JPS6386924A - Original exponent-vector converting circuit on galois body - Google Patents
Original exponent-vector converting circuit on galois bodyInfo
- Publication number
- JPS6386924A JPS6386924A JP61232003A JP23200386A JPS6386924A JP S6386924 A JPS6386924 A JP S6386924A JP 61232003 A JP61232003 A JP 61232003A JP 23200386 A JP23200386 A JP 23200386A JP S6386924 A JPS6386924 A JP S6386924A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- outputted
- alphan
- exponent
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 1
Landscapes
- Detection And Correction Of Errors (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はデジタル処理回路に関し、特にその符号化・復
号回路において用いられるガロア体(gaILois体
:加減乗除の四則演算が行える元の集合で元の数が有限
であるもの。通常、qを元の数としてGF(q)で表わ
す。)上の元の指数・ベクトル変換回路に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to digital processing circuits, and in particular to a Galois field (gaILois field), which is a set of elements that can perform four arithmetic operations such as addition, subtraction, multiplication, and division. (usually expressed as GF(q), where q is the number of elements).
従来、ガロア体上の元の指数・ベクトル変換は処理が非
常に複雑であるので、指数・ベクトル変換回路としては
ROM (リードオンメモリー)に指数−ベクトル対応
テーブルを生成しておきそれにより変換処理を行なうの
が通常であった。Conventionally, the exponent/vector conversion of the original on the Galois field is very complicated, so the exponent/vector conversion circuit generates an exponent/vector correspondence table in ROM (read-on memory) and performs the conversion process using that table. It was usual to do so.
しかしながらROMは回路構成が大きいので回路構成の
簡略化には不適であった。このためROMに変わる簡差
で回路量の小さい指数・ベクトル変換回路が望まれてい
た。However, ROM has a large circuit configuration and is therefore unsuitable for simplifying the circuit configuration. For this reason, there has been a desire for an index/vector conversion circuit that is simple to replace the ROM and has a small amount of circuitry.
C問題点を解決するための手段)
本発明は、ROMを用いず、ゲート回路及び乗算回路に
よってガロア体上の元の指数・ベクトル変換を行なう簡
単な回路の指数・ベクトル変換回路を提供することを目
的とする。Means for Solving Problem C) The present invention provides a simple exponent/vector conversion circuit that performs exponent/vector conversion of an element on a Galois field using a gate circuit and a multiplication circuit without using a ROM. With the goal.
以下、本発明の実施例について説明する。 Examples of the present invention will be described below.
指数・ベクトル変換回路においては指数nはバイナリで
入力され、次のように表される。In the exponent/vector conversion circuit, the exponent n is input in binary and is expressed as follows.
それからαnを生成するために次のように分解される。It is then decomposed as follows to generate αn.
n=N7・12B+N8・64+N5・32+N4・1
6+N3・8+N2・4+N1・2+NO・1
α0=αN?、12a・αN6°64 ・αN5−3
2 ・αN4・16− a N 3°a 、 a N
2°4・αN1−2・αN。n=N7・12B+N8・64+N5・32+N4・1
6+N3・8+N2・4+N1・2+NO・1 α0=αN? , 12a・αN6°64・αN5-3
2 ・αN4・16- a N 3°a, a N
2°4・αN1−2・αN.
従って、Ni (i=o・・・7)が1のときα2“1
を出力し、0のとき1を出力する回路を構成し、その出
力を順次束じていけばよい。そのブロック図を第1図に
示し、その動作タイミングを第2図に示す。符号長nの
バイナリ−表現がNO→N7の順で送られてきたときパ
スラインYにはαNO−αN?弓28が出力され乗算回
路2に送られる。乗算回路2の出力Zからは順次αN0
〜αN?弓211を乗じた出力が出力される。その出力
をレジスタ3にとりこみ、乗算回路2のもう一つの入力
端子Xに出力する。ただし、Xには、最初YがαN0を
出力した時1を出力するようにレジスタの内容をセット
しておく。αN7°126が出力されたときα0が生成
される。Therefore, when Ni (i=o...7) is 1, α2"1
It is sufficient to construct a circuit that outputs 1 when the value is 0, and then sequentially bundles the outputs. Its block diagram is shown in FIG. 1, and its operation timing is shown in FIG. When a binary representation of code length n is sent in the order NO→N7, the path line Y has αNO−αN? The bow 28 is output and sent to the multiplication circuit 2. From the output Z of the multiplier circuit 2, αN0
~αN? The output multiplied by the bow 211 is output. The output is taken into the register 3 and outputted to the other input terminal X of the multiplication circuit 2. However, the contents of the register are set in X so that 1 is output when Y first outputs αN0. When αN7°126 is output, α0 is generated.
