital Filter
JPH0818550A (en) Code sequence generator
JPS6135575B2 (en)
JP4566513B2 (en) Method and apparatus for generating pseudo-random sequences
JPH0612547B2 (en) Digital signal processor
JPS6386924A (en) Original exponent-vector converting circuit on galois body
US3845290A (en) Decimal-to-binary converter
JPS58162120A (en) Transversal filter
US6226772B1 (en) Pipelined combined system for producing error correction code symbols and error syndromes for large ECC redundancy
US6697830B2 (en) Polynomial coefficient generator
JPS62233932A (en) Decoding circuit for bch code
JP2603243B2 (en) Error correction device
KR940007570B1 (en) Polynominal expression multiplication circuit of digital system
RU2115231C1 (en) Data coding-decoding device
Wei VLSI architectures of divider for finite field GF (2/sup m/)
JPS62122333A (en) Syndrome circuit
KR0164726B1 (en) Parallel cycle redundancy check encoder
US6470369B1 (en) Euclid mutual division arithmetic circuit and processing circuit
KR950010820B1 (en) Arithmetic processing unit of repeating data
JPH0764810A (en) Galois field computing element
JPS6390920A (en) Galois field dividing circuit
JPH0554160A (en) Function generating method and general function generator for its method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees