JPS638605B2 - - Google Patents

Info

Publication number
JPS638605B2
JPS638605B2 JP19336382A JP19336382A JPS638605B2 JP S638605 B2 JPS638605 B2 JP S638605B2 JP 19336382 A JP19336382 A JP 19336382A JP 19336382 A JP19336382 A JP 19336382A JP S638605 B2 JPS638605 B2 JP S638605B2
Authority
JP
Japan
Prior art keywords
metal
ceramic body
inner layer
electrode
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19336382A
Other languages
Japanese (ja)
Other versions
JPS5984413A (en
Inventor
Yasuhiro Kanai
Yoshiteru Ishikawa
Kunihisa Kawahara
Tosha Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP19336382A priority Critical patent/JPS5984413A/en
Publication of JPS5984413A publication Critical patent/JPS5984413A/en
Publication of JPS638605B2 publication Critical patent/JPS638605B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、回路基板、コンデンサ、バリスタ等
のセラミツク電子部品に関する。 この種電子部品は、一般に、Ag―Pd、Au、
Pd、Pt等の貴金属を用いてセラミツクスの焼成
と同時に電極を形成していたが、近年、これ等の
貴金属を用いないで、電極用の空隙を設けたセラ
ミツク体の該空隙にSn等の廉価な熔融金属を注
入して電極を形成する方法が提案されている(特
公昭54―7007号公報参照)。 このものは、空隙に熔融金属を注入して形成さ
れる内部電極と連なり、セラミツク体の表面に形
成される外部電極を、前記溶融金属と濡れ性の良
好な金属(例えば溶融金属がSn又はPb―Sn―Bi
を主体とした合金などでは、外部電極はAg―
Pd、Au―Pdなどの金属)で形成し、空隙内部に
おいて注入金属の凝集によるこれと外部電極間の
切断を防止していた。しかし、 (1) セラミツク体を溶融金属中に浸漬し、その空
隙に溶融金属を注入した後引き上げたとき、外
部電極に付着した溶融金属を介して隣り合つた
セラミツク体同士が接着するため、複数個のセ
ラミツク体を相互に間隔を保つて溶融金属に浸
漬しなければならず、量産性に欠ける。 (2) 金属粉末をペースト状に練り、これを転写、
スクリーン印刷等でセラミツク体に塗布し焼き
付けて多孔質の外部電極を形成するため、この
電極の厚みはばらつき(例えば30μmから
100μmまで)、溶融金属に浸漬した際、薄い部
分は侵蝕により消失し、厚い部分では溶融金属
の溜りができて盛り上り、外部接続端子として
適さない形状となる。 等の不都合が存した。 本発明はかかる不都合を無くすことをその目的
としたもので、セラミツク体に、その電極用空隙
に金属が充填されて形成された内部電極と、該内
部電極に連なり該セラミツク体の表面に形成され
た外部電極とを具備するセラミツク電子部品にお
いて、該外部電極は多孔質金属層からなる内層と
該内層を被覆する外層とから構成され、該内層
は、その前記セラミツク体に接する側が前記内部
電極金属に対して濡れ性が良好でかつ融点が高い
金属、外側が前記内部電極金属に対して濡れ性が
劣りかつ融点が高い金属又は金属酸化物を含む金
属からなり、前記外層はその内側がはんだによる
侵蝕性の少ない金属、外側がはんだ濡れ性の良好
な金属からなることを特徴とする。 このセラミツク電子部品は次のように作成され
る。 第1図に示すセラミツク電子部品のセラミツク
体1は、先ず外部電極2の多孔質金属層からなる
内層2aが形成される。これには金属粉を少量の
フリツトとビヒクル等と混練したペーストをセラ
ミツク体1の空隙開口部を覆つてセラミツク体1
に塗布し、焼結する方法が最も簡便である。即
ち、前記内層2aは、セラミツク体1の空隙3に
注入する溶融金属よりも融点が高く(低くとも50
℃)、その溶融金属との濡れ性の良好な金属2a1
(例えばPb、Sn、Bi、あるいはこれ等の合金など
の注入金属の場合、Ag、Ag―Pd、Au―Pdな
ど)のペーストをセラミツク体1の端面に塗布
し、これを乾燥又は焼付けた後に、この上に前記
溶融金属よりも融点が高く(低くとも50℃)該金
属との濡れ性の劣る金属2a2(例えばPb、Sn、Bi
あるいはこれらの合金などの溶融金属の場合、
Al、Zn、Ni、Cu(表面酸化で濡れ性が劣化)な
ど。)、あるいは例えばAl、Zn、Ni、Cu等の金属
酸化物又はガラスフリツトなどを導電性を損わ
ず、濡れ性が無くなる範囲で含んだ金属ペースト
を塗布して焼付けることにより形成される。次い
でPb等の溶融金属の中にセラミツク体1を浸漬
する。その前にセラミツク体1の空隙3からの脱
気を行ない、浸漬後は溶融金属に圧力をかけて前
記空隙3へ溶融金属を充填させる。 前記内層2aは、溶融金属の空隙3への注入の
際に空隙3から脱気するための通気性と溶融金属
の浸透性を具備した多孔質の金属層であり、その
内側及び外側は前述のような金属又は金属酸化
物、ガラスフリツトなどを含む金属であるから、
溶融金属注入の際に溶融することなくその漏出を
抑えると共に内部電極4との接続を維持し、溶融
金属中から引揚げたときその表面に溶融金属の溜
りを作らない。 該内層2aの表面ははんだ濡れ性がない為、外
部接続端子としての働きを持たせるべく、少なく
とも2種の金属層から成る外層2bを該表面を覆
つて形成させる。即ち、その内層側にはんだ浸蝕
性の少ない金属2b1(例えばNi、Alなど)を、表
面にはんだ濡れ性の良好な金属2b2(例えばAg、
Sn―Pbなど)を蒸着やメツキ等の方法で被着さ
せる。尚、前記Niでメツキの下地にCuメツキを
施して内層側を2層にし、計3層以上に形成して
もよく、2種の金属層に限らない。 実施例 電極用空隙を有するBaTiO3系セラミツク体の
電極用空隙開口側端縁部に、開口部を覆うように
Ag70%、Pd30%の粉末をガラスフリツト、ビヒ
クル及び溶剤でペースト状に混練して塗布し、
850℃で焼付けを行ない、外部電極内層2aの第
1層2a1を形成した。 次に、Ag37%、Pd13%、Zn50%の粉末をガラ
スフリツト、ビヒクル及び溶剤でペースト状に混
練して外部電極内層2a上に塗布し850℃で焼付
け、内層2aの第2層2a2を形成した。 この外部電極内層2aを形成したセラミツク体
をステンレス網に積載し、加熱圧力容器の内で
Pb80%、Sn20%からなる290℃の溶融金属の上に
置いて50mmHgまで減圧し、セラミツク体の電極
用空隙内の抜気を行うとともにセラミツク体の加
熱を行なつた後、溶融金属中に浸漬し、容器内に
N2ガスを供給して17Kg/cm2に昇圧して、空隙内
に熔融金属を圧入した。 次に浸漬してから4分間後溶融金属からセラミ
ツク体1を引き揚げ、170℃まで冷却し容器内の
気体圧力を除いて取出した。 他のセラミツク体には前記と同様に外部電極2
の内層2aを形成し、溶融金属を300℃、325℃及
び345℃の各温度にして、同様の手順でセラミツ
ク体の空隙内に該溶融金属を圧入した。 以上の電極用空隙に金属を注入したセラミツク
体1の外部電極2の内層2a上に化学メツキによ
りCuを析出させ更にNiの電気メツキを施して外
層2bの内側層を形成し、その上にPb―Sn電気
メツキを施して外側層を形成しPb―Sn注入型積
層セラミツクコンデンサを作成した。 比較例 Ag70%、Pd30%のペーストをセラミツク体に
塗布し850℃で焼付け、これを2度繰り返して外
部電極を形成し、これをステンレス網に互に接触
しないように並べて、前記溶融金属の注入と同じ
方法で290℃、300℃、325℃及び345℃の各温度で
Pb―Snの溶融金属を注入して各比較資料を作成
した。 表1は本発明の試料と比較試料について静電容
量を1KHzの正弦波交流で測定した結果を示す。
The present invention relates to ceramic electronic components such as circuit boards, capacitors, and varistors. This type of electronic component is generally made of Ag-Pd, Au,
Precious metals such as Pd and Pt were used to form electrodes at the same time as ceramics were fired, but in recent years, inexpensive metals such as Sn have been used to fill the voids of ceramic bodies without using these precious metals. A method has been proposed in which electrodes are formed by injecting molten metal (see Japanese Patent Publication No. 7007/1983). This is connected to an internal electrode formed by injecting molten metal into a gap, and an external electrode formed on the surface of the ceramic body is connected to a metal that has good wettability with the molten metal (for example, the molten metal is Sn or Pb). ―Sn―Bi
For alloys mainly composed of Ag, the external electrode is Ag-
(Pd, Au-Pd, and other metals) to prevent cutting between the implanted metal and the external electrode due to agglomeration within the cavity. However, (1) when a ceramic body is immersed in molten metal and then pulled up after injecting the molten metal into the gap, adjacent ceramic bodies adhere to each other through the molten metal adhering to the external electrode, resulting in multiple Since individual ceramic bodies must be immersed in molten metal while maintaining a distance from each other, mass production is not possible. (2) Knead metal powder into a paste, transfer this,
Because the porous external electrode is formed by applying it to the ceramic body using screen printing, etc. and baking it, the thickness of this electrode varies (for example, from 30 μm to 30 μm).
(up to 100 μm), when immersed in molten metal, the thin part disappears due to erosion, and the thick part forms a pool of molten metal and swells up, making the shape unsuitable as an external connection terminal. There were other inconveniences. The present invention aims to eliminate such inconveniences, and includes an internal electrode formed in a ceramic body by filling the electrode gap with metal, and an internal electrode formed on the surface of the ceramic body in connection with the internal electrode. In the ceramic electronic component, the external electrode is composed of an inner layer made of a porous metal layer and an outer layer covering the inner layer, and the inner layer has a side in contact with the ceramic body that is made of the inner electrode metal. The outer layer is made of a metal that has poor wettability and a high melting point with respect to the internal electrode metal, or a metal containing a metal oxide, and the inner layer is made of solder. It is characterized by being made of a less corrosive metal and a metal with good solder wettability on the outside. This ceramic electronic component is made as follows. In a ceramic body 1 of a ceramic electronic component shown in FIG. 1, an inner layer 2a of a porous metal layer of an external electrode 2 is first formed. For this purpose, a paste made by kneading metal powder with a small amount of frit, vehicle, etc. is applied to cover the openings of the voids in the ceramic body 1.
The simplest method is to apply it to the surface and sinter it. That is, the inner layer 2a has a melting point higher than that of the molten metal injected into the voids 3 of the ceramic body 1 (at least 50
°C), metal with good wettability with molten metal 2a 1
(For example, in the case of implanted metals such as Pb, Sn, Bi, or their alloys, Ag, Ag-Pd, Au-Pd, etc.) is applied to the end face of the ceramic body 1, and after drying or baking, , In addition to this, a metal 2a 2 (for example, Pb, Sn, Bi
Or for molten metals such as these alloys,
