JPS6386233A - Electron beam irradiator - Google Patents

Electron beam irradiator

Info

Publication number
JPS6386233A
JPS6386233A JP61230776A JP23077686A JPS6386233A JP S6386233 A JPS6386233 A JP S6386233A JP 61230776 A JP61230776 A JP 61230776A JP 23077686 A JP23077686 A JP 23077686A JP S6386233 A JPS6386233 A JP S6386233A
Authority
JP
Japan
Prior art keywords
sample
current
electron
intensity
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61230776A
Other languages
Japanese (ja)
Other versions
JP2674010B2 (en
Inventor
Teruji Hirai
平居 暉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61230776A priority Critical patent/JP2674010B2/en
Publication of JPS6386233A publication Critical patent/JPS6386233A/en
Application granted granted Critical
Publication of JP2674010B2 publication Critical patent/JP2674010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To keep the extent of beam intensity irradiating a sample constant as well as to aim at improvements in measuring accuracy and efficiency, by controlling the electron beam intensity with a current obtained by a weighted sum of the detected current of emitted electrons and an absorption current on a sample. CONSTITUTION:An electron beam B to be emitted out of an electron gun 1 as an irradiation beam is converged by a convergent lens 2 after the beam diameter is throttle by a convergent diaphragm 4. This beam B is converged by an objective lens 5 after the beam diameter is throttle by an objective dia phragm 3, connecting a focal point on a sample S. Since an absorption current to be produced in the sample S and an electron to be emitted out of the sample S both are varied by irradiation beam intensity, they are used for a function of the electron beam intensity. An irradiation beam current IT calculating an absorption current IA and a detection current IB of the emitted electron as in an equation is proportioned to the irradiation beam intensity. alpha in this equation is a constant depending on capacity, form and configuration of a detector. Therefore, these currents IA and IB aforesaid are detected, and the electron beam intensity is controlled by the current IT.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、電子線マイクロアナライザ(E P MA)
等試料面を荷電粒子ビームによって励起させ、励起され
た試料から放出される放射線によって試料を分析する装
置や電子ビームで試料面の露光その他の加工を行う装置
に関し、特に試料面への照射ビーム強度の制御手段を備
えたこの種の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention is directed to an electron beam microanalyzer (EPMA).
Regarding equipment that excites the sample surface with a charged particle beam and analyzes the sample using radiation emitted from the excited sample, or equipment that exposes or otherwise processes the sample surface with an electron beam, the intensity of the irradiated beam on the sample surface is particularly important. This type of device is equipped with control means.

口、従来の技術 EPMA等の分析において、照射ビームによって励起さ
れた試料から放出されるX線等分析に用いられる放射線
の強度信号と、試料面への照射ビーム強度とは比例関係
にある。従って、分析精度を上げるためには、この試料
面への照射ビーム強度を一定値に保つか或は変動量を知
って測定データの補正をする必要がある。試料面の組成
を色分は表示するような場合、測定に非常に長時間を要
するので、その間には色々な要因で電子ビーム強度が変
動するので、この補正の必要性が高い。この照射ビーム
強度の測定は従来から次の2通りの方法で行われている
。その1つはビームが照射された試料の吸収電流を測定
する方法で他の1つはファラデーカップ等で一次ビーム
を直接測定する方法である。前者は常時測定が可能であ
るが、試料の組成によって測定値が変化する欠点があり
、後者はビーム強度測定時に試料への照射及び光学観察
や光信号の検出が出来なくなり、間欠的な測定しかでき
ない欠点がある。また、本来の分析のための時間の他に
別にビーム強度を測定するための時間を必要とし、分析
効率の低下をきたす。
In conventional analysis such as EPMA, there is a proportional relationship between the intensity signal of radiation used for analysis, such as X-rays emitted from a sample excited by an irradiation beam, and the intensity of the irradiation beam on the sample surface. Therefore, in order to improve analysis accuracy, it is necessary to maintain the intensity of the beam irradiated onto the sample surface at a constant value, or to correct the measured data by knowing the amount of variation. When the composition of a sample surface is to be displayed by color, measurement requires a very long time, and the electron beam intensity fluctuates due to various factors during that time, so this correction is highly necessary. Conventionally, this irradiation beam intensity has been measured using the following two methods. One method is to measure the absorbed current of a sample irradiated with the beam, and the other is to directly measure the primary beam using a Faraday cup or the like. The former allows continuous measurement, but has the disadvantage that the measured value changes depending on the composition of the sample, and the latter makes it impossible to irradiate the sample, perform optical observation, and detect the optical signal when measuring beam intensity, and can only be measured intermittently. There is a drawback that it cannot be done. In addition, in addition to the time required for the original analysis, time is required to measure the beam intensity, resulting in a decrease in analysis efficiency.

ハ1発明が解決しようとする問題点 本発明は、上記に示したような問題点を解消し、測定を
中断することなく照射ビームのビーム強度を測定するこ
とを可能にし、その測定データを基に照射電子ビーム強
度を一定にするように制御して、測定精度及び測定能率
を向上させることを目的とする。
C1 Problems to be Solved by the Invention The present invention solves the problems shown above, makes it possible to measure the beam intensity of the irradiation beam without interrupting the measurement, and makes it possible to measure the beam intensity of the irradiation beam without interrupting the measurement. The purpose is to improve measurement accuracy and efficiency by controlling the intensity of the irradiated electron beam to be constant.

二1問題点解決のための手段 試料を電子ビーム等の荷電粒子線で励起させ、励起され
た試料から放出される放射線を用いて試料分析を行う装
置において、試料に吸収される電流を検出する手段と、
試料から放出される電子を検出する手段と、両検出手段
で得られた検出信号を所定の一次式で演算する手段と、
この演算手段で求められた信号により試料面への照射ビ
ーム゛強度を制御する手段を設けた。
21 Means for Solving Problems In an apparatus that excites a sample with a charged particle beam such as an electron beam and analyzes the sample using radiation emitted from the excited sample, the current absorbed by the sample is detected. means and
means for detecting electrons emitted from the sample; means for calculating detection signals obtained by both the detection means using a predetermined linear equation;
Means was provided for controlling the intensity of the irradiation beam onto the sample surface based on the signal obtained by this calculation means.

ホ9作用 試料を照射する電子ビーム強度は、試料に入射する電子
ビーム電流で表わされるが、この電子ビーム電流は試料
に入射後、試料に吸収される試料電流と試料から放出さ
れる電子線$流とに分かれる。従って、試料に発生する
吸収電流を計測する装置と、試料から放出される電子を
検出する装置を設け、これらの両手段で得られた検出信
号を適当に加重合算すれば、その合算信号を試料面への
照射ビーム強度にほぼ比例させることができる。
E9 Effect The intensity of the electron beam irradiating a sample is expressed by the electron beam current incident on the sample, but after entering the sample, this electron beam current is divided by the sample current absorbed by the sample and the electron beam emitted from the sample. It is divided into two streams. Therefore, if a device that measures the absorbed current generated in the sample and a device that detects the electrons emitted from the sample are installed, and the detection signals obtained by these two methods are appropriately weighted and summed, the combined signal can be used to detect the sample. It can be made approximately proportional to the intensity of the beam irradiated onto the surface.

この合算信号を用いて試料面への照射ビーム強度を制御
しようとするのが、本発明の主旨である。
The gist of the present invention is to use this summed signal to control the intensity of the beam irradiated onto the sample surface.

