JPS6386566A - Gate turn-off thyristor device - Google Patents

Gate turn-off thyristor device

Info

Publication number
JPS6386566A
JPS6386566A JP23176986A JP23176986A JPS6386566A JP S6386566 A JPS6386566 A JP S6386566A JP 23176986 A JP23176986 A JP 23176986A JP 23176986 A JP23176986 A JP 23176986A JP S6386566 A JPS6386566 A JP S6386566A
Authority
JP
Japan
Prior art keywords
gate
base layer
gate electrode
anode
emitter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23176986A
Other languages
Japanese (ja)
Inventor
Katsuhiko Takigami
滝上 克彦
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23176986A priority Critical patent/JPS6386566A/en
Priority to US07/101,790 priority patent/US4821083A/en
Priority to EP87308676A priority patent/EP0262958B1/en
Priority to DE3751268T priority patent/DE3751268T2/en
Publication of JPS6386566A publication Critical patent/JPS6386566A/en
Priority to US07/701,002 priority patent/US5132767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • H03K17/73Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region for dc voltages or currents
    • H03K17/732Measures for enabling turn-off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To shorten the voltage drop time at turn-off and to reduce the tail current value without an increase in the turn-on loss and in the power loss accompanying a forward voltage drop by a method wherein the absolute value of an off-gate power source voltage, whereat a breakdown voltage between an anode.emitter layer and N-base layer is higher than the breakdown voltage between a cathode.emitter layer and P-base layer, need not be set to have specific relations with other voltages. CONSTITUTION:When a positive off-gate power source voltage E1 and negative off-gate power source voltage E2 are applied, suction of electrons is accomplished by a first gate electrode 16 in a GTO element 1 and, at the same time, suction of holes is accomplished by a second gate electrode 18. Under the conditions, a conductive region is squeezed in an N-base layer 11 and P-base layer 12, whereby injection of holes out of an anode.emitter layer 13 and that of electrons from cathode.emitter layer 14 are placed under control. With the off-gate power voltages F1 and E2 are so set as to satisfy an inequality ¦E1¦ > ¦E2¦, the maximum off gate current IGP1 involving the first gate electrode 16 will be larger than the maxim off-gate current IGP2 involving the second gate electrode 18.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、Pベース層とNベース層の双方にゲート電極
を設けた、ダブルゲート構造のゲートターンオフサイリ
スタ(GTO)装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a gate turn-off thyristor (GTO) device with a double gate structure in which gate electrodes are provided on both the P base layer and the N base layer. Regarding.

(従来の技術) 第3図は通常のGTO装置の回路構成を示ず。(Conventional technology) FIG. 3 does not show the circuit configuration of a normal GTO device.

GTO素子21のPベース層にゲート電極が設けられ、
ここにオンゲート電源及びオフゲート電源がそれぞれス
イッチを介して接続される。22は負荷であり、23&
ま主電源である。
A gate electrode is provided on the P base layer of the GTO element 21,
An on-gate power supply and an off-gate power supply are connected here via switches, respectively. 22 is the load, 23&
Well, it's the main power supply.

