JPH09235636A - Zinc alloy powder for alkaline battery and its production - Google Patents

Zinc alloy powder for alkaline battery and its production

Info

Publication number
JPH09235636A
JPH09235636A JP6725996A JP6725996A JPH09235636A JP H09235636 A JPH09235636 A JP H09235636A JP 6725996 A JP6725996 A JP 6725996A JP 6725996 A JP6725996 A JP 6725996A JP H09235636 A JPH09235636 A JP H09235636A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
alloy powder
powder
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6725996A
Other languages
Japanese (ja)
Other versions
JP3434961B2 (en
JP3434961B6 (en
Inventor
Hideki Nagata
秀樹 永田
Kenji Ichiya
健治 一箭
Kazuya Saito
和也 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13339789&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09235636(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP1996067259A priority Critical patent/JP3434961B6/en
Priority claimed from JP1996067259A external-priority patent/JP3434961B6/en
Publication of JPH09235636A publication Critical patent/JPH09235636A/en
Publication of JP3434961B2 publication Critical patent/JP3434961B2/en
Application granted granted Critical
Publication of JP3434961B6 publication Critical patent/JP3434961B6/en
Ceased legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zinc alloy powder for alkaline battery, being inexpensive and excellent in fluidity and capable of preventing the clogging of an injection nozzle at the time of filling a gel-like zinc cathode agent, by performing atomizing by using compressed air alone as a gas source and its production. SOLUTION: Because a molten zinc alloy controlled to >=460 deg.C is atomized, in this method, by using compressed air alone as a high pressure gas source to form a zinc alloy powder, this zinc alloy powder has a characteristic, e.g. of having 40-75sec fluidity (by JISZ2502 metal powder fluidity measuring method) and 2.0-3.0 aspect ratio at 80-150mesh. As a result, the clogging of a nozzle in a battery integration stage can be removed, and workability can be remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ電池の負極剤
(負極活物質)となる亜鉛合金粉末およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc alloy powder as a negative electrode agent (negative electrode active material) for alkaline batteries and a method for producing the same.

【0002】[0002]

【従来の技術】従来、アルカリ乾電池用電池の負極剤と
しては亜鉛または亜鉛合金粉末が用いられている。亜鉛
は水素過電圧が高いことや価格が比較的低廉であること
から好んで負極剤として用いられている。
2. Description of the Related Art Conventionally, zinc or zinc alloy powder has been used as a negative electrode agent for batteries for alkaline dry batteries. Zinc is preferably used as a negative electrode agent because of its high hydrogen overvoltage and its relatively low price.

【0003】この亜鉛合金粉末は電解液およびゲル化剤
と混合しゲル状亜鉛負極剤とした後、単3型や単4型等
のセルに注入しアルカリ乾電池として組み込むが、流動
性の劣る亜鉛合金粉末を使用した場合、計量性が劣った
り、特にボタン電池等の小型のセルにゲル状亜鉛負極剤
を注入する場合に注入ノズルが閉塞したりする問題があ
った。
This zinc alloy powder is mixed with an electrolytic solution and a gelling agent to form a gelled zinc negative electrode agent, which is then injected into cells of AA type or AAA type to be incorporated as an alkaline dry battery. When the alloy powder is used, there are problems that the metering property is poor and that the injection nozzle is clogged especially when injecting the gelled zinc negative electrode agent into a small cell such as a button battery.

【0004】亜鉛粉の流動性は粒子の形状に影響され、
球状に近いものほど流動性が良いことが知られている。
しかし、亜鉛溶湯に高圧ガスを噴射して粉化させるいわ
ゆるアトマイズ法において製造される亜鉛粉の粒子の形
状は、アトマイズの際に生成する粒子表面の酸化皮膜が
液滴の粘性を大きくするため、球状とはならずに紡錘状
もしくは涙状のものとなり易い。そのため、こうした粒
子形状の亜鉛扮を使用したゲル状亜鉛負極剤は、粒子同
士が絡み合って摩擦が大きく流動性が劣るという欠点を
有していた。
The fluidity of zinc powder is affected by the shape of the particles,
It is known that the closer to spherical shape the better the fluidity.
However, the shape of the particles of zinc powder produced in the so-called atomization method in which high-pressure gas is sprayed into a molten zinc to be powdered, the oxide film on the particle surface generated during atomization increases the viscosity of the droplets, It is not spherical and tends to be spindle-shaped or tear-shaped. Therefore, the gelled zinc negative electrode agent using such a particle-shaped zinc paste has a drawback that particles are entangled with each other to cause large friction and poor fluidity.