具体的には、試料の吸収電流を計測する装置と、試料か
ら放出される電子を検出する検出器を設け、双方の装置
から送られてくる信号を照射ビーム強度に比例する信号
になるように適当に加重合算する装置を設け、その合算
信号が減少すれば、収束レンズの収束力を減少させ、合
算信号が増加すれば、収束レンズの収束力を増加させる
ように収束レンズのコイル電流を制御する制御装置を設
け、試料面への照射ビーム強度が一定になるように制御
する。また、この時収束レンズの収束力を変化させれば
、照射ビームの焦点がずれるので、そのずれを修正する
ために、対物レンズのコイル電流を修正して、ビームの
焦点が試料表面に結ぶように対物レンズのコイル電流を
制御する制御装置を設ける。上記のように電子ビームを
制御すれば、測定を中止しないでも、照射ビーム強度を
一定に保つことができる。ここで試料の吸収電流検出信
号と、放射電子検出信号とを単純加算しないで加重合算
するのは、放射電子は広い立体角内に放射され、検出さ
れるのはその一部であるからである。
Specifically, we installed a device that measures the absorbed current of the sample and a detector that detects the electrons emitted from the sample, and made the signals sent from both devices into a signal that is proportional to the irradiation beam intensity. A device for appropriately weighted summation is provided, and the coil current of the converging lens is controlled so that if the summed signal decreases, the converging force of the converging lens is decreased, and if the summed signal increases, the converging force of the converging lens increases. A control device is provided to control the irradiation beam intensity to the sample surface to be constant. Also, if the focusing power of the converging lens is changed at this time, the focus of the irradiation beam will shift, so in order to correct this shift, the coil current of the objective lens is adjusted so that the beam is focused on the sample surface. A control device is provided to control the coil current of the objective lens. By controlling the electron beam as described above, the irradiation beam intensity can be kept constant without stopping the measurement. The reason why the absorbed current detection signal of the sample and the emitted electron detection signal are weighted together instead of being simply added is that the emitted electrons are emitted within a wide solid angle, and only a part of them is detected. .

へ、実施例 図に本発明の一実施例を示す。図において、Sは試料、
Bは電子ビームで電子銃1により発射される。電子銃1
から発射された電子ビームBは収束レンズ2.対物レン
ズ3により制御されて試料Sに照射される。電子ビーム
Bは、試料Sに照射される途中に電子線の散乱防止及び
球面収差の減少を計る目的で設けられた収束絞り4及び
対物絞り5によって照射ビーム径が制限されている。6
は走査コイル、7は励起された試料Sから放出される電
子を検出する電子検出器、8は試料ホルダー、9は試料
ステージで試料Sをx−y−z方向に移動させる。10
は試料から放出されるX線を分光する分光結晶、11は
分光されたX線を視野制限するスリット、12はスリッ
ト11を通過したX線を検出するX線検出器、13は電
子検出器7で検出される検出信号をAMPで増幅した信
号と試料Sから検出される吸収電流信号を合算して照射
ビーム強度信号としてレンズコントローラー14に出力
する全ビーム換算器、レンズコントローラー14は全ビ
ーム換算器13から入力される照射ビーム強度信号によ
り収束レンズ及び対物レンズのコイル電流を制御する。
An embodiment of the present invention is shown in FIG. In the figure, S is the sample,
B is an electron beam and is emitted by the electron gun 1. electron gun 1
The electron beam B emitted from the converging lens 2. The sample S is irradiated under the control of the objective lens 3. The irradiation beam diameter of the electron beam B is limited by a converging aperture 4 and an objective aperture 5, which are provided for the purpose of preventing scattering of the electron beam and reducing spherical aberration while being irradiated onto the sample S. 6
7 is a scanning coil, 7 is an electron detector for detecting electrons emitted from the excited sample S, 8 is a sample holder, and 9 is a sample stage that moves the sample S in the x-y-z directions. 10
11 is a slit that limits the field of view of the separated X-rays; 12 is an X-ray detector that detects the X-rays that have passed through the slit 11; 13 is an electron detector 7; The lens controller 14 is a total beam converter that adds together the signal obtained by amplifying the detection signal detected by the AMP and the absorbed current signal detected from the sample S and outputs it to the lens controller 14 as an irradiation beam intensity signal.The lens controller 14 is a total beam converter. The coil currents of the converging lens and objective lens are controlled by the irradiation beam intensity signal input from 13.

