JPS6386806A - Production of zinc powder for dry cell - Google Patents

Production of zinc powder for dry cell

Info

Publication number
JPS6386806A
JPS6386806A JP61228552A JP22855286A JPS6386806A JP S6386806 A JPS6386806 A JP S6386806A JP 61228552 A JP61228552 A JP 61228552A JP 22855286 A JP22855286 A JP 22855286A JP S6386806 A JPS6386806 A JP S6386806A
Authority
JP
Japan
Prior art keywords
hopper
zinc
powder
zinc powder
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61228552A
Other languages
Japanese (ja)
Inventor
Takahiko Okura
大蔵 隆彦
Yoshio Ueda
植田 義男
Mitsuteru Kaneda
兼田 光輝
Tatsuichiro Abe
阿部 辰一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KINZOKUFUN KK
Eneos Corp
Original Assignee
TOYO KINZOKUFUN KK
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KINZOKUFUN KK, Nippon Mining Co Ltd filed Critical TOYO KINZOKUFUN KK
Priority to JP61228552A priority Critical patent/JPS6386806A/en
Publication of JPS6386806A publication Critical patent/JPS6386806A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain zinc powder for dry cells in which the teardrop state and spherical state suitable for prepn. of a negative electrode active material of cells; i.e., amalgamated zinc exist mixedly by controlling the O2 in a hopper to a specific concn. range at the time of producing the zinc powder by atomizing a zinc melt and dropping the same in the hopper. CONSTITUTION:The molten zinc maintained at a prescribed temp. in a reservoir vessel 2 installed above the hopper 1 is released from a nozzle 3 into the hopper 1. A spraying gas such as N2 is simultaneously ejected adjacently to the bottom end in the outlet of the nozzle 3 to disperse the molten zinc right after the release to fine drops. The fine drops are solidified while dripped in the hopper 1. The melt temp. in this case is 450-600 deg.C and the pressure of the spraying gas is generally 1-5kg/cm<2>. The zinc powder in which the teardrop state and spherical state exist mixedly is obtd. by controlling the O2 contg. in the hopper 1 to 5-14%. The powder is preferably so formed in this case that the spherical powder occupies 40-70% of the entire part of the zinc powder and the teardrop powder occupies 30-60%.

Description

【発明の詳細な説明】 第1図の亜鉛アトマイジング設備を参照すると、溶融亜
鉛はホッパ1上に装置されたルツボ等の溜め容器2にお
いて所定の温度に維持され、その底に設けられたノズル
5全通して放出される。ノズル出口下端に+jlシあっ
て噴霧気体が噴出され、放出直後の溶融亜鉛を細滴に分
散する。分散した細滴は噴霧タンク内に落下しつつ凝固
しそしてタンク底から回収される。噴し気体としては、
窒素、アルゴン等の不活性ガスの使用が好ましい。
DETAILED DESCRIPTION OF THE INVENTION Referring to the zinc atomizing equipment shown in FIG. 5 is released throughout. Atomizing gas is ejected from the lower end of the nozzle outlet and disperses the molten zinc into fine droplets immediately after being discharged. The dispersed droplets solidify as they fall into the spray tank and are collected from the bottom of the tank. As a blowing gas,
Preference is given to using an inert gas such as nitrogen or argon.

溶融亜鉛としては例えば最純亜鉛(99,99SZn 
)或いはPb、 Cd、 Ga等を添加した亜鉛合金が
使用される。溶体温度は450〜600℃、好ましくは
470〜580℃とされる。
Examples of molten zinc include the purest zinc (99,99SZn
) Alternatively, a zinc alloy to which Pb, Cd, Ga, etc. are added is used. The solution temperature is 450-600°C, preferably 470-580°C.

噴霧気体圧力は、細粒を得るには高い程良いが、あまシ
高くしすぎると側壁等に分散溶滴が衝突して溶滴が過度
に変形成いは偏平化するのでかえって好ましくない。な
るだけ−様なそして微細な噴霧化効果が得られるよう溜
め容器放出ノズル寸法等をも勘案して適正な圧力を選択
する。一般に1〜5 Kgld 、好ましくは2.4〜
!L4Kg/cn?の圧力が採用される。
The higher the spray gas pressure is, the better in order to obtain fine particles, but if it is set too high, the dispersed droplets will collide with the side walls, etc., and the droplets will be excessively deformed or flattened, which is not preferable. In order to obtain as fine atomization effect as possible, an appropriate pressure is selected taking into consideration the dimensions of the reservoir discharge nozzle, etc. Generally from 1 to 5 Kgld, preferably from 2.4 to
! L4Kg/cn? pressure is adopted.

本発明に従えば、ホッパ内の酸素濃度は3〜14チに管
理される。一般に、噴霧タンク内の酸素濃度が低い程’
Jt霧された溶融亜鉛は球状化される。
According to the present invention, the oxygen concentration within the hopper is controlled to be between 3 and 14 degrees. In general, the lower the oxygen concentration in the spray tank, the more
The Jt atomized molten zinc is spheroidized.

これは、酸化物の存在しない状態で凝固すると表面張力
により球状化が増進するためと思われる。
This seems to be because when solidified in the absence of oxides, spheroidization is promoted by surface tension.

酸化物が所定以上存在すると、液滴の表面張力、粘性等
に悪影*V及はして充分なる球状化効果が発現しない。
If the oxide is present in excess of a predetermined amount, it will adversely affect the surface tension, viscosity, etc. of the droplets, and a sufficient spheroidizing effect will not be achieved.

酸素濃度が3−未満では球状粉の発生量が多くなシ過ぎ
不発明の目的とする涙滴状と球状との混在した亜鉛粉末
が得られない。球状粉が亜鉛粉末全体の40〜70−を
占めセして涙滴状(針状全も含める)粉が30〜60チ
を占めるようにすることが好ましい。酸素濃度が14チ
を越えるとZnOが多量に生じ、球状粉の発生量が減少
しまた水化後のガス発生量が多くなる。
If the oxygen concentration is less than 3, the amount of spherical powder produced is too large and it is impossible to obtain zinc powder with a mixture of teardrop and spherical shapes, which is the object of the present invention. It is preferable that the spherical powder occupies 40 to 70 cm of the total zinc powder, and the teardrop-shaped (including needle-shaped) powder occupies 30 to 60 cm. When the oxygen concentration exceeds 14 g, a large amount of ZnO is generated, the amount of spherical powder generated decreases, and the amount of gas generated after hydration increases.

ホッパ内の酸素濃度を一定とする為ホッパ内の雰囲気ガ
スを循環使用することが好ましい。抜出されたホッパ内
雰囲気ガスはサイクロン5、ガスクーラ6を経由してブ
ロワによりホツパ下端部に戻される。
In order to maintain a constant oxygen concentration within the hopper, it is preferable to circulate the atmospheric gas within the hopper. The extracted atmospheric gas inside the hopper passes through a cyclone 5 and a gas cooler 6 and is returned to the lower end of the hopper by a blower.

第2(i)及び第2(b)図は、後の実施例と関連して
得られた涙滴状及び球状が混在する亜鉛粉末の例示であ
る。第2(a)図は一250〜+125Nの粒度のもの
を、そして第2(b)図は一125μの粒度のものを示
す。球状と細長い涙滴状とがおおよそ半分づつ混在して
いることがわかる。
Figures 2(i) and 2(b) are illustrations of zinc powder with a mixture of teardrop and spherical shapes obtained in connection with the later examples. FIG. 2(a) shows a grain size of -250 to +125N, and FIG. 2(b) shows a grain size of -125μ. It can be seen that approximately half of the shapes are spherical and half are elongated teardrop shapes.

生成する亜鉛粉末の粒度分布率は一般に次の範囲をとる
ニ ー)−500/j       3〜15チー500〜
+250 μ  35〜55 チー250〜+125 
μ  25〜45 チー 125 μ        
   5〜15 チこうして得られる亜鉛原初は水化さ
れる。参考までに本発明により生成された亜鉛原初の低
11g氷化プロセスについて説明する: 亜鉛原初は、先ず、水酸化アルカリ溶液例えば3%KO
H溶液を使用して洗浄される。洗浄は室温で20〜60
分、好ましくは30分前後行われる。
The particle size distribution ratio of the zinc powder produced generally takes the following range: -500/j 3~15 Chi500~
+250μ 35~55 Qi250~+125
μ 25~45 Qi 125 μ
5-15 H The zinc base thus obtained is hydrated. For reference, the low 11g freezing process of the zinc primordial produced by the present invention will be explained:
Washed using H solution. Wash at room temperature for 20 to 60 minutes
It is carried out for about 30 minutes, preferably about 30 minutes.

洗浄後の亜鉛原初はKg −Inアマルガム、好ましく
はHg−4%Inアマルガムを用いて水化される。
After washing, the zinc primordial is hydrated using Kg-In amalgam, preferably Hg-4% In amalgam.

水化は室温で40〜120分行われる。Hydration is carried out for 40-120 minutes at room temperature.

その後、Pb 添着を行い、デカンテーションよシ洗浄
漱を分離し、水洗後、e過し、そして乾燥させることに
より永化粉が得られる。
Thereafter, Pb is impregnated, the washing residue is separated by decantation, washed with water, e-filtered, and dried to obtain Eihwa powder.

Kg は従来の3%から1.2チに減少されるが、本発
明亜鉛原初を使用しそして上記水化プロセスを採用する
ことにより良好々水化がもたらされる0こうして得られ
た亜鉛氷化粉は、KOI(電解液及びゲル状化剤(ポリ
アクリル酸ンーダ、CMC等)と混合してゲル化され、
アルカリ電池等用の陰極活物質として調製される。
Kg is reduced from the conventional 3% to 1.2 kg, but good hydration is achieved by using the zinc raw material of the present invention and adopting the above hydration process. is gelled by mixing with KOI (electrolyte and gelling agent (polyacrylic acid powder, CMC, etc.),
It is prepared as a cathode active material for alkaline batteries, etc.

本発明亜鉛原初を使用して水化された亜鉛永化粉は水素
発生量が一般基準値より充分に低く、放電特性も標準対
比は1以上の負特性を示す。
The hydrogen generation amount of the zinc permanent powder hydrated using the zinc raw material of the present invention is sufficiently lower than the general standard value, and the discharge characteristics also show a negative characteristic of 1 or more compared to the standard.

標準対比:現在市販されている乾電池中の氷化粉すなわ
ち5mHz永化粉(In=ao2*、pb =αaSS
  を含む)を用いて放電負荷2Ω、20℃の放電条件
により、終止電圧α9マまでの放電持続時間を測定し、
5チHgの測定値を1とした時の対比時間0 発明の効果 現状の5−8gの乾電池用氷化粉と少くとも同等の水素
ガス発生量及び放電特性を示す低Hg(約1、2 % 
)氷化粉の作成を可能ならしめ、水銀問題を軽減する。
Standard comparison: Freezing powder in dry batteries currently on the market, i.e. 5mHz Yonghwa powder (In=ao2*, pb=αaSS
) to measure the discharge duration to the final voltage α9m under the discharge conditions of 2Ω discharge load and 20℃,
The comparison time is 0 when the measured value of 5 Hg is 1. Effects of the invention Low Hg (approximately 1,2 %
) Enables the creation of frozen powder and alleviates the mercury problem.

第1図に示したようなアトマイジング設備を使用して最
純亜鉛を用いて亜鉛粉末を製造した。溶融亜鉛はノズル
を備える黒鉛ルツボに装入した。
Zinc powder was produced using the purest zinc using an atomizing facility as shown in FIG. Molten zinc was charged into a graphite crucible equipped with a nozzle.