Al, Zn, Ni, Cu (wettability deteriorates due to surface oxidation), etc. ), or by applying and baking a metal paste containing metal oxides such as Al, Zn, Ni, Cu, or glass frit in an amount that does not impair conductivity and eliminate wettability. Next, the ceramic body 1 is immersed in a molten metal such as Pb. Before that, air is removed from the voids 3 of the ceramic body 1, and after immersion, pressure is applied to the molten metal to fill the voids 3 with the molten metal. The inner layer 2a is a porous metal layer having air permeability and molten metal permeability for degassing from the void 3 when molten metal is injected into the void 3, and the inner and outer layers thereof are made of the above-mentioned material. Because it is a metal containing such metals, metal oxides, glass frits, etc.
To suppress leakage of molten metal without melting it when injected, maintain connection with an internal electrode 4, and prevent pooling of molten metal on the surface when withdrawn from the molten metal. Since the surface of the inner layer 2a has no solder wettability, an outer layer 2b consisting of at least two types of metal layers is formed to cover the surface in order to function as an external connection terminal. That is, a metal 2b 1 with low solder corrosion (for example, Ni, Al, etc.) is placed on the inner layer side, and a metal 2b 2 with good solder wettability (for example, Ag, Al, etc.) is placed on the surface.
(Sn--Pb, etc.) is deposited using methods such as vapor deposition or plating. Incidentally, the base plated with Ni may be plated with Cu to form two layers on the inner layer side, and a total of three or more layers may be formed, and the layer is not limited to two types of metal layers. Example: At the edge of the BaTiO 3 ceramic body having an electrode gap on the opening side of the electrode gap, a layer was placed so as to cover the opening.
Powder of 70% Ag and 30% Pd is kneaded into a paste with glass frit, vehicle and solvent, and applied.
Baking was performed at 850° C. to form the first layer 2a 1 of the external electrode inner layer 2a. Next, powders of 37% Ag, 13% Pd, and 50% Zn were kneaded into a paste with glass frit, vehicle, and solvent, and applied onto the external electrode inner layer 2a and baked at 850°C to form the second layer 2a2 of the inner layer 2a. . The ceramic body on which the external electrode inner layer 2a was formed was loaded on a stainless steel mesh and placed in a heated pressure vessel.
The ceramic body is placed on top of a 290°C molten metal consisting of 80% Pb and 20% Sn, the pressure is reduced to 50 mmHg, air is removed from the electrode gap in the ceramic body, the ceramic body is heated, and then immersed in the molten metal. and into the container
N 2 gas was supplied to raise the pressure to 17 Kg/cm 2 and molten metal was pressurized into the void. Next, after 4 minutes of immersion, the ceramic body 1 was pulled up from the molten metal, cooled to 170° C., and the gas pressure inside the container was removed, and the ceramic body 1 was taken out. The other ceramic body has an external electrode 2 in the same manner as above.
The inner layer 2a of the ceramic body was formed, and the molten metal was heated to temperatures of 300°C, 325°C, and 345°C, and the molten metal was press-fitted into the voids of the ceramic body using the same procedure. Cu is precipitated by chemical plating on the inner layer 2a of the external electrode 2 of the ceramic body 1 in which metal is injected into the electrode gap, and then electroplated with Ni to form the inner layer of the outer layer 2b. -Sn electroplating was applied to form the outer layer to create a Pb-Sn injection type multilayer ceramic capacitor. Comparative example A paste of 70% Ag and 30% Pd was applied to a ceramic body and baked at 850°C. This was repeated twice to form external electrodes. These were arranged on a stainless steel mesh so that they did not touch each other, and the molten metal was injected. At each temperature of 290℃, 300℃, 325℃ and 345℃ using the same method as
Comparison materials were created by injecting molten Pb-Sn metal. Table 1 shows the results of measuring the capacitance of the samples of the present invention and comparative samples using a 1 KHz sine wave alternating current.