以上の構成において、照射ビームの調整動作を説明する
。照射ビームとして電子銃1より電子ビームBが放射さ
れる。この電子ビームBは収束絞り・1でビーム径が絞
られた後、収束レンズ2で収束させられる。収束レンズ
2で収束させられたビームは対物絞り3でビーム径を絞
られた後、対物レンズ5で収束され試料S上に焦点を結
ばせられる。
In the above configuration, the adjustment operation of the irradiation beam will be explained. An electron beam B is emitted from the electron gun 1 as an irradiation beam. After the beam diameter of this electron beam B is narrowed down by a converging aperture 1, it is converged by a converging lens 2. The beam converged by the converging lens 2 is narrowed down to a beam diameter by the objective diaphragm 3, and then converged by the objective lens 5 to be focused on the sample S.

電子ビームBによって照射されることによって、試料S
で発生する吸収TL流及び試f′ISから放出される電
子は、照射ビーム強度によって変化するから、電子ビー
ム強度の関数として用いることができるが、試料Sで発
生する吸収電流及び試料Sから放出される電子は、試料
によって変1ヒするので照射ビームの検出信号として単
独に用いる場合は精度が低いが、吸収電流をIAと放出
電子(例;反射電子)検出電流をIBを、 IT=IA+α・IB・・・・・・・・・・・・・・・
・・・・・・(1)のように算出した照射ビーム電流■
1は、照射ビーム強度に比例する。
By being irradiated by the electron beam B, the sample S
The absorbed current generated in the sample S and the electrons emitted from the sample f'IS vary depending on the irradiation beam intensity, so they can be used as a function of the electron beam intensity. Since the emitted electrons vary depending on the sample, the accuracy is low when used alone as a detection signal of the irradiation beam, but the absorption current is IA, the emitted electron (e.g. reflected electron) detection current is IB, IT = IA + α・IB・・・・・・・・・・・・・・・
・・・・・・Irradiation beam current calculated as in (1)■
1 is proportional to the irradiation beam intensity.

但し、αは検出器の性能と形状・配置で定まる定数で実
験的に求めておくことができる。
However, α is a constant determined by the performance, shape, and arrangement of the detector and can be determined experimentally.

従って、吸収電流■^と放出電子検出電a I aを検
出し、その2つの電流から(1)式のように算出した信
号(照射ビーム電流IT)により電子ビーム強度を制御
すれば、電子ビーム強度を一定に制御することができる
。即ち、電子銃1から放射される電子ビームBの強度が
弱くなると、試料Sで発生する吸収電流及び試料Sから
放出される放出電子が減少する。吸収電流は試料Sから
全ビーム換算器13で計測され、放出電子は電子検出器
7で検出されAMPで増幅された後、双方共金ビーム換
算器13において、(1)式のように演算されて照射ビ
ーム電流ITが求められる。この照射ビーム電流エアの
減少に応じて、収束レンズ2のコイル電流を減少させて
収束レンズ2の収束力を減少させる。収束レンズ2の収
束力が減少されれば対物絞り5を通過するビーム量が増
加し、試料Sに照射するビーム量が増加し、試料Sで検
出される吸収電流及び電子検出器7で検出される放出電
子検出電流が増える。照射ビーム電流ITが所定の値に
なれば、収束レンズ2のコイル電流の減少を停止させ、
対物レンズ°5のコイル電流をビームの焦点が試料表面
に結ぶように制御する。このように電子ビームを制御す
れば、測定を中止しないでも、照射ビーム強度を一定に
保つことができる。
Therefore, if the absorption current ■^ and the emitted electron detection electron a I a are detected, and the electron beam intensity is controlled by the signal (irradiation beam current IT) calculated from these two currents as in equation (1), the electron beam The intensity can be controlled to be constant. That is, when the intensity of the electron beam B emitted from the electron gun 1 becomes weaker, the absorption current generated in the sample S and the emitted electrons emitted from the sample S decrease. The absorbed current is measured from the sample S by the total beam converter 13, and the emitted electrons are detected by the electron detector 7 and amplified by the AMP, and then both are calculated by the gold beam converter 13 as shown in equation (1). The irradiation beam current IT is determined. In accordance with this decrease in the irradiation beam current air, the coil current of the converging lens 2 is decreased to reduce the converging force of the converging lens 2. If the focusing power of the focusing lens 2 is reduced, the amount of beam passing through the objective aperture 5 will increase, the amount of beam irradiated onto the sample S will increase, and the absorbed current detected by the sample S and the amount detected by the electron detector 7 will increase. The emitted electron detection current increases. When the irradiation beam current IT reaches a predetermined value, the decrease in the coil current of the converging lens 2 is stopped,
The coil current of the objective lens °5 is controlled so that the beam is focused on the sample surface. By controlling the electron beam in this way, the irradiation beam intensity can be kept constant without stopping the measurement.