ノズル放出口は五〇−とした。ノズル放出口からN8ガ
スを噴出し、溶融亜鉛をアトマイズ条件した。ホッパは
約2m直径X5m高さとした。ホッパ内雰囲気ガスの循
環をも行った。アトマイズ条件は次の通シとした。
The nozzle outlet was 50-mm. N8 gas was ejected from the nozzle outlet to atomize the molten zinc. The hopper had a diameter of approximately 2 m and a height of 5 m. The atmospheric gas in the hopper was also circulated. The atomization conditions were as follows.

朧    Osチ   溶解炉温度(℃)1     
  14         480 〜5102   
      7         460〜5103 
        五 5      470〜530x
2の条件の下で得られた涙滴状及び球状混在粉の状態が
先に呈示した第2(a)及び(b)図の写真である。
Oboro Oschi Melting furnace temperature (℃) 1
14 480 ~ 5102
7 460-5103
5 5 470-530x
FIGS. 2(a) and 2(b) show the state of the teardrop-shaped and spherical mixed powder obtained under the conditions of 2.

これらム1.2及び3の亜鉛粉それぞれについて、下記
に示す粒度分布に混合し、氷化用試料とした。
Each of the zinc powders of Nos. 1.2 and 3 was mixed to have the particle size distribution shown below to prepare a sample for freezing.

これを水酸化カリウム3チ水溶液中に投入し、攪拌しな
がら、水銀含有曾が1.2チとなるようにインジウムm
度を変えたインジウムアマルガムを滴下して永化し、水
洗、乾燥l−で水化亜鉛粉とした0 生成永化粉の水素ガス発生量、及び分析値を調査した。
This was poured into an aqueous solution of potassium hydroxide (3 g), and while stirring, the indium m
Indium amalgam with varying degrees of strength was added dropwise and cured, washed with water and dried to make hydrated zinc powder.The amount of hydrogen gas generated and analytical values of the produced cured powder were investigated.

更に、永化粉とポリアクリル酸ンーダ及びcMc (カ
ルボキシメチルセルロース)を混合し、i解液(50%
  KOH%ZnO飽和)を添加し、ゲル状化し、脱気
後、陰イオン活物質として使用して放電試験を行った。
Furthermore, Yonghwa powder, polyacrylic acid powder, and cMc (carboxymethylcellulose) were mixed, and i-lysis solution (50%
KOH%ZnO saturation) was added to form a gel, and after degassing, a discharge test was conducted using it as an anionic active material.

又、比較例として空気中にアトマイズした場合の試験結
果を示す。
Also, as a comparative example, test results when atomized in air are shown.

結果を下表に示す: ガス発生量は、5. OX 10−” ml/ f −
day  以下の低い水準が得られ、族1ft特性の標
準対比は1以上である。
The results are shown in the table below: The amount of gas generated was 5. OX 10-” ml/f-
A low level of less than 1 day is obtained, and the standard contrast of the family 1ft characteristic is greater than or equal to 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融亜鉛アトマイジング設備を例示し、そして
第2(a)及び2(b)図は本発明により製造された涙
滴状及び球状混在粉の一250〜+125μ及び−12
,5p校庭範囲それぞれの粒子構造を示す50倍顕微鏡
写真である。 1:ホッパ 2:溜め容器 3:ノズル 5:サイクロン 6;ガスクーラー 第1図
FIG. 1 illustrates a molten zinc atomizing equipment, and FIGS. 2(a) and 2(b) show one of the teardrop-shaped and spherical mixed powders produced according to the present invention.
, 50x micrographs showing the particle structure of each of the 5p schoolyard areas. 1: Hopper 2: Reservoir 3: Nozzle 5: Cyclone 6; Gas cooler Figure 1

Claims (1)