【表】 表1によれば、注入温度290℃〜300℃、注入時
間4分間では溶融金属の注入が不完全であり、
325℃でほぼ密に充填された。本発明は345℃で外
部電極の損傷が起きないが、比較例では外部電極
が侵蝕されて測定端子がなく測定できないものが
あつた。 このことは表2における外部電極の剥離強度に
よる潜圧的な電極侵蝕の程度を見ても明らかで、
本発明は、充分に溶融金属を注入できる345℃に
おいても290℃のときと変らない剥離強度を維持
するのに対し、比較例は注入不完全な290℃から
侵蝕が始まり、注入できる325℃以上ではほとん
ど剥離強度がない。表2は、試料の両側端部に
0.4mmφのリード線をはんだ付けして1方のリー
ド線を固定し、他方のリード線を引張つて剥離強
度を測定した結果を示す。
[Table] According to Table 1, the injection of molten metal is incomplete at an injection temperature of 290°C to 300°C and an injection time of 4 minutes.
Almost densely packed at 325℃. In the present invention, damage to the external electrode does not occur at 345°C, but in some comparative examples, the external electrode was corroded and there were no measurement terminals, making it impossible to measure. This is clear from the degree of latent pressure electrode erosion according to the peel strength of the external electrode in Table 2.
The present invention maintains the same peel strength as at 290°C even at 345°C, where molten metal can be fully injected, whereas the comparative example begins to erode at 290°C, when injection is incomplete, and exceeds 325°C, where it can be injected. It has almost no peel strength. Table 2 shows the
The results are shown in which the peel strength was measured by fixing one lead wire by soldering 0.4 mmφ lead wires and pulling the other lead wire.