【0005】そこで、流動性の良い亜鉛粉を得るために
粒子を球状化させる方法が種々提案されている。ところ
で、亜鉛粉の粒子形状は雰囲気および噴射ガス中の酸素
濃度に影響され、酸素濃度が低いほど球状に近くなるこ
とが知られており、真球状の亜鉛粒子を得るために雰囲
気中の酸素を8%以下とすることで、流動性の高い亜鉛
粉を得る方法が提案されている(特公昭60−908
1、9082)。
Therefore, various methods for making the particles spherical have been proposed in order to obtain zinc powder having good fluidity. By the way, the particle shape of zinc powder is affected by the oxygen concentration in the atmosphere and the injection gas, and it is known that the lower the oxygen concentration, the closer it becomes to a spherical shape. A method of obtaining zinc powder having high fluidity by setting the content to 8% or less has been proposed (Japanese Patent Publication No. 60-908).
1, 9082).

【0006】しかし、この方法では流動性は改善される
が、不活性ガスを使用することと酸素濃度をコントロー
ルするため高価な設備が必要となり、製造された亜鉛粉
も高価なものとならざるを得ない。また、この粒子を使
用してゲル化させた場合ゲル状亜鉛負極剤の流動性の向
上は図れるものの、粒子同士の接触点が減少することお
よび粒子の表面積が小さくなるため反応性が乏しくな
り、電池に組み込んだ場合、放電利用率が低下するとい
う問題があった。
However, although the fluidity is improved by this method, expensive equipment is required to use an inert gas and to control the oxygen concentration, and the zinc powder produced must be expensive. I don't get it. Further, when gelled using these particles, although it is possible to improve the fluidity of the gelled zinc negative electrode agent, the contact point between the particles is reduced and the surface area of the particles is reduced, resulting in poor reactivity, When incorporated into a battery, there is a problem that the discharge utilization rate decreases.

【0007】そこでこの球状の亜鉛粉と紡錘状もしくは
涙状等異形の粒子を混合しゲル状亜鉛負極剤を形成する
という方法が提案されている(特開平7−25440
6)。
Therefore, a method has been proposed in which the spherical zinc powder is mixed with irregularly shaped particles such as spindle-shaped or tear-shaped particles to form a gelled zinc negative electrode agent (Japanese Patent Laid-Open No. 7-25440).
6).

【0008】しかし、この方法ではゲル状亜鉛負極剤の
流動性は改善されるが、2種類の亜鉛粉を均一混合する
ための工程が増えることによるコストアップと混合中に
混合機からの汚染の危険性という問題が発生することが
十分に考えられる。
However, although the fluidity of the gelled zinc negative electrode agent is improved by this method, the cost is increased due to an increase in the steps for uniformly mixing the two kinds of zinc powder, and the contamination from the mixer during mixing is increased. It is quite possible that the problem of danger will occur.

【0009】[0009]

【発明が解決しようとする課題】前述のように、亜鉛粉
末を乾電池の負極剤として組み込む際には流動性の良否
が重要であり、上記のアトマイズ用の噴射ガス中の酸素
濃度を低くして球状に近い亜鉛粉を得る方法も、また球
状の亜鉛粉に紡錘状もしくは涙状などの亜鉛粉を混合し
て負極剤を形成する方法も一長一短があり、それぞれ放
電利用率の低下やコストアップといった課題を抱えるも
のであった。
As described above, when zinc powder is incorporated as a negative electrode agent in a dry battery, it is important that the fluidity is good and that the oxygen concentration in the atomizing gas for atomization is lowered. There are merits and demerits also in the method of obtaining zinc powder having a nearly spherical shape and the method of forming a negative electrode agent by mixing zinc powder in a spherical shape with spindle-shaped or tear-shaped zinc powder. It was a challenge.

【0010】したがって本発明の目的は、圧縮空気だけ
をガス源としてアトマイズすることにより、低廉で流動
性が良く、ゲル状亜鉛負極剤充墳の際、注入ノズルの詰
まりが防止されるアルカリ電池用亜鉛合金粉末およびそ
の製造方法を提供することにある。
Accordingly, an object of the present invention is to use for atomizing only compressed air as a gas source, which is inexpensive and has good fluidity, and which prevents clogging of an injection nozzle when filling a gelled zinc negative electrode agent. It is to provide a zinc alloy powder and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究の結果、雰囲気および噴射ガス中
の酸素濃度だけでなく、アトマイズ時の溶湯温度が亜鉛
粉末の流動性に影響し、溶湯温度を制御することで亜鉛
粉末の流動性が改善されることを見いだし本発明に到達
した。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that not only the oxygen concentration in the atmosphere and the propellant gas but also the melt temperature at the time of atomization affects the fluidity of the zinc powder. It was found that the fluidity of zinc powder is improved by controlling the molten metal temperature.