なお、上記実施例においては、電子ビーム強度の制御手
段として収束レンズの収束力を用いているが、電子銃1
から発射する電子線電流強度自身を制御することによっ
ても、同様な効果が得られるのは当然である。
In the above embodiment, the converging force of the converging lens is used as a means for controlling the electron beam intensity, but the electron gun 1
It goes without saying that a similar effect can be obtained by controlling the intensity of the electron beam current itself emitted from the electron beam.

ト、効果 上述したように、本発明は試料の吸収電流に放出電子の
検出電流を加重加算した信号に基づいて、収束レンズ及
び対物レンズのコイル電流を制御することにより、試料
に照射するビー11強度は絶えず一定となり、測定精度
が向上した。
Effects As described above, the present invention controls the beam 11 irradiating the sample by controlling the coil currents of the converging lens and the objective lens based on a signal obtained by weighting the absorption current of the sample and the detection current of emitted electrons. The intensity remained constant, improving measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の構成図である。 B・・・電子ビーム、S・・・試料、1・・・電子銃、
2・・・収束レンズ、3・・・対物レンズ、4・・・収
束絞り、5・・・対物絞り、6・・・走査コイル、7・
・電子検出器、8・・・試料ホルダー、9・・・試料ス
テージ、10・・・分光結晶、11・・・スリット、1
2・・・X線検出器、13・・・全ビーム換算器、14
・・・レンズコントローラ。
The figure is a configuration diagram of an embodiment of the present invention. B...electron beam, S...sample, 1...electron gun,
2... Converging lens, 3... Objective lens, 4... Converging aperture, 5... Objective aperture, 6... Scanning coil, 7...
・Electronic detector, 8... Sample holder, 9... Sample stage, 10... Spectroscopic crystal, 11... Slit, 1
2... X-ray detector, 13... Total beam converter, 14
...Lens controller.

Claims (1)

【特許請求の範囲】[Claims] 試料を電子ビーム等の荷電粒子線で励起させ、励起され
た試料から放出される放射線を用いて試料分析を行う装
置において、試料に発生する電流を検出する手段と、試
料から放出される電子を検出する手段と、両検出手段で
得られた検出信号を所定の方式で演算する手段と、同演
算手段で求められた信号により試料面への照射ビーム強
度を制御する手段を設けたことを特徴とする電子線照射
装置。
In an apparatus that excites a sample with a charged particle beam such as an electron beam and analyzes the sample using radiation emitted from the excited sample, there is a means for detecting the current generated in the sample and a means for detecting the electrons emitted from the sample. It is characterized by having a means for detecting, a means for calculating the detection signals obtained by both the detecting means in a predetermined method, and a means for controlling the intensity of the beam irradiated onto the sample surface based on the signal obtained by the calculating means. Electron beam irradiation equipment.
JP61230776A 1986-09-29 1986-09-29 Electron beam irradiation device Expired - Lifetime JP2674010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61230776A JP2674010B2 (en) 1986-09-29 1986-09-29 Electron beam irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61230776A JP2674010B2 (en) 1986-09-29 1986-09-29 Electron beam irradiation device