【表】 前記外部電極の内層2aを有する本発明のセラ
ミツク体1をステンレス網中に積載してPb―Sn
の溶融金属中に浸漬してもセラミツク体1同士が
接着せず分離していた。これに対し前記比較例で
はセラミツク体同士互に接着するため、個々に間
隔をもたせて前記浸漬を行なつた。第2図は325
℃の溶融金属をセラミツク体の空隙に注入したと
きの本発明のセラミツク体、第3図は同じ条件の
比較例の各平面図を示す。比較例では外部電極の
一方は内部電極金属4aの溜りができて盛り上
り、他方は1部が消失したのに対し、本発明では
そのようなことがなく外形が平坦で外部接続端子
として初期の形状を保つた。 このように本発明によるときは、セラミツク体
1に設ける外部電極2の内層2aは、その該セラ
ミツク体1に接する側が内部電極金属に対して濡
れ性が良好でかつ融点が高い金属、外側が前記内
部電極金属に対して濡れ性が劣りかつ融点が高い
金属又は金属酸化物を含む金属からなつているの
で、熔融金属中に多数のセラミツク体を浸漬し、
その電極用空隙に溶融金属を注入した後引き上げ
たときセラミツク体同士が相互接着することがな
く、そのため従来のものに比べて量産性が向上す
るとともに、溶融金属中に侵蝕した際外部電極が
浸漬されず、引き揚げたとき熔融金属が付着して
盛り上ることがなく外部接続端子として不都合を
生じない効果があり、更に外部電極の外層2b
は、その内側がはんだによる侵蝕性の少ない金
属、外側がはんだ濡れ性の良好な金属からなるの
で、リード線等との接続が容易である等の効果が
ある。
[Table] The ceramic body 1 of the present invention having the inner layer 2a of the external electrode is loaded in a stainless steel mesh and Pb-Sn
Even when immersed in molten metal, the ceramic bodies 1 did not adhere to each other and were separated. On the other hand, in the comparative example, in order to bond the ceramic bodies to each other, the dipping was carried out at intervals. Figure 2 is 325
3 shows a plan view of a comparative example under the same conditions. In the comparative example, one of the external electrodes had a pool of internal electrode metal 4a and was swollen, and a portion of the other external electrode had disappeared, whereas in the present invention, this did not occur and the outer shape was flat, making it suitable for use as an initial external connection terminal. It kept its shape. According to the present invention, the inner layer 2a of the external electrode 2 provided on the ceramic body 1 is made of a metal having good wettability and a high melting point with respect to the internal electrode metal on the side in contact with the ceramic body 1, and a metal having a high melting point on the outside side. Since the internal electrode is made of a metal with poor wettability and a high melting point or a metal containing a metal oxide, a large number of ceramic bodies are immersed in the molten metal,
When molten metal is injected into the electrode gap and then pulled up, the ceramic bodies do not adhere to each other, which improves mass production compared to conventional methods, and the external electrode is immersed when corroded by the molten metal. The outer layer 2b of the external electrode
Since the inner side is made of a metal that is less corrosive by solder and the outer side is made of a metal that has good solder wettability, it has advantages such as easy connection with lead wires and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミツク電子部品の拡大断
面図、第2図は本発明セラミツク体の平面図、第
3図は従来例の平面図を示す。 1…セラミツク体、2…外部電極、2a…内
層、2b…外層、3…空隙、4…内部電極。
FIG. 1 is an enlarged sectional view of the ceramic electronic component of the present invention, FIG. 2 is a plan view of the ceramic body of the present invention, and FIG. 3 is a plan view of a conventional example. DESCRIPTION OF SYMBOLS 1...Ceramic body, 2...External electrode, 2a...Inner layer, 2b...Outer layer, 3...Gap, 4...Inner electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク体に、その電極用空隙に金属が充
填されて形成された内部電極と、該内部電極に連
なり該セラミツク体の表面に形成された外部電極
とを具備するセラミツク電子部品において、該外
部電極は多孔質金属層からなる内層と該内層を被
覆する外層とから構成され、該内層は、その前記
セラミツク体に接する側が前記内部電極金属に対
して濡れ性が良好でかつ融点が高い金属、外側が
前記内部電極金属に対して濡れ性が劣りかつ融点
が高い金属又は金属酸化物を含む金属からなり、
前記外層はその内側がはんだによる侵蝕性の少な
い金属、外側がはんだ濡れ性の良好な金属からな
ることを特徴とするセラミツク電子部品。
1. A ceramic electronic component comprising an internal electrode formed by filling the electrode gap with metal in a ceramic body, and an external electrode connected to the internal electrode and formed on the surface of the ceramic body, in which the external electrode The inner layer is composed of an inner layer made of a porous metal layer and an outer layer covering the inner layer, and the inner layer is made of a metal having good wettability and a high melting point for the inner electrode metal on the side in contact with the ceramic body, and is made of a metal having poor wettability and a high melting point with respect to the internal electrode metal, or a metal containing a metal oxide,
The ceramic electronic component is characterized in that the inner layer of the outer layer is made of a metal that is less erodible by solder, and the outer layer is made of a metal that has good solder wettability.
JP19336382A 1982-11-05 1982-11-05 Ceramic electronic part Granted JPS5984413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19336382A JPS5984413A (en) 1982-11-05 1982-11-05 Ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19336382A JPS5984413A (en) 1982-11-05 1982-11-05 Ceramic electronic part

Publications (2)

Publication Number Publication Date
JPS5984413A JPS5984413A (en) 1984-05-16
JPS638605B2 true JPS638605B2 (en) 1988-02-23

Family

ID=16306660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19336382A Granted JPS5984413A (en) 1982-11-05 1982-11-05 Ceramic electronic part

Country Status (1)

Country Link
JP (1) JPS5984413A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727803B2 (en) * 1985-11-20 1995-03-29 松下電器産業株式会社 Electrode treatment method for laminated chip varistor
JPS62137805A (en) * 1985-12-12 1987-06-20 株式会社村田製作所 Laminated chip thermistor
JPS62137804A (en) * 1985-12-12 1987-06-20 株式会社村田製作所 Laminated chip thermistor
JPS63119227U (en) * 1987-01-29 1988-08-02

Also Published As

Publication number Publication date
JPS5984413A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
US8631549B2 (en) Method for manufacturing multilayer electronic component
US4819128A (en) Electrical multilayer component comprising a sintered, monolithic ceramic body and method for its manufacture
JP2591205B2 (en) Thermistor
KR970009771B1 (en) Multilayer capacitor & manufacturing method for the same
KR880001344B1 (en) A method of forming electrodes ceramic bodies to provide electronic compounds
JPS638605B2 (en)
JPH0470766B2 (en)
JPH08306580A (en) Ceramic electronic part and its manufacture
JP3227242B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2000182883A (en) Manufacture of laminated ceramic electronic component
JP2973558B2 (en) Conductive paste for chip-type electronic components
JPH0136243B2 (en)
JPH097879A (en) Ceramic electronic part and manufacture thereof
JPS6032348B2 (en) Manufacturing method for electronic components
JPH0729773A (en) Terminal electrode forming method of chip type electronic part
EP0072126A2 (en) Multilayer ceramic dielectric capacitors
JPH0897075A (en) Production of ceramic device
JP3196524B2 (en) Electronic component manufacturing method
JPH0722268A (en) Chip device
JP2696603B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPH08203769A (en) Ceramic electronic component
JPH01289231A (en) Leadless chip component
JPS6132808B2 (en)
JP2973504B2 (en) Chip type solid electrolytic capacitor
JPS6132807B2 (en)