HCKは、NO〜N7が出力されている間図示しないク
ロック発振器から出力されているクロックパルスである
。HCK is a clock pulse that is output from a clock oscillator (not shown) while NO to N7 are being output.
ここでNO〜Nフに従ってαN0〜N7弓26を出力す
る指数/ベクトル回路1の構成を第3図に示す。FIG. 3 shows the configuration of the index/vector circuit 1 which outputs the αN0 to N7 bows 26 according to NO to N.
この回路は従来はROMによって生成されていたが本実
施例ではゲート回路によって構成しである。尚、第3図
において口はExclusive OR(排他的論理
和)回路、+はパスラインを示す。第3図の回路は既約
多項式がp (x)”x’ +x4 +x3 +x”
+1の場合においてN i = 1 (i =O→7
) (Dとき順次a=(010ooooo)、 α”
= (00100000)。Conventionally, this circuit was generated by a ROM, but in this embodiment, it is constructed by a gate circuit. In FIG. 3, the opening indicates an exclusive OR (exclusive OR) circuit, and the symbol + indicates a pass line. In the circuit of Figure 3, the irreducible polynomial is p (x)"x' +x4 +x3 +x"
+1, N i = 1 (i = O → 7
) (When D, sequentially a=(010oooooo), α”
= (00100000).
a’ = (00001000)、aa−(10111
000)、a′6=(00110010)、a”=(1
0111001)、a64=(11111010)、a
”’ = (totoooot)を出力し、N1=0の
とき1を出力するゲート回路構成になっている。a' = (00001000), aa-(10111
000), a′6=(00110010), a”=(1
0111001), a64=(11111010), a
The gate circuit has a configuration that outputs ``' = (totoooot) and outputs 1 when N1=0.
以上の構成によって、指数表現nから、ベクトル表現α
0への変換を簡略化されたゲート回路と乗算回路によっ
て行なうことができる。With the above configuration, from the exponential representation n, the vector representation α
Conversion to 0 can be performed by simplified gate circuits and multiplier circuits.
第1 図(D 例ではα0生成までにNoNN7をシリ
アルに出力するために8クロツク入カ必要であるが、ク
ロック入力数を少なくしたい場合NO〜N7をパラレル
に出力し、乗算回路をそれに応じて複数もっことによっ
てクロック人力にすることもできる。その場合回路量が
多少本実施例より多くなる。Figure 1 (D) In the example, 8 clock inputs are required to serially output NoNN7 by the time α0 is generated, but if you want to reduce the number of clock inputs, output NO~N7 in parallel and adjust the multiplication circuit accordingly. The clock can also be manually operated by using a plurality of clocks.In that case, the amount of circuitry will be somewhat larger than in this embodiment.
以上説明したように、本発明の指数・ベクトル変換回路
はゲート回路及び乗算回路によって構成したので小さい
回路量で指数・ベクトル変換を行なうことができるとい
う効果を奏する。As explained above, since the exponent/vector conversion circuit of the present invention is constituted by a gate circuit and a multiplication circuit, it has the advantage of being able to perform exponent/vector conversion with a small amount of circuitry.
第1図は本発明の実施例に係る指数・ベクトル変換回路
のブロック図、第2図は第1図のブロック図の動作タイ
ミングチャート、第3図は指数/ベクトル回路の構成を
示す図である。
1 −−−−−一指数/ベクトル回路
2 −−−一−−乗算回路
3−−−−−−レジスタFIG. 1 is a block diagram of an index/vector conversion circuit according to an embodiment of the present invention, FIG. 2 is an operation timing chart of the block diagram of FIG. 1, and FIG. 3 is a diagram showing the configuration of the index/vector circuit. . 1 ----1 index/vector circuit 2 ----1 multiplication circuit 3 -------Register
Claims (1)
・N_m_−_2+・・・+2・N_1+N_0 のNi(i=0・・・m−1)=1に対応して▲数式、
化学式、表等があります▼を出力し、Ni=0に対応し
て1を 出力する回路手段と、該回路手段の出力を順次乗算する
乗算回路とから構成され、nのベクトル表現 ▲数式、化学式、表等があります▼ を生成出力することを特徴としたガロア体上の元の指数
・ベクトル変換回路。[Claims] Binary representation of original index on Galois field GF(2^m) n=2^m^-^1・N_m_-_1+2^m^-^2
・Corresponding to Ni (i=0...m-1)=1 of N_m_-_2+...+2・N_1+N_0 ▲ Formula,
It consists of a circuit means that outputs ▼ and outputs 1 in response to Ni=0, and a multiplier circuit that sequentially multiplies the output of the circuit means, and a vector representation of n ▲ Mathematical formula, chemical formula , tables, etc. ▼ An original exponent/vector conversion circuit on a Galois field, which is characterized by generating and outputting .