【0012】すなわち本発明は第1に、精製した溶融亜
鉛を添加金属で合金化した溶湯からアトマイズされたア
ルカリ電池用亜鉛合金粉末であって、該粉末の流動性が
JISZ2502の金属粉の流動度測定方法で測定した
場合、流動度として40〜75秒/50gであることを
特徴とするアルカリ電池用亜鉛合金粉末;第2に、精製
した溶融亜鉛を添加金属で合金化した溶湯からアトマイ
ズされたアルカリ電池用亜鉛合金粉末であって、該粉末
の80〜150メッシュに分級したもののアスペクト比
の平均値がメジアン値で2.0〜3.0の範囲であるこ
とを特徴とするアルカリ電池用亜鉛合金粉末;第3に、
精製した溶融亜鉛を添加金属で合金化した溶湯からアト
マイズされたアルカリ電池用亜鉛合金粉末であって、該
粉末の流動性がJISZ2502の金属粉の流動度測定
方法で測定した場合、流動度として40〜75秒/50
gであり、かつ該粉末の80〜150メッシュに分級し
たもののアスペクト比の平均値がメジアン値で2.0〜
3.0の範囲であることを特徴とするアルカリ電池用亜
鉛合金粉末;第4に、前記添加金属がAl、Biおよび
Inである上記第1に記載のアルカリ電池用亜鉛合金粉
末;第5に、前記添加金属がAl、BiおよびInであ
る上記第2に記載のアルカリ電池用亜鉛合金粉末;第6
に、前記添加金属がAl、BiおよびInである上記第
3に記載のアルカリ電池用亜鉛合金粉末;第7に、前記
添加金属による合金成分がAl0.001−0.01重
量%、Bi0.001−0.05重量%およびIn0.
01〜0.1重量%である上記第1に記載のアルカリ電
池用亜鉛合金粉末;第8に、前記添加金属による合金成
分がAl0.001−0.01重量%、Bi0.001
−0.05重量%およびIn0.01〜0.1重量%で
ある上記第2に記載のアルカリ電池用亜鉛合金粉末;第
9に、前記添加金属による合金成分がAl0.001−
0.01重量%、Bi0.001−0.05重量%およ
びIn0.01〜0.1重量%である上記第3に記載の
アルカリ電池用亜鉛合金粉末;第10に、精製した溶融
亜鉛を添加金属で合金化した溶湯を直径1〜5mmの穴を
有するセラミック製ノズルを用いて下方に細流下させ、
この細流に高圧ガスを噴射して粉化させるアルカリ電池
用亜鉛合金粉末の製造方法において、上記合金化した溶
湯の温度が460℃以上であり、かつ上記高圧ガスが圧
縮空気であることを特徴とするアルカリ電池用亜鉛合金
粉末の製造方法を提供するものである。
That is, the present invention is, firstly, a zinc alloy powder for an alkaline battery atomized from a molten metal obtained by alloying refined molten zinc with an additive metal, the fluidity of which is JIS Z2502. Zinc alloy powder for alkaline batteries, characterized by a fluidity of 40 to 75 seconds / 50 g when measured by the measuring method; Secondly, it was atomized from a molten alloy obtained by alloying refined molten zinc with an additive metal. Zinc alloy powder for alkaline batteries, characterized in that the average aspect ratio of the zinc alloy powder classified into 80 to 150 mesh is 2.0 to 3.0 in terms of median value. Alloy powder; Third,
A zinc alloy powder for an alkaline battery atomized from a molten alloy obtained by alloying purified molten zinc with an additive metal, wherein the powder has a fluidity of 40 when measured by the method for measuring the fluidity of a metal powder according to JIS Z2502. ~ 75 seconds / 50
g, and the average value of the aspect ratio of the powder classified into 80 to 150 mesh is 2.0 to
Zinc alloy powder for alkaline batteries, which is in the range of 3.0; Fourth, the zinc alloy powder for alkaline batteries according to the first, wherein the added metal is Al, Bi and In; The zinc alloy powder for alkaline batteries according to the above second, wherein the added metal is Al, Bi and In;
The zinc alloy powder for alkaline batteries according to the third, wherein the added metal is Al, Bi and In; and seventh, the alloy component of the added metal is Al0.001-0.01 wt%, Bi0.001. -0.05 wt% and In0.
The zinc alloy powder for alkaline batteries according to the above 1, which is 01 to 0.1% by weight; and 8th, the alloy component by the added metal is Al 0.001 to 0.01% by weight, and Bi 0.001.
-0.05 wt% and 0.01-0.1 wt% In, the zinc alloy powder for alkaline batteries according to the above second; ninth, the alloy component of the additive metal is Al0.001-
0.01% by weight, Bi 0.001-0.05% by weight, and In 0.01 to 0.1% by weight, the zinc alloy powder for alkaline batteries according to the above 3rd; 10th, adding purified molten zinc The molten metal alloyed with metal is made to trickle downward using a ceramic nozzle having a hole with a diameter of 1 to 5 mm.
In the method for producing a zinc alloy powder for an alkaline battery, in which a high pressure gas is injected into the stream and pulverized, the temperature of the alloyed molten metal is 460 ° C. or higher, and the high pressure gas is compressed air. A method for producing a zinc alloy powder for alkaline batteries is provided.

【0013】[0013]

【作用】本発明では通常使用される工業用精製亜鉛を原
料とし、この亜鉛を溶解し、Al、In、Biの合金成
分を添加して亜鉛合金とする。
In the present invention, industrially-used refined zinc which is usually used is used as a raw material, this zinc is melted, and alloy components of Al, In and Bi are added to form a zinc alloy.

【0014】Alは亜鉛に合金化することにより、合金
粉末粒子の表面を平滑にし、反応性に関係する表面積を
減少させ、ガス発生を抑制する効果があり、Inは合金
粉末表面の水素過電圧を高めて電池として保存中の腐食
によるガス発生を抑制する作用があり、Biも同様に放
電前のガス発生を抑制するが放電後のガス発生を増大す
る傾向があり、これらの添加元素は、Al0.001〜
0.1重量%、Bi0.001〜0.05重量%、In
0.01〜0.1重量%の成分範囲で含有するのが好ま
しく、これらの範囲を逸脱したり、単独で含有されても
その効果は得られない。
By alloying Al with zinc, the surface of the alloy powder particles is smoothed, the surface area related to reactivity is reduced, and gas generation is suppressed, and In has a hydrogen overvoltage on the surface of the alloy powder. It has a higher effect of suppressing gas generation due to corrosion during storage as a battery, and Bi also suppresses gas generation before discharge but also tends to increase gas generation after discharge. 0.001-
0.1 wt%, Bi 0.001 to 0.05 wt%, In
It is preferable to contain it in a component range of 0.01 to 0.1% by weight, and even if it deviates from these ranges or is contained alone, its effect cannot be obtained.

【0015】本発明では所定量の特定元素を混合溶融し
て合金化した後、圧縮空気だけをガス源として用いてア
トマイズすることにより、流動性が向上した亜鉛合金粉
末を得ることができ、これをそのままアルカリ電池の負
極活物質として用いることができる。
In the present invention, a predetermined amount of a specific element is mixed and melted to form an alloy, which is then atomized using only compressed air as a gas source to obtain a zinc alloy powder having improved fluidity. Can be used as it is as a negative electrode active material of an alkaline battery.

【0016】亜鉛合金粉末の流動性はJISZ2502
の金属粉の流動度測定方法で測定した場合、その流動度
はなるべく小さい方が良いが、40〜75秒/50gで
あることが好ましい。これは75秒/50gを超える
と、亜鉛合金粉を電解液とゲル化剤とによりゲル状の負
極剤を形成して乾電池のセルに組み込む場合、ゲル注入
ノズルの閉塞が著しくなるためであり、40秒/50g
未満では球状に近い粒子の割合が多くなり過ぎるため、
前述の理由で放電利用率が低下してしまうからである。
The fluidity of zinc alloy powder is JIS Z2502.
When measured by the method for measuring fluidity of metal powder, the fluidity is preferably as small as possible, but is preferably 40 to 75 seconds / 50 g. This is because when it exceeds 75 seconds / 50 g, when the zinc alloy powder is formed into a gelled negative electrode agent by the electrolytic solution and the gelling agent and is incorporated in the cell of the dry battery, the gel injection nozzle is significantly blocked. 40 seconds / 50g
If less than, the proportion of particles that are close to spherical becomes too large,
This is because the discharge utilization rate is reduced due to the above reason.

【0017】アルカリ電池用に使用される亜鉛合金粉は
通常35〜200メッシュ程度の粒度のものが使用され
るが、その粒子形状は粒度によって異なっており、大き
い粒度のものは円盤状に近く、小さい粒度のものは細長
くなる。そのため、粒子形状を比較する場合には広い粒
度のままで形状測定すると、測定値のばらつきが大きく
なり正確な形状の測定ができなくなるため、測定する際
は粒度を揃えた方が好ましい。そこで、粒子形状の代表
値として比較的大きな割合を占める80〜150メッシ
ュの粒度のアスペクト比を測定した。ここで、アスペク
ト比とは粒子を顕微鏡で観察し、その長軸と短軸の長さ
を求め長軸/短軸の比を算出した値である。
The zinc alloy powder used for alkaline batteries usually has a particle size of about 35 to 200 mesh, but the particle shape differs depending on the particle size, and a large particle size is close to a disk shape. Those with small grain size are elongated. Therefore, in the case of comparing particle shapes, if the shape is measured with a wide particle size as it is, the dispersion of measured values becomes large, and the accurate shape cannot be measured. Therefore, it is preferable to make the particle sizes uniform during the measurement. Therefore, the aspect ratio of the particle size of 80 to 150 mesh, which occupies a relatively large proportion as a representative value of the particle shape, was measured. Here, the aspect ratio is a value obtained by observing particles with a microscope, obtaining the lengths of the major axis and the minor axis, and calculating the ratio of major axis / minor axis.

【0018】流動性を向上するためには前述の通りアス
ペクト比が小さいものほど良いが、アスペクト比の値と
しては2.0〜4.0の範囲であることが好ましい。ア
スペク卜比が2.0未満となると球状に近すぎるため表
面積が小さくなり、電池に組み込んで放電させた場合、
反応面積が小さくなること、接触点が減少すること等か
ら放電利用率が低下するためである。また、アスペクト
比が4.0より大きくなると粒子同士が絡み易くなるた
め摩擦力が大となり流動性が著しく劣るためである。
In order to improve the fluidity, the smaller the aspect ratio, the better, as described above, but the aspect ratio value is preferably in the range of 2.0 to 4.0. When the aspect ratio is less than 2.0, the surface area becomes small because it is too spherical, and when the battery is assembled and discharged,
This is because the reaction area is reduced, the number of contact points is reduced, etc., and thus the discharge utilization factor is reduced. Further, when the aspect ratio is larger than 4.0, the particles are easily entangled with each other, so that the frictional force becomes large and the fluidity is remarkably deteriorated.

【0019】溶湯温度を460℃以上にするとアトマイ
ズ法によって得た亜鉛合金粉の流勤性が良くなる理由は
以下のように考えられる。すなわち、亜鉛合金粉末の流
動性は粒子の形状に起因し、この粒子形状はアトマイズ
時に生じる微細な液滴の粘性に左右されるが、この粘性
は酸素濃度だけでなく、溶融亜鉛合金自体の粘性が大き
く左右する。
The reason why the flowability of the zinc alloy powder obtained by the atomizing method is improved when the temperature of the molten metal is 460 ° C. or higher is considered as follows. That is, the fluidity of the zinc alloy powder is due to the shape of the particles, and this particle shape depends on the viscosity of the fine liquid droplets generated during atomization.This viscosity is not only the oxygen concentration but also the viscosity of the molten zinc alloy itself. Greatly influences.

【0020】一般的に金属の溶融物は温度が高い程、そ
の粘性は小さくなることが知られており、亜鉛の溶融物
も粘性は温度が高くなるほど小さくなる。ここで、溶湯
の温度が低く粘性が大きい場合に圧縮空気を噴射してア
トマイズすると微細な液滴とならず、その粒子ば細長い
形状のものとなり易い。しかし、溶湯自体の温度が高く
粘性の小さい場合に圧縮空気を噴射してアトマイズする
と、圧縮空気の溶湯に対する粉砕能力が高くなるため、
粒子の形状は細長い形状とはならずに球状に近い粒子が
生成する。
It is generally known that the higher the temperature, the lower the viscosity of a metal melt, and the lower the temperature of a zinc melt, the lower the viscosity. Here, when the temperature of the molten metal is low and the viscosity is large, compressed air is sprayed and atomized, so that the droplets do not become fine droplets, and the particles tend to be elongated. However, when the temperature of the molten metal itself is high and the viscosity is low, atomizing compressed air to atomize it increases the crushing ability of the compressed air against the molten metal.
The shape of the particles does not become an elongated shape, but particles close to a sphere are generated.

【0021】また、圧縮空気をガス源として使用した場
合は、不活性ガスを用いた場合に比較して粒子表面に酸
化皮膜が生成し易くなり、これが粒子表面の表面張力を
高くして粒子が球状になろうとする作用を妨害するが、
溶湯温度を高くすることで液滴自体の粘性が小さくなる
ため酸化皮膜の生成により粘性が高くなる傾向に打ち勝
って比較的球状に近い亜鉛粉が生成されるものと考えら
れる。
When compressed air is used as the gas source, an oxide film is more likely to be formed on the surface of the particles than when an inert gas is used, which increases the surface tension of the particles and causes the particles to form. It hinders the action of becoming spherical,
It is considered that by increasing the temperature of the molten metal, the viscosity of the liquid droplet itself becomes smaller, so that the tendency of the viscosity becoming higher due to the formation of the oxide film is overcome and zinc powder having a relatively spherical shape is generated.

【0022】本発明において溶湯温度を460℃以上と
したのは460℃朱満では溶湯の粘性が高く、流動性向
上のために十分な効果が得られないからである。また溶
湯の温度は650℃以下とするのが好ましい。なぜなら
650℃を超えると流動性の向上には効果的であるが、
アトマイズされた亜鉛粉表面の酸化皮膜が厚くなり、こ
の酸化皮膜が電池に組み込み放電させた場合に内部抵抗
が大きくなり、電池の放電特性が劣るためである。また
650℃を超える温度では溶融亜鉛の酸化および揮散が
著しくなり、実操業には向かないからである。したがっ
て、これらの作用によりアトマイズ時の溶湯温度を46
0〜650℃にコントロールすることで粒子形状が球状
に近くなり生成する亜鉛粉の流動性が向上するものと考
えられる。
In the present invention, the temperature of the molten metal is set to 460 ° C. or higher because at 460 ° C. Zhuman, the viscosity of the molten metal is high and a sufficient effect for improving the fluidity cannot be obtained. The temperature of the molten metal is preferably 650 ° C or lower. Because, if it exceeds 650 ° C, it is effective to improve the fluidity,
This is because the oxide film on the surface of the atomized zinc powder becomes thick and the internal resistance becomes large when this oxide film is incorporated into a battery and discharged, resulting in poor discharge characteristics of the battery. Further, if the temperature exceeds 650 ° C., the oxidation and volatilization of molten zinc will be remarkable, which is not suitable for actual operation. Therefore, due to these effects, the molten metal temperature during atomization is set to 46
It is considered that by controlling the temperature to 0 to 650 ° C., the particle shape becomes nearly spherical and the fluidity of the zinc powder produced is improved.

【0023】以下、実施例および比較例により本発明を
さらに説明するが、本発明はこれに限定されるものでは
ない。
The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereto.

【0024】[0024]

【実施例】純度99.995%以上の溶融した金属亜鉛
に各添加元素を表1に示す含有量となるように添加し溶
解した。
Example Each additive element was added to molten metal zinc having a purity of 99.995% or more so as to have the content shown in Table 1 and dissolved.

【0025】次にこの溶融物の温度を同じく表1に示す
所定の温度に制御し圧縮空気だけをガス源として噴霧
し、アトマイズ法により粉体化して亜鉛合金粉末を作成
した。
Next, the temperature of this melt was controlled to the predetermined temperature shown in Table 1 as well, and only compressed air was sprayed as a gas source, and atomized to form a zinc alloy powder.

【0026】この亜鉛合金粉末を35〜200メッシュ
に分級したものについて、流動性を評価するためにJI
SZ2502の方法で流動度(秒/50g)を測った
(表1)。
This zinc alloy powder was classified into 35 to 200 mesh, and JI was used to evaluate the fluidity.
The fluidity (second / 50 g) was measured by the method of SZ2502 (Table 1).

【0027】また、亜鉛合金粉末粒子の形状については
形状が粒度によって異なるため、亜鉛合金粉末をさらに
80〜150メッシュに分級したものについてその粒子
を顕微鏡で観察し、その長軸と短軸の長さを測定し、長
軸/短軸の比をアスペクト比として算出した。このアス
ペクト比の算出にあたっては粒子を100個以上測定
し、その平均値としてメジアン値を用いた。
Since the shape of the zinc alloy powder particles varies depending on the particle size, the particles of zinc alloy powder further classified into 80 to 150 mesh are observed with a microscope, and the major axis and minor axis lengths of the particles are observed. Was measured, and the ratio of major axis / minor axis was calculated as the aspect ratio. In calculating the aspect ratio, 100 or more particles were measured, and the median value was used as the average value.

【0028】[0028]

【比較例】実施例と同様に各添加元素を表1に示す含有
量となるように添加して調製した溶湯の温度を440℃
に制御した以外は実施例の要領に従って亜鉛合金粉末を
作成し、測定結果を表1に示した。
[Comparative Example] The temperature of a molten metal prepared by adding each additive element to the content shown in Table 1 in the same manner as in Example was 440 ° C.
Zinc alloy powder was prepared in accordance with the procedure of the example except that it was controlled to 1.

【0029】[0029]

【表1】 表1の結果からわかるように、460℃以上で640℃
までの溶湯をアトマイズして得られた本発明による亜鉛
合金粉末の流動度は47〜66秒/50gの範囲である
のに対し、溶湯温度を440℃でアトマイズしたものは
アスペクト比が4.0を超え、流動性が悪くその流動度
は86〜100秒/50gである。
[Table 1] As can be seen from the results in Table 1, above 460 ° C, 640 ° C
The zinc alloy powder according to the present invention obtained by atomizing the molten metal up to the above has a fluidity in the range of 47 to 66 seconds / 50 g, whereas the atomized molten metal at a temperature of 440 ° C. has an aspect ratio of 4.0. And the fluidity is poor and the fluidity is 86 to 100 seconds / 50 g.

【0030】[0030]

【発明の効果】以上説明したように、本発明の方法によ
れば、雰囲気中の酸素濃度を制御したり、不活性ガスを
ガス源として使用することなく圧縮空気だけを噴射する
簡便な方法で流動性の良い亜鉛合金粉末が得られるの
で、これをアルカリ電池用の負極活物質として用いれば
小型乾電池の組み込み工程でのノズルの閉塞が解消さ
れ、電池組み込み工程における作業性を大幅に向上でき
る。
As described above, according to the method of the present invention, it is possible to control the oxygen concentration in the atmosphere and to inject only compressed air without using an inert gas as a gas source. Since a zinc alloy powder having good fluidity can be obtained, if this is used as a negative electrode active material for an alkaline battery, the clogging of the nozzle in the assembling process of a small dry battery is eliminated, and the workability in the battery assembling process can be greatly improved.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 精製した溶融亜鉛を添加金属で合金化し
た溶湯からアトマイズされたアルカリ電池用亜鉛合金粉
末であって、該粉末の流動性がJISZ2502の金属
粉の流動度測定方法で測定した場合、流動度として40
〜75秒/50gであることを特徴とするアルカリ電池
用亜鉛合金粉末。
1. A zinc alloy powder for an alkaline battery, which is atomized from a molten alloy obtained by alloying purified molten zinc with an additive metal, the fluidity of which is measured by a method for measuring the fluidity of a metal powder according to JIS Z2502. , As fluidity 40
~ 75 seconds / 50 g, Zinc alloy powder for alkaline batteries.
【請求項2】 精製した溶融亜鉛を添加金属で合金化し
た溶湯からアトマイズされたアルカリ電池用亜鉛合金粉
末であって、該粉末の80〜150メッシュに分級した
もののアスペクト比の平均値がメジアン値で2.0〜
3.0の範囲であることを特徴とするアルカリ電池用亜
鉛合金粉末。
2. A zinc alloy powder for an alkaline battery, which is atomized from a molten alloy obtained by alloying purified molten zinc with an additive metal, wherein the powder has been classified into 80 to 150 mesh, and the average aspect ratio has a median value. 2.0 ~
Zinc alloy powder for alkaline batteries, which is in the range of 3.0.
【請求項3】 精製した溶融亜鉛を添加金属で合金化し
た溶湯からアトマイズされたアルカリ電池用亜鉛合金粉
末であって、該粉末の流動性がJISZ2502の金属
粉の流動度測定方法で測定した場合、流動度として40
〜75秒/50gであり、かつ該粉末の80〜150メ
ッシュに分級したもののアスペクト比の平均値がメジア
ン値で2.0〜3.0の範囲であることを特徴とするア
ルカリ電池用亜鉛合金粉末。
3. A zinc alloy powder for an alkaline battery atomized from a molten alloy obtained by alloying refined molten zinc with an additive metal, the fluidity of which is measured by a method for measuring the fluidity of a metal powder according to JIS Z2502. , As fluidity 40
~ 75 sec / 50 g, and the average value of the aspect ratio of the powder classified into 80 to 150 mesh is in the range of 2.0 to 3.0 in terms of median value, zinc alloy for alkaline batteries. Powder.
【請求項4】 前記添加金属がAl、BiおよびInで
ある請求項1記載のアルカリ電池用亜鉛合金粉末。
4. The zinc alloy powder for an alkaline battery according to claim 1, wherein the added metal is Al, Bi and In.
【請求項5】 前記添加金属がAl、BiおよびInで
ある請求項2記載のアルカリ電池用亜鉛合金粉末。
5. The zinc alloy powder for an alkaline battery according to claim 2, wherein the added metal is Al, Bi and In.
【請求項6】 前記添加金属がAl、BiおよびInで
ある請求項3記載のアルカリ電池用亜鉛合金粉末。
6. The zinc alloy powder for an alkaline battery according to claim 3, wherein the added metal is Al, Bi and In.
【請求項7】 前記添加金属による合金成分がAl0.
001−0.01重量%、Bi0.001−0.05重
量%およびIn0.01〜0.1重量%である請求項1
記載のアルカリ電池用亜鉛合金粉末。
7. The alloy component of the additive metal is Al0.
001-0.01% by weight, Bi 0.001-0.05% by weight and In 0.01-0.1% by weight.
The zinc alloy powder for alkaline batteries described.
【請求項8】 前記添加金属による合金成分がAl0.
001−0.01重量%、Bi0.001−0.05重
量%およびIn0.01〜0.1重量%である請求項2
記載のアルカリ電池用亜鉛合金粉末。
8. The alloy component of the additive metal is Al0.
001-0.01 wt%, Bi0.001-0.05 wt% and In0.01-0.1 wt%.
The zinc alloy powder for alkaline batteries described.
【請求項9】 前記添加金属による合金成分がAl0.
001−0.01重量%、Bi0.001−0.05重
量%およびIn0.01〜0.1重量%である請求項3
記載のアルカリ電池用亜鉛合金粉末。
9. The alloy component of the additive metal is Al0.
001-0.01 wt%, Bi0.001-0.05 wt% and In0.01-0.1 wt%.
The zinc alloy powder for alkaline batteries described.
【請求項10】 精製した溶融亜鉛を添加金属で合金化
した溶湯を直径1〜5mmの穴を有するセラミック製ノズ
ルを用いて下方に細流下させ、この細流に高圧ガスを噴
射して粉化させるアルカリ電池用亜鉛合金粉末の製造方
法において、上記合金化した溶融の温度が460℃以上
であり、かつ上記高圧ガスが圧縮空気であることを特徴
とするアルカリ電池用亜鉛合金粉末の製造方法。
10. A molten metal obtained by alloying refined molten zinc with an additive metal is down-flowed downward using a ceramic nozzle having a hole having a diameter of 1 to 5 mm, and a high-pressure gas is injected into this down-flow to be powdered. A method for producing a zinc alloy powder for an alkaline battery, wherein the temperature of the alloyed melt is 460 ° C. or higher and the high-pressure gas is compressed air.
JP1996067259A 1996-02-28 Method for producing zinc alloy powder for alkaline batteries Ceased JP3434961B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1996067259A JP3434961B6 (en) 1996-02-28 Method for producing zinc alloy powder for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1996067259A JP3434961B6 (en) 1996-02-28 Method for producing zinc alloy powder for alkaline batteries

Publications (3)

Publication Number Publication Date
JPH09235636A true JPH09235636A (en) 1997-09-09
JP3434961B2 JP3434961B2 (en) 2003-08-11
JP3434961B6 JP3434961B6 (en) 2004-11-24

Family

ID=

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP2001250544A (en) * 2000-03-07 2001-09-14 Dowa Mining Co Ltd Zinc alloy powder for alkaline battery and its preparation method
US6746509B2 (en) 2002-09-11 2004-06-08 Mitsui Mining & Smelting Company, Ltd. Process for producing zinc or zinc alloy powder for battery
JP2007299622A (en) * 2006-04-28 2007-11-15 Fdk Energy Co Ltd Zinc powder for alkaline battery, negative electrode gel and alkaline battery
WO2012114407A1 (en) 2011-02-22 2012-08-30 パナソニック株式会社 Alkali secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP2001250544A (en) * 2000-03-07 2001-09-14 Dowa Mining Co Ltd Zinc alloy powder for alkaline battery and its preparation method
US6746509B2 (en) 2002-09-11 2004-06-08 Mitsui Mining & Smelting Company, Ltd. Process for producing zinc or zinc alloy powder for battery
JP2007299622A (en) * 2006-04-28 2007-11-15 Fdk Energy Co Ltd Zinc powder for alkaline battery, negative electrode gel and alkaline battery
WO2012114407A1 (en) 2011-02-22 2012-08-30 パナソニック株式会社 Alkali secondary battery
US20140186711A1 (en) * 2011-02-22 2014-07-03 Jun Nunome Alkaline secondary battery

Also Published As

Publication number Publication date
JP3434961B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
JP4552171B2 (en) Centrifugal atomized zinc alloy powder for alkaline batteries
US5209995A (en) Zinc alkaline cells
US5198315A (en) Zinc alkaline cells
US5139900A (en) Zinc alkaline cells
AU2003226708A1 (en) Zinc powder or zinc alloy powder for alkaline batteries
JP3434961B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
US5296267A (en) Process for preparing non-amalgamated zinc alloy powder for alkali dry cells
JP3434961B6 (en) Method for producing zinc alloy powder for alkaline batteries
JP3553734B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2001250544A (en) Zinc alloy powder for alkaline battery and its preparation method
JP3089440B2 (en) Alkaline battery
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JPH01105466A (en) Manufacture of negative electrode zinc gel for alkaline battery
JP4336783B2 (en) Zinc alloy powder for alkaline batteries and method for producing the same
JP2004253276A (en) Zinc alloy powder for alkaline battery, and alkaline battery using it
JPS6164074A (en) Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture
JPS60243969A (en) Manufacture of anode active material for battery
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JP2788530B2 (en) Method for producing gelled negative electrode for alkaline dry battery and gelled negative electrode produced by the method
JPH0636765A (en) Zinc-alkaline battery
JPS6110861A (en) Alkaline zinc battery
JPH04296451A (en) Alkaline battery
JPH0348618B2 (en)
JPH0348619B2 (en)
JP2001107112A (en) Manufacture of hydrogen storage alloy powder

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RVOP Cancellation by post-grant opposition