【特許請求の範囲】 1)亜鉛溶体を噴霧気体によりアトマイジングし、ホッ
パ内を落下せしめて亜鉛粉末を製造するに当り、ホッパ
内の酸素濃度を3〜14%に管理することにより、涙滴
状と球状との混在した乾電池用亜鉛粉末の製造方法。 2)球状物が亜鉛粉末全体の40〜70%を占める特許
請求の範囲第1項記載の方法。 3)ホッパ内の酸素濃度を一定とする為ホッパ内の雰囲
気ガスを循環使用する特許請求の範囲第1項記載の方法
[Claims] 1) When producing zinc powder by atomizing the zinc solution with atomized gas and letting it fall in the hopper, teardrops are produced by controlling the oxygen concentration in the hopper to 3 to 14%. A method for producing zinc powder for dry batteries that has a mixture of spherical and spherical shapes. 2) The method according to claim 1, wherein the spherical particles account for 40 to 70% of the total zinc powder. 3) The method according to claim 1, wherein the atmospheric gas in the hopper is circulated to keep the oxygen concentration in the hopper constant.
JP61228552A 1986-09-29 1986-09-29 Production of zinc powder for dry cell Pending JPS6386806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61228552A JPS6386806A (en) 1986-09-29 1986-09-29 Production of zinc powder for dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228552A JPS6386806A (en) 1986-09-29 1986-09-29 Production of zinc powder for dry cell

Publications (1)

Publication Number Publication Date
JPS6386806A true JPS6386806A (en) 1988-04-18

Family

ID=16878159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228552A Pending JPS6386806A (en) 1986-09-29 1986-09-29 Production of zinc powder for dry cell

Country Status (1)

Country Link
JP (1) JPS6386806A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339011A (en) * 1976-09-22 1978-04-10 Mitsubishi Electric Corp Transmission circuit
JPS609081A (en) * 1983-06-27 1985-01-18 株式会社東芝 Discharge counter of arrester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339011A (en) * 1976-09-22 1978-04-10 Mitsubishi Electric Corp Transmission circuit
JPS609081A (en) * 1983-06-27 1985-01-18 株式会社東芝 Discharge counter of arrester

Similar Documents

Publication Publication Date Title
KR100544541B1 (en) Method for Producing Lithium-Transition Metal Mixtures
US7524582B2 (en) Zinc powder or zinc alloy powder for alkaline batteries
KR20040011498A (en) Binary, ternary and quaternary lithium phosphates, method for the production thereof and use of the same
CN103636034A (en) Lead-acid batteries and pastes therefor
JPH0973900A (en) Manufacture of nickel electrode active material for alkaline storage battery
CN114204008A (en) Preparation method of high-voltage lithium cobalt oxide positive electrode material
JPH06163055A (en) Manufacture of sintered electrode for battery
JPS6386806A (en) Production of zinc powder for dry cell
JP2009064585A (en) Manufacturing method of transition metal based compound for lithium secondary battery
CA2506295C (en) Zinc powder or zinc alloy powder with inhomogeneous bulk density for alkaline batteries
CN109494370A (en) A kind of method for coating of electrode material of lithium battery and electrode material containing clad
US3244563A (en) Method for producing lead oxide
JP3553734B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP4336783B2 (en) Zinc alloy powder for alkaline batteries and method for producing the same
JPH0945321A (en) Alloy used as active material for negative electrode of rechargeable nickel-metal hydride-alkaline battery and its manufacture
JPS60238401A (en) Zinc powder for alkali cell and manufacture
US3244562A (en) Battery lead oxide products
JPH0441468B2 (en)
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JPS6351351B2 (en)
JPH01187765A (en) Manufacture of nickel electrode for alkaline battery
JPH09115522A (en) Positive electrode mixture for battery
JPH09235636A (en) Zinc alloy powder for alkaline battery and its production
JPH09213322A (en) Manufacture of battery and manganese oxide for it
JP2001107112A (en) Manufacture of hydrogen storage alloy powder