第4図はこのGTO素子の動作波形である。時刻tlで
オンゲート回路のスイッチ素子が開しると、オンゲート
電源によりゲート電流laが第3図に示す方向に流れ、
GTO素子21はターンオンする。時刻t2以前にオン
ゲート回路のスイッチ素子を間き、時刻t2でオフゲー
ト回路のスイッチ素子をオンにすると、オフゲート電源
によりゲート電@ I oがターンオンの場合と逆の方
向に流れ、電流の吸い出しが行われる。このときアノー
ド電流IAの減少が始まるまでの時間(1:+ −t2
)は蓄積時間であり、このl111間GTO素子内部で
は導通領域が次第に狭くなっていく。時刻t3からアノ
ード電流IAが減少し始め、同時にアノード電圧VAが
増加し始める、17ノード電流IAは時刻t4までに急
激に減少する。この時間(t4−ts)を降下時間とい
う。時刻t4のアノード電流の値をディル電流初期値と
呼び、これ以降時刻t5まで流れている電流をティルミ
流と呼び、この時間(ts −t4 )をテイル明間と
いう。ティルミ流はNベース層中の残留電荷が排出され
るために生じる電流である。以上の動作中に生じる電力
損失P (=VAX IA)は第4図最下段に示す波形
となる。
FIG. 4 shows the operating waveforms of this GTO element. When the switch element of the on-gate circuit opens at time tl, the gate current la flows in the direction shown in FIG. 3 due to the on-gate power supply.
The GTO element 21 is turned on. When the switch element of the on-gate circuit is turned on before time t2 and the switch element of the off-gate circuit is turned on at time t2, the gate current @ I o flows in the opposite direction to that when it is turned on due to the off-gate power supply, and the current is sucked out. be exposed. At this time, the time until the anode current IA starts to decrease (1: + -t2
) is the accumulation time, and the conduction region inside the GTO element gradually becomes narrower during this period of 1111. From time t3, the anode current IA begins to decrease and at the same time, the anode voltage VA begins to increase.17 The node current IA rapidly decreases by time t4. This time (t4-ts) is called descent time. The value of the anode current at time t4 is called the Dill current initial value, the current flowing from then until time t5 is called the Tilmi flow, and this time (ts - t4) is called the tail light period. The Tilmi current is a current generated because residual charges in the N base layer are discharged. The power loss P (=VAX IA) generated during the above operation has a waveform shown in the bottom row of FIG. 4.

以−J二のGTO動作において、特に電力損失が大きい
のは時刻t3からtsまでの期間である。この期間の電
力損失に着目すると、降下時間(t4−13)が長いと
損失が大きく、またディル電流初期値が大きいとディル
期間の損失が大きくなること、が容易に分かる。この様
なターンオフ時の電力損失を小さくするため従来、電子
線照射や金属ドーピングによりGTO内部のキャリア寿
命を短縮する、等の解決策が考えられている。しかしこ
れらの方法は、ターンオン損失の増大や順方向電圧降下
の増加等をもたらすという問題がある。
In the GTO operation described above, the power loss is particularly large during the period from time t3 to ts. Focusing on the power loss during this period, it is easy to see that the longer the fall time (t4-13) is, the greater the loss is, and the greater the initial value of the dill current, the greater the loss during the dill period. In order to reduce such power loss during turn-off, conventional solutions have been considered, such as shortening the carrier life inside the GTO by electron beam irradiation or metal doping. However, these methods have problems such as increased turn-on loss and increased forward voltage drop.

(発明が解決しようとする問題点) 以上のように従来のG丁Oでは、ターンオン損失、順方
向電圧降下の増加に伴う電力損失の増加を伴うことなく
、降下時間の短縮とティルミ流値の低減を図ることが難
しい、という問題がある。
(Problems to be Solved by the Invention) As described above, in the conventional G-D O, the fall time can be shortened and the Tilmi current value can be reduced without increasing turn-on loss and power loss due to increase in forward voltage drop. There is a problem in that it is difficult to reduce the amount.

本発明は、この様な問題を解決したGTO装置を提供す
ることを目的とする。
An object of the present invention is to provide a GTO device that solves these problems.

[発明の構成] (問題点を解決するための手段) 本発明は上記問題を解決するため、Nベース層に第1ゲ
ート電極2Pベース層に第2ゲート電極を設けた所謂ダ
ブルゲート構造とするのが基本である。この場合、アノ
ード・エミッタ層とNベース層間の降服電圧Vastと
、カソード・エミッタ層とPベース層間の降服電圧VG
R2の関係が、 Va R1>Vo R2 であるとき、第1ゲート電極に印加されるオフゲート電
源電圧の絶対値|E1|と、第2ゲート電極に印加され
るオフゲート電源電圧の絶対値IE21との関係を、 IFI  l>lE21 に設定したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention adopts a so-called double gate structure in which a first gate electrode is provided in the N base layer, and a second gate electrode is provided in the P base layer. is the basics. In this case, the breakdown voltage Vast between the anode/emitter layer and the N base layer, and the breakdown voltage VG between the cathode/emitter layer and the P base layer.
When the relationship of R2 is Va R1>Vo R2, the absolute value |E1| of the off-gate power supply voltage applied to the first gate electrode and the absolute value IE21 of the off-gate power supply voltage applied to the second gate electrode It is characterized in that the relationship is set to IFI l>lE21.

(作用) 本発明によるダブルゲートGTOでは、ターンオフ時、
Nベース層に形成した第1ゲートN極に正のオフゲート
パルスを印加し、Pベース層に形成した第2ゲート電極
に負のオフゲートパルスを印加する。これにより、アノ
ード側で導通領域のスクイズ、電子の吸い出し及びアノ
ード・エミッタ層からの正孔の注入抑制の動作が行われ
るど同時に、カソード側でも導通領域のスクイズ、正孔
の吸出し及び電子の注入抑制の動作が行われる。
(Function) In the double gate GTO according to the present invention, at turn-off,
A positive off-gate pulse is applied to the first gate N pole formed on the N base layer, and a negative off-gate pulse is applied to the second gate electrode formed on the P base layer. As a result, on the anode side, the conduction region is squeezed, electrons are sucked out, and holes are suppressed from being injected from the anode/emitter layer.At the same time, on the cathode side, the conduction region is squeezed, holes are sucked out, and electrons are injected. A restraining action is taken.

そして本発明では、第1ゲート電極に印加するオフゲー
トN源電圧を第2ゲート電極に印加するオフゲート電源
電圧より高くとることにより、ターンオフ動作に従来に
ない挙動が生じる。即ちいま、第1ゲート電極側と第2
ゲート電極側のオフゲート回路が同じ構成であり、従っ
て両回路の配線インダクタンスL1.L2が同じである
とする。
In the present invention, by setting the off-gate N source voltage applied to the first gate electrode higher than the off-gate power source voltage applied to the second gate electrode, an unprecedented behavior occurs in the turn-off operation. That is, now the first gate electrode side and the second gate electrode side
The off-gate circuits on the gate electrode side have the same configuration, so the wiring inductance of both circuits L1. Assume that L2 is the same.

このときそれぞれのゲート電流立上り率は、d Ia 
i /d t4E1/Lt dla2/dt弁E2/L2 で表わされ、lEl  1>lE2 1ならば、Lt=
1−2であるから、 1dlo1/dtl>1dla2/’dtlなる関係が
成立する。従って単位時間に第1ゲート電極、第2ゲー
i−電極からそれぞれ排出される電荷量Q+ 、Q2の
間には、Ql >02なる関係がある。この両ゲートの
関係を言替えると、第1ゲート電極側のターンオフ動作
は第2ゲート電極側のそれよりも速く進行し、カソード
・エミッタからの電子注入が抑制されるよりも速い時点
でアノード・エミッタからの電子注入が抑制されること
になる。これにより、ターンオン損失や順方向電圧降下
による電力損失を伴うことなく、ターンオフ時の降下時
間の短縮を図り、またティルミ流値を減少させることが
できる。
At this time, each gate current rise rate is dIa
It is expressed as i /d t4E1/Lt dla2/dt valve E2/L2, and if lEl 1>lE2 1, then Lt=
1-2, the relationship 1dlo1/dtl>1dla2/'dtl holds true. Therefore, the relationship Ql>02 exists between the amounts of charge Q+ and Q2 discharged from the first gate electrode and the second gate i-electrode, respectively, per unit time. To put this relationship between the two gates in another way, the turn-off operation on the first gate electrode side proceeds faster than that on the second gate electrode side, and the anode turns off at a faster point than the electron injection from the cathode emitter is suppressed. Electron injection from the emitter will be suppressed. As a result, it is possible to shorten the drop time at turn-off and reduce the Tilmi current value without causing power loss due to turn-on loss or forward voltage drop.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は一実施例にかかるダブルゲート構造のGTO装
置を示す図である。GTO素子1は、アノード・■ミッ
タ層13.Nベース腑11.Pベース層12及びカソー
ド・エミッタl1iW14のPNPN4層構造を基本と
する。アノード・エミッタ層13とNベース層11間の
降服電圧V G R1は、通常のGTOがそうであるよ
うに、カソード・エミッタ層14どPベース層12間の
降服電圧VG R2より大きい。15はアノード電極、
17はカソード電極であり、Nベース層11には第1ゲ
ート電極16が、Pベース層12には第2ゲート電極1
8がそれぞれ設けられている。図では詳細に示さなかっ
たが、アノード・エミッタ層とNベース層は一部短絡さ
れている。第1ゲート電極16側にはオフゲート電WA
N圧F1とスイッチ素子S1からなるオフゲートパルス
発生器2が設けられ、第2ゲート電極18側にはオフゲ
ート電源電圧E2とスイッチ素子S2からなるオフゲー
トパルス発生器3が設けられている。第1ゲート電極1
6側のオフゲート電源電圧[1の絶対値は、第2ゲート
電極18側のオフゲート電源電圧E2の絶対値より大き
く設定されている。図ではオンゲート回路は省略してい
る。5は負荷、4は主電源である。
FIG. 1 is a diagram showing a double gate structure GTO device according to one embodiment. The GTO element 1 includes an anode/mitter layer 13. N base sense 11. It is based on a PNPN four-layer structure including a P base layer 12 and a cathode/emitter l1iW14. The breakdown voltage V G R1 between the anode-emitter layer 13 and the N base layer 11 is larger than the breakdown voltage V G R2 between the cathode-emitter layer 14 and the P base layer 12, as in a normal GTO. 15 is an anode electrode;
17 is a cathode electrode, the N base layer 11 has a first gate electrode 16, and the P base layer 12 has a second gate electrode 1.
8 are provided respectively. Although not shown in detail in the figure, the anode/emitter layer and the N base layer are partially short-circuited. An off-gate voltage WA is provided on the first gate electrode 16 side.
An off-gate pulse generator 2 consisting of an N voltage F1 and a switching element S1 is provided, and an off-gate pulse generator 3 consisting of an off-gate power supply voltage E2 and a switching element S2 is provided on the second gate electrode 18 side. First gate electrode 1
The absolute value of the off-gate power supply voltage [1] on the 6 side is set to be larger than the absolute value of the off-gate power supply voltage E2 on the second gate electrode 18 side. The on-gate circuit is omitted in the figure. 5 is a load, and 4 is a main power source.

このように構成されたGTO装置の動作を、第2図の波
形図を参照して次に説明する。図には参考のため、シン
グルゲート構造の従来のGTO装置の特性を併せて示し
である。ターンオン動作の説明は省略し、時刻t2以降
のターンオフ動作について説明すると、第1図のように
正のオフゲートN源E1と負のオフゲート電源E2が印
加された時、GTO素子1内では第1ゲート電極16に
より電子の吸い出しが行われ、同時に第2ゲート[!1
8によって正孔の吸い出しが行われる。これにより、N
ベース111.Pベース層12内でそれぞれ導通領域の
スクイズが起り、アノード・エミッタ層13からの正孔
注入の抑制、カソード・エミッタ層14からの電子注入
の抑制が生じる。
The operation of the GTO device configured as described above will now be described with reference to the waveform diagram of FIG. For reference, the figure also shows the characteristics of a conventional GTO device with a single gate structure. The explanation of the turn-on operation will be omitted, and the turn-off operation after time t2 will be explained. When the positive off-gate N source E1 and the negative off-gate power supply E2 are applied as shown in FIG. Electrons are sucked out by the electrode 16, and at the same time the second gate [! 1
8 sucks out holes. This results in N
Base 111. Squeezing of conduction regions occurs in the P base layer 12, and hole injection from the anode/emitter layer 13 and electron injection from the cathode/emitter layer 14 are suppressed.

このときオフゲート電源電圧Es 、F2の絶対値の間
に前述のような差を設けている結果、第2図に示したよ
うに、第1ゲート電極16によるオフゲート電流の最大
値1 a p 1は、第2ゲート電(示′18によるオ
フゲート電流の最大t+ti I。F2より大きい値を
とる。従って、Nベース層11のスクイズ、電子の吸い
出し及びアノード・エミッタ層13からの正孔注入の抑
制の動作が、Pベース層12のスクイズ、正孔の吸い出
し及びカソード・エミッタ層14からの電子注入の抑制
より急速に進む。この結果、降下時間の途中からアノー
ド・エミッタ層からの正孔注入が制限されてテイル期間
に移行するから、ティルミ流の初期饋は従来より著しく
減少し、またテイル期間も短縮される。
At this time, as a result of providing the above-mentioned difference between the absolute values of the off-gate power supply voltage Es and F2, as shown in FIG. 2, the maximum value 1 a p 1 of the off-gate current due to the first gate electrode 16 is , the second gate voltage (maximum t+ti I of the off-gate current according to '18) takes a value larger than F2. Therefore, it is possible to squeeze the N base layer 11, suck out electrons, and suppress hole injection from the anode/emitter layer 13. The operation proceeds rapidly by squeezing the P base layer 12, sucking out holes, and suppressing electron injection from the cathode/emitter layer 14. As a result, hole injection from the anode/emitter layer is restricted from the middle of the fall time. The initial feed rate of the Tilmi flow is significantly reduced compared to the conventional method, and the tail period is also shortened.

従ってこの実施例によれば、GTO素子内部の電力損失
を効果的に減少させることができる。電力損失の減少は
、スイッチング頻度を高くすることを可能とするため、
高周波駆動ができるという効果も得られる。
Therefore, according to this embodiment, the power loss inside the GTO element can be effectively reduced. Reducing power losses allows higher switching frequencies, so
The effect of high frequency drive is also obtained.

[発明の効果] 以上述べたように本発明によれば、ダブルゲート構造と
し、かつそのオフゲート電源電圧に差を持たせることに
より、ターンオン損失、順方向電圧降下に伴う電力損失
の増大を伴うことなく、ターンオフ時の降下時間の短縮
とティルミ流値の低減を図ることができる。
[Effects of the Invention] As described above, according to the present invention, by providing a double gate structure and having a difference in off-gate power supply voltage, turn-on loss and power loss due to forward voltage drop are increased. Therefore, it is possible to shorten the descent time at turn-off and reduce the Tilmi flow value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のGTO装置を示す図、第2
図はその動作を説明するための波形図、第3図は従来の
GTO装置を示す図、第4図はその動作を説明するだめ
の波形図である。 1・・・GTO素子、11・・・Nベース層、12・・
・Pベース層、13・・・アノード・エミッタ層、14
・・・カソード・エミッタ層、15・・・アノード電極
、16・・・第1ゲート電極、17・・・カソード電極
、18・・・第2ゲート電極、2,3・・・オフゲート
パル2発生器、4・・・主電源、5・・・0荷、Fl 
、F2・・・オフゲート電源電圧。
FIG. 1 is a diagram showing a GTO device according to an embodiment of the present invention, and FIG.
FIG. 3 is a waveform diagram for explaining its operation, FIG. 3 is a diagram showing a conventional GTO device, and FIG. 4 is a waveform diagram for explaining its operation. 1... GTO element, 11... N base layer, 12...
・P base layer, 13... Anode emitter layer, 14
... Cathode/emitter layer, 15... Anode electrode, 16... First gate electrode, 17... Cathode electrode, 18... Second gate electrode, 2, 3... Off gate pal 2 Generator, 4...Main power supply, 5...0 load, Fl
, F2... Off-gate power supply voltage.

Claims (3)

【特許請求の範囲】[Claims] (1)アノード・エミッタ層、Nベース層、Pベース層
及びカソード、エミッタ層のPNPN4層構造を有し、
Nベース層に第1ゲート電極、Pベース層に第2ゲート
電極を設け、これらゲート電極を駆動するゲートパルス
発生器を設けたゲートターンオフサイリスタ装置におい
て、前記アノード・エミッタ層とNベース層間の降服電
圧V_G_R_1と、前記カソード・エミッタ層とPベ
ース層間の降服電圧V_G_R_2の関係が、V_G_
R_1>V_G_R_2 であるとき、前記第1ゲート電極に印加されるオフゲー
ト電源電圧の絶対値|E_1|と前記第2ゲート電極に
印加されるオフゲート電源電圧の絶対値|E_2|の関
係を、 |E_1|>|E_2| に設定したことを特徴とするゲートターンオフサイリス
タ装置。
(1) It has a PNPN four-layer structure of an anode/emitter layer, an N base layer, a P base layer, a cathode, and an emitter layer,
In a gate turn-off thyristor device in which a first gate electrode is provided on the N base layer, a second gate electrode is provided on the P base layer, and a gate pulse generator is provided for driving these gate electrodes, breakdown between the anode/emitter layer and the N base layer is provided. The relationship between the voltage V_G_R_1 and the breakdown voltage V_G_R_2 between the cathode/emitter layer and the P base layer is V_G_
When R_1>V_G_R_2, the relationship between the absolute value |E_1| of the off-gate power supply voltage applied to the first gate electrode and the absolute value |E_2| of the off-gate power supply voltage applied to the second gate electrode is |E_1 A gate turn-off thyristor device characterized by setting |>|E_2|.
(2)前記アノード・エミッタ層とNベース層が一部短
絡されている特許請求の範囲第1項記載のゲートターン
オフサイリスタ装置。
(2) The gate turn-off thyristor device according to claim 1, wherein the anode/emitter layer and the N base layer are partially short-circuited.
(3)前記第1ゲート電極によるオフゲート電流の最大
値の絶対値|I_G_P_1|と前記第2ゲート電極に
よるオフゲート電流の最大値の絶対値|I_G_P_2
|との関係が、 |I_G_P_1|>|I_G_P_2| である特許請求の範囲第1項記載のゲートターンオフサ
イリスタ装置。
(3) Absolute value of the maximum value of the off-gate current due to the first gate electrode |I_G_P_1| and absolute value of the maximum value of the off-gate current due to the second gate electrode |I_G_P_2
The gate turn-off thyristor device according to claim 1, wherein the relationship with | is |I_G_P_1|>|I_G_P_2|.
JP23176986A 1986-09-30 1986-09-30 Gate turn-off thyristor device Pending JPS6386566A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23176986A JPS6386566A (en) 1986-09-30 1986-09-30 Gate turn-off thyristor device
US07/101,790 US4821083A (en) 1986-09-30 1987-09-28 Thyristor drive system
EP87308676A EP0262958B1 (en) 1986-09-30 1987-09-30 Thyristor drive system
DE3751268T DE3751268T2 (en) 1986-09-30 1987-09-30 Thyristor driver system.
US07/701,002 US5132767A (en) 1986-09-30 1991-05-13 Double gate GTO thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23176986A JPS6386566A (en) 1986-09-30 1986-09-30 Gate turn-off thyristor device

Publications (1)

Publication Number Publication Date
JPS6386566A true JPS6386566A (en) 1988-04-16

Family

ID=16928740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23176986A Pending JPS6386566A (en) 1986-09-30 1986-09-30 Gate turn-off thyristor device

Country Status (1)

Country Link
JP (1) JPS6386566A (en)

Similar Documents

Publication Publication Date Title
US4366522A (en) Self-snubbing bipolar/field effect (biofet) switching circuits and method
JP3666843B2 (en) Gate circuit of insulated gate semiconductor device
US4663547A (en) Composite circuit for power semiconductor switching
US6426666B1 (en) Diode-assisted gate turn-off thyristor
JPH0946201A (en) Driving method/device for insulating gate type semiconductor device
JP3356644B2 (en) Driving method of semiconductor rectifier
JP2020167363A (en) Design for increasing switching speed of power electronic switching device, and application
US4551643A (en) Power switching circuitry
JP3261911B2 (en) Snubber circuit of semiconductor device
US4588904A (en) High efficiency bias circuit for high frequency inductively loaded power switching transistor
JPS6386566A (en) Gate turn-off thyristor device
US3940633A (en) GTO turn-off circuit providing turn-off gate current pulse proportional to anode current
JP2000197343A (en) Gate control method for semiconductor element
US4107552A (en) Semiconductor switch
Satoh et al. High power symmetrical GCT for current source inverter
US5132767A (en) Double gate GTO thyristor
JPS6348208B2 (en)
JP2635565B2 (en) Driving method of semiconductor device
JPS61182261A (en) Driving method of gate turn-off thyristor
JPH0678525A (en) Driver circuit
CN114744861B (en) SiC MOSFET crosstalk suppression driving circuit
JPS63209166A (en) Thyristor
CN210956683U (en) High-power GTO thyristor
JP2001274663A (en) Power semiconductor device
JPH026230B2 (en)