Publications (2)

Publication Number Publication Date
JPS6386233A true JPS6386233A (en) 1988-04-16
JP2674010B2 JP2674010B2 (en) 1997-11-05

Family

ID=16913084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61230776A Expired - Lifetime JP2674010B2 (en) 1986-09-29 1986-09-29 Electron beam irradiation device

Country Status (1)

Country Link
JP (1) JP2674010B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348288A (en) * 1999-03-25 2000-09-27 Fuji Photo Optical Co Ltd Method and means of providing an irradiation current value for a X-ray analyser
JP2006275756A (en) * 2005-03-29 2006-10-12 Jeol Ltd X-ray analyzer by electron excitation
JP2020034420A (en) * 2018-08-30 2020-03-05 株式会社島津製作所 X-ray analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990868A (en) * 1972-12-14 1974-08-30
JPS56133824A (en) * 1980-03-21 1981-10-20 Toshiba Corp Electron beam device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990868A (en) * 1972-12-14 1974-08-30
JPS56133824A (en) * 1980-03-21 1981-10-20 Toshiba Corp Electron beam device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348288A (en) * 1999-03-25 2000-09-27 Fuji Photo Optical Co Ltd Method and means of providing an irradiation current value for a X-ray analyser
US6476389B1 (en) 1999-03-25 2002-11-05 Fuji Photo Optical Co., Ltd. X-ray analyzer having an absorption current calculating section
GB2348288B (en) * 1999-03-25 2003-10-01 Fuji Photo Optical Co Ltd X-ray analyzer and analyzing method using the same
JP2006275756A (en) * 2005-03-29 2006-10-12 Jeol Ltd X-ray analyzer by electron excitation
JP2020034420A (en) * 2018-08-30 2020-03-05 株式会社島津製作所 X-ray analyzer
CN110873725A (en) * 2018-08-30 2020-03-10 株式会社岛津制作所 X-ray analysis apparatus
CN110873725B (en) * 2018-08-30 2022-11-25 株式会社岛津制作所 X-ray analysis apparatus

Also Published As

Publication number Publication date
JP2674010B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JP2602287B2 (en) X-ray mask defect inspection method and apparatus
US7508907B2 (en) X-ray analysis apparatus
JPH10274518A (en) Method and device for measuring thickness of thin layer by fluorescent x-ray
JP2007171193A (en) Method and instrument for measuring distance
US7091486B1 (en) Method and apparatus for beam current fluctuation correction
JPS6386233A (en) Electron beam irradiator
JPH04276509A (en) Apparatus for measuring state of sample surface with electron beam
JP5397060B2 (en) Charged particle microscope and analysis method
JPS61168852A (en) Focusing device of transmission type electron microscope
JPS6388737A (en) Electron beam emitting device
JP2000131045A (en) Scanning type charged particle beam system
JPH01120749A (en) Automatic focusing device for electron microscope
JP4349146B2 (en) X-ray analyzer
JP2017216115A5 (en)
JP4146103B2 (en) Electron beam apparatus equipped with a field emission electron gun
JPH0729544A (en) Electronic energy loss simultaneous measuring device
JP2004014207A5 (en)
JPS6388742A (en) Sample surface observation device
JPH0580158A (en) Charged particle beam measuring device
JP2017211290A (en) X-ray irradiation device
JPS6386232A (en) Electron beam irradiator
JPH06310063A (en) Parallel detection type energy loss analyzer
JP2008153090A (en) Charged particle beam device
JPH04522Y2 (en)
JPS6111885Y2 (en)