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61232003A JPH0783277B2 (en) | 1986-09-30 | 1986-09-30 | Original representation format conversion circuit on Galois field |
EP93201798A EP0566215B1 (en) | 1986-09-30 | 1987-09-29 | Error correction apparatus |
EP87308648A EP0262944B1 (en) | 1986-09-30 | 1987-09-29 | Error correction apparatus |
DE3789266T DE3789266T2 (en) | 1986-09-30 | 1987-09-29 | Error correction device. |
DE3752367T DE3752367T2 (en) | 1986-09-30 | 1987-09-29 | Error correction unit |
DE3751958T DE3751958T2 (en) | 1986-09-30 | 1987-09-29 | Error correction device |
EP96200874A EP0723342B1 (en) | 1986-09-30 | 1987-09-29 | Error correction apparatus |
US08/400,521 US5590138A (en) | 1986-09-30 | 1995-03-07 | Error correction apparatus |
US08/701,327 US5774389A (en) | 1986-09-30 | 1996-08-23 | Error correction apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61232003A JPH0783277B2 (en) | 1986-09-30 | 1986-09-30 | Original representation format conversion circuit on Galois field |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6386924A true JPS6386924A (en) | 1988-04-18 |
JPH0783277B2 JPH0783277B2 (en) | 1995-09-06 |
Family
ID=16932418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61232003A Expired - Fee Related JPH0783277B2 (en) | 1986-09-30 | 1986-09-30 | Original representation format conversion circuit on Galois field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0783277B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012205272A (en) * | 2011-03-28 | 2012-10-22 | Toshiba Corp | Reed-solomon decoder and reception apparatus |
-
1986
- 1986-09-30 JP JP61232003A patent/JPH0783277B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012205272A (en) * | 2011-03-28 | 2012-10-22 | Toshiba Corp | Reed-solomon decoder and reception apparatus |
US9077382B2 (en) | 2011-03-28 | 2015-07-07 | Kabushiki Kaisha Toshiba | Reed-solomon decoder and reception apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0783277B2 (en) | 1995-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4460047B2 (en) | Galois field multiplication system | |
Lee | A high-speed low-complexity Reed-Solomon decoder for optical communications | |
JPH07507411A (en) | Digital filter using coefficients that are powers of 2 | |
JPH0834408B2 (en) | IIR Digital Filter | |
JPH0818550A (en) | Code sequence generator | |
JPS6135575B2 (en) | ||
JP4566513B2 (en) | Method and apparatus for generating pseudo-random sequences | |
JPH0612547B2 (en) | Digital signal processor | |
JPS6386924A (en) | Original exponent-vector converting circuit on galois body | |
US3845290A (en) | Decimal-to-binary converter | |
JPS58162120A (en) | Transversal filter | |
US6226772B1 (en) | Pipelined combined system for producing error correction code symbols and error syndromes for large ECC redundancy | |
US6697830B2 (en) | Polynomial coefficient generator | |
JPS62233932A (en) | Decoding circuit for bch code | |
JP2603243B2 (en) | Error correction device | |
KR940007570B1 (en) | Polynominal expression multiplication circuit of digital system | |
RU2115231C1 (en) | Data coding-decoding device | |
Wei | VLSI architectures of divider for finite field GF (2/sup m/) | |
JPS62122333A (en) | Syndrome circuit | |
KR0164726B1 (en) | Parallel cycle redundancy check encoder | |
US6470369B1 (en) | Euclid mutual division arithmetic circuit and processing circuit | |
KR950010820B1 (en) | Arithmetic processing unit of repeating data | |
JPH0764810A (en) | Galois field computing element | |
JPS6390920A (en) | Galois field dividing circuit | |
JPH0554160A (en) | Function generating method and general function generator for its method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |