JP2000182883A - Manufacture of laminated ceramic electronic component - Google Patents

Manufacture of laminated ceramic electronic component

Info

Publication number
JP2000182883A
JP2000182883A JP10355652A JP35565298A JP2000182883A JP 2000182883 A JP2000182883 A JP 2000182883A JP 10355652 A JP10355652 A JP 10355652A JP 35565298 A JP35565298 A JP 35565298A JP 2000182883 A JP2000182883 A JP 2000182883A
Authority
JP
Japan
Prior art keywords
electrode
multilayer ceramic
external electrode
electronic component
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10355652A
Other languages
Japanese (ja)
Inventor
Takeshi Kimura
猛 木村
Osamu Yamashita
修 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10355652A priority Critical patent/JP2000182883A/en
Publication of JP2000182883A publication Critical patent/JP2000182883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture of an external electrode with high reliability that is electrically connected to internal electrodes. SOLUTION: This laminated ceramic capacitor has a sintered body, consisting of a plurality of layers of alternately laminated ceramic layers 1 and internal electrodes 2 and an external electrode 6 formed at the end part of the sintered body, so as to be electrically connected to the internal electrodes 2. To obtain an electrode 3 connected electrically to the end part of the internal electrodes 2 exposed on the end surface of the sintered body, an electrode 3 paste consisting of a pyrolytic organic metal body such as silver acetate, silver powder 9 and epoxy resin 10 is coated on the end part of the sintered body, and is then heated to pyrolyze the silver acetate and to cure the epoxy resin 10. By pyrolyzing the silver acetate, fine silver particles 8 are precipitated extensively the end part surface of the internal electrodes 2 and the silver powder 9 surface and in the cured resin 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は積層セラミック電子
部品、特にその内部電極と電気的に接続するように形成
する外部電極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic electronic component, and more particularly to a method for manufacturing an external electrode formed so as to be electrically connected to an internal electrode thereof.

【0002】[0002]

【従来の技術】従来の技術を図3の積層セラミックコン
デンサ15を例に説明する。
2. Description of the Related Art The prior art will be described with reference to a multilayer ceramic capacitor 15 shown in FIG.

【0003】公知の製造方法に従って、セラミック層1
と、金属粉末を主成分とする内部電極2とを、交互に複
数層重ね合わせたグリーン積層体(図示せず)を所定の
グリーンチップ形状に切断した後、焼成を行い焼結体を
作製する。
[0003] According to a known manufacturing method, the ceramic layer 1
And a plurality of internal electrodes 2 mainly composed of metal powder are alternately superposed on each other, and a green laminate (not shown) is cut into a predetermined green chip shape, followed by firing to produce a sintered body. .

【0004】次に焼結体の端面に露出させた内部電極2
端部と電気的に接続するよう焼結体の端部に電極11の
ペーストを塗布し、所定温度で焼付を行い電極11を形
成する。
Next, the internal electrode 2 exposed on the end face of the sintered body
The paste of the electrode 11 is applied to the end of the sintered body so as to be electrically connected to the end, and is baked at a predetermined temperature to form the electrode 11.

【0005】次いで、半田付け性を確保する目的で、電
極11の表面に電解メッキ法を用い、ニッケルメッキ膜
4、更にその表面に半田メッキ膜5を設け外部電極12
を形成し、積層セラミックコンデンサ15を完成させ
る。
Next, in order to ensure solderability, a nickel plating film 4 is formed on the surface of the electrode 11 by electrolytic plating, and a solder plating film 5 is further formed on the surface of the nickel plating film 4 to form an external electrode 12.
Is formed, and the multilayer ceramic capacitor 15 is completed.

【0006】また、電極11と焼結体の接着強度を向上
させるため、金属粉末とガラスフリットを含む電極11
のペーストを焼結体の端部に塗布し、700〜900℃
温度で焼付け、内部電極2と電極11と電気的接続を行
うと共に、焼結体端部に強固な電極11を形成してい
た。また、焼付けた電極11に替えて、図4、図5に示
すように熱硬化性樹脂10と銀粉末9からなる導電性の
電極16のペーストを焼結体の端部に塗布した後、加熱
により樹脂を熱硬化させ、電極16を形成する方法が特
開平3−27003号公報に開示されている。
In order to improve the adhesive strength between the electrode 11 and the sintered body, the electrode 11 containing metal powder and glass frit is used.
Is applied to the end of the sintered body at 700 to 900 ° C.
The internal electrode 2 and the electrode 11 were electrically connected to each other by baking at a temperature, and a strong electrode 11 was formed at the end of the sintered body. 4 and 5, instead of the baked electrode 11, a paste of a conductive electrode 16 made of a thermosetting resin 10 and a silver powder 9 is applied to the end of the sintered body, and then heated. Japanese Patent Application Laid-Open No. 3-27003 discloses a method for forming an electrode 16 by thermosetting a resin by using the method.

【0007】[0007]

【発明が解決しようとする課題】図3の積層セラミック
コンデンサ15は電極11の焼付時に、電極11用のペ
ーストに含まれるガラスフリット成分が焼結体内部に拡
散し、焼結体端部にガラス拡散層13を形成する。そし
て、電極11を焼付けた積層セラミックコンデンサ15
を図6の回路基板19にハンダ20を実装した後、回路
基板19に曲げ応力を付加した場合、ガラス拡散層13
と非ガラス拡散層14との界面が破壊の起点となり、こ
の図6に示すように積層セラミックコンデンサ15が破
壊する。これを防止するため、電極11の焼付温度を下
げガラス拡散層13をできるだけ薄くする手段を講じて
いたが、内部電極2と電極11の合金化が不十分で電気
的接続の信頼性が低下するという課題があった。
In the multilayer ceramic capacitor 15 shown in FIG. 3, when the electrodes 11 are baked, the glass frit component contained in the paste for the electrodes 11 is diffused into the sintered body, and the glass frit is added to the end of the sintered body. The diffusion layer 13 is formed. Then, the laminated ceramic capacitor 15 having the electrodes 11 baked
When the solder 20 is mounted on the circuit board 19 of FIG. 6 and a bending stress is applied to the circuit board 19, the glass diffusion layer 13
The interface between the substrate and the non-glass diffusion layer 14 is the starting point of the destruction, and the multilayer ceramic capacitor 15 is destructed as shown in FIG. In order to prevent this, measures have been taken to lower the baking temperature of the electrode 11 and to make the glass diffusion layer 13 as thin as possible. However, the alloying between the internal electrode 2 and the electrode 11 is insufficient and the reliability of the electrical connection is reduced. There was a problem that.

【0008】また、図4の積層セラミックコンデンサ1
8は、回路基板19にハンダ20実装後の撓み応力での
破壊は防止できるが、熱硬化性樹脂10の硬化温度が低
いため、内部電極2と銀粉末9の合金化が進行せず、内
部電極2端部と銀粉末9の機械的な接触のみで導電性を
得るため電気的接続に対する信頼性に課題があった。
The multilayer ceramic capacitor 1 shown in FIG.
8 can prevent breakage due to bending stress after the solder 20 is mounted on the circuit board 19, but since the curing temperature of the thermosetting resin 10 is low, alloying of the internal electrode 2 and the silver powder 9 does not progress, and the internal Since electrical conductivity is obtained only by mechanical contact between the end of the electrode 2 and the silver powder 9, there is a problem in reliability of electrical connection.

【0009】本発明は前記従来の問題点を解決し、撓み
応力に耐え、しかも内部電極と外部電極との間で信頼性
の高い電気的導通を有する優れた積層セラミック電子部
品の製造方法を提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and provides a method of manufacturing an excellent multilayer ceramic electronic component which withstands a bending stress and has a highly reliable electrical connection between an internal electrode and an external electrode. It is intended to do so.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に本発明は、セラミック層と内部電極を交互に複数層積
層した積層体の端部に、内部電極と電気的に接続する外
部電極を形成する際、熱分解性有機金属体を含む導電性
外部電極ペーストを積層体端部に塗布後、加熱し熱分解
性有機金属体を熱分解させ、金属成分を内部電極端部表
面と外部電極内に析出させ、析出した金属成分を介して
内部電極と外部電極間で信頼性の高い電気的導通を得る
ことで、ハンダ実装後の優れた耐撓み応力を有する積層
セラミック電子部品を得るものである。
In order to achieve the above object, the present invention provides an external electrode which is electrically connected to an internal electrode at an end of a multilayer body in which a plurality of ceramic layers and internal electrodes are alternately laminated. When forming, a conductive external electrode paste containing a thermally decomposable organic metal body is applied to the end of the laminate, and then heated to thermally decompose the thermally decomposable organic metal body, and the metal component is exposed to the inner electrode end surface and the external electrode By obtaining reliable electrical continuity between the internal electrode and the external electrode via the deposited metal component, thereby obtaining a multilayer ceramic electronic component having excellent bending stress after solder mounting. is there.

【0011】[0011]

【発明の実施の形態】本発明の請求項1に記載の発明
は、セラミック層と内部電極を交互に複数層積層した積
層体と、前記積層体の端部に前記内部電極と電気的に接
続するように形成した外部電極を有する積層セラミック
電子部品において、前記積層体の外部電極は、熱分解性
有機金属体を含む導電性外部電極ペーストを積層体端部
に塗布後、加熱硬化時の温度で熱分解性有機金属体を熱
分解させ、その金属成分を内部電極端部表面と外部電極
内に析出させた状態で形成する積層セラミック電子部品
の製造方法である。内部電極端部が露出した積層体端部
に塗布した、導電性外部電極ペーストに含まれる熱分解
性有機金属体が熱分解し、内部電極端部表面と外部電極
内部に微細な金属成分を析出させる。析出した微細な金
属粒子を介して内部電極と外部電極間での良好な電気的
接続を確保すると共に、積層セラミック電子部品内部に
ガラス拡散層を発生させない外部電極を形成すること
で、ハンダ実装後の撓み応力に耐えるという効果を有す
るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to a first aspect of the present invention is directed to a laminated body in which a plurality of ceramic layers and internal electrodes are alternately laminated, and the end of the laminated body is electrically connected to the internal electrodes. In the multilayer ceramic electronic component having external electrodes formed so as to be formed, the external electrodes of the laminate are formed by applying a conductive external electrode paste containing a thermally decomposable organic metal body to an end of the laminate, and then heating and curing the paste. The present invention provides a method for manufacturing a multilayer ceramic electronic component in which a thermally decomposable organic metal body is thermally decomposed in step (1) and the metal component is deposited on the end surface of the internal electrode and in the external electrode. The thermally decomposable organometallic substance contained in the conductive external electrode paste applied to the end of the laminated body where the internal electrode end is exposed is thermally decomposed, and fine metal components are deposited on the internal electrode end surface and inside the external electrode. Let it. By ensuring good electrical connection between the internal and external electrodes via the deposited fine metal particles, and by forming external electrodes that do not generate a glass diffusion layer inside the multilayer ceramic electronic component, after solder mounting Has the effect of withstanding the bending stress of

【0012】本発明の請求項2に記載の発明は、外部電
極として用いる導電性電極ペースト中に含まれる熱分解
性有機金属体の分解温度が350℃より低い組成の材料
を用いることを特徴とする請求項1に記載の積層セラミ
ック電子部品の製造方法である。熱分解性有機金属体に
350℃以下の分解温度を有する化合物を用いることに
より、積層セラミック電子部品の内部電極に卑金属材料
を用いた場合においても、卑金属が酸化しない低温で内
部電極端部表面と外部電極内に分解した微細な金属成分
を析出することができ、内部電極と外部電極との間に良
好な電気的接続が得られると共に、導電性外部電極ペー
ストにガラス成分を含有させた場合においてもガラス成
分の拡散層が極表面層にのみに形成され、回路基板等に
ハンダ実装した際においても耐撓み応力を低下させるこ
とがないという作用を有するものである。
The invention according to claim 2 of the present invention is characterized in that a material having a composition in which the decomposition temperature of the thermally decomposable organometallic substance contained in the conductive electrode paste used as the external electrode is lower than 350 ° C. is used. The method for manufacturing a multilayer ceramic electronic component according to claim 1. By using a compound having a decomposition temperature of 350 ° C. or less for the thermally decomposable organic metal body, even when a base metal material is used for the internal electrode of the multilayer ceramic electronic component, the base electrode end surface is formed at a low temperature at which the base metal is not oxidized. Decomposed fine metal components can be deposited in the external electrode, good electrical connection can be obtained between the internal electrode and the external electrode, and when the conductive external electrode paste contains a glass component Also, the diffusion layer of the glass component is formed only on the very surface layer, and has an effect that the bending stress is not reduced even when it is soldered on a circuit board or the like.

【0013】本発明の請求項3に記載の発明は、熱分解
性有機金属体に酢酸銀を用いることを特徴とした請求項
1記載の積層セラミック電子部品の製造方法である。こ
れは熱分解性有機金属体の分解温度が350℃より低い
有機金属化合物を規定したものである。
According to a third aspect of the present invention, there is provided the method for manufacturing a multilayer ceramic electronic component according to the first aspect, wherein silver acetate is used for the thermally decomposable organic metal body. This specifies an organometallic compound in which the decomposition temperature of the thermally decomposable organometallic body is lower than 350 ° C.

【0014】本発明の請求項4に記載の発明は、熱硬化
性樹脂と熱分解性有機金属体及び金属粉末からなる導電
性外部電極ペーストを用いることを特徴とした請求項1
記載の積層セラミック電子部品の製造方法である。熱硬
化性樹脂を用いることにより積層セラミック電子部品の
端部に強固な機械的接着力を有する外部電極を形成する
ことができるという作用を有するものである。
According to a fourth aspect of the present invention, a conductive external electrode paste comprising a thermosetting resin, a thermally decomposable organic metal body, and a metal powder is used.
It is a manufacturing method of the multilayer ceramic electronic component described. The use of the thermosetting resin has an effect that an external electrode having strong mechanical adhesive strength can be formed at the end of the multilayer ceramic electronic component.

【0015】(実施の形態1)以下、本発明の一実施形
態を、ニッケルを主成分とする内部電極を用いた積層セ
ラミックコンデンサを用いて説明する。
(Embodiment 1) Hereinafter, an embodiment of the present invention will be described using a multilayer ceramic capacitor using internal electrodes mainly composed of nickel.

【0016】図1に積層セラミックコンデンサ7を、図
2に本発明の一実施形態の電極3の拡大図を示す。
FIG. 1 is an enlarged view of a multilayer ceramic capacitor 7, and FIG. 2 is an enlarged view of an electrode 3 according to an embodiment of the present invention.

【0017】先ず、公知の積層セラミックコンデンサの
製造方法に従って、セラミック層1とニッケルを主成分
とする内部電極2を交互に複数層積層したグリーン積層
体(図示せず)を作製した後、所定寸法に切断しグリー
ンチップ(図示せず)を作製する。
First, a green laminated body (not shown) in which a plurality of ceramic layers 1 and internal electrodes 2 mainly composed of nickel are alternately laminated in accordance with a known method of manufacturing a laminated ceramic capacitor, and then a predetermined size is obtained. To produce a green chip (not shown).

【0018】次に、グリーンチップをグリーンガス雰囲
気の1300℃の温度で焼成を行い焼結体を作製した。
Next, the green chip was fired at a temperature of 1300 ° C. in a green gas atmosphere to produce a sintered body.

【0019】次いで、内部電極2端部が露出した焼結体
の両端面を覆うように、熱分解性有機金属体として酢酸
銀を5wt%、金属粉末として1μmの銀粉末9を80
wt%、熱硬化性エポキシ樹脂10を15wt%の電極
ペーストを塗布する。
Next, 5 wt% of silver acetate as a thermally decomposable organic metal and 1 μm of silver powder 9 of 1 μm as metal powder are covered so as to cover both end surfaces of the sintered body with the end of the internal electrode 2 exposed.
An electrode paste of 15% by weight and thermosetting epoxy resin 10 is applied.

【0020】その後、電極ペーストを塗布した焼結体を
空気中で350℃の乾燥機に40分間保持し、エポキシ
樹脂10の硬化と、酢酸銀の熱分解を行い、図2に示す
ような電極3を焼結体の両端部に形成した。電極3は、
酢酸銀の熱分解により微細な銀粒子8が内部電極2端部
表面と、銀粉末9表面、及びエポキシ樹脂10中に析出
した状態となっている。
Thereafter, the sintered body to which the electrode paste was applied was held in a dryer at 350 ° C. for 40 minutes in the air to cure the epoxy resin 10 and thermally decompose silver acetate to form an electrode as shown in FIG. No. 3 was formed on both ends of the sintered body. The electrode 3 is
Fine silver particles 8 are deposited on the surface of the end of the internal electrode 2, on the surface of the silver powder 9, and in the epoxy resin 10 due to the thermal decomposition of silver acetate.

【0021】尚、加熱温度を350℃としたのは以下の
理由からである。 (1)酢酸銀(CH3COOAg−R、Rはアミン系炭
化水素化合物)はCH3COOAg基−R基は配位結合
しており200℃以下の温度で熱分解し微細な銀粒子8
を析出する。 (2)内部電極2のニッケルの酸化を防ぐ。 (3)エポキシ樹脂10を焼結体端部に十分な接着強度
を確保する。
The heating temperature was set at 350 ° C. for the following reason. (1) Silver acetate (CH 3 COOAg-R, R is an amine-based hydrocarbon compound) has a coordinate bond of CH 3 COOAg group-R group, and is thermally decomposed at a temperature of 200 ° C. or less to form fine silver particles 8
Is precipitated. (2) Nickel oxidation of the internal electrode 2 is prevented. (3) The epoxy resin 10 secures sufficient adhesive strength to the end of the sintered body.

【0022】また、酢酸銀の配合量を5wt%にした
が、酢酸銀と銀粉末9の混合比は要求される電極3膜抵
抗、及び電極3膜厚によって任意に変更する。
Although the amount of silver acetate is 5 wt%, the mixing ratio of silver acetate and silver powder 9 is arbitrarily changed according to the required electrode 3 film resistance and electrode 3 film thickness.

【0023】次に、電極3の半田付け性を確保する目的
で、電極3の表面に電解メッキ法を用い、ニッケルメッ
キ膜4、更にその表面に半田メッキ膜5を設け外部電極
6を形成し、図1に示す積層セラミックコンデンサ7を
完成させた。
Next, in order to secure the solderability of the electrode 3, a nickel plating film 4 is formed on the surface of the electrode 3 by an electrolytic plating method, and a solder plating film 5 is further formed on the surface to form an external electrode 6. Thus, the multilayer ceramic capacitor 7 shown in FIG. 1 was completed.

【0024】得られた積層セラミックコンデンサ7の1
00個について、室温の静電容量と270℃ハンダ槽中
にディップし外部電極6表面に半田付け後の静電容量変
化の測定、及び温度85℃、相対湿度85%の湿中槽で
DC50Vの電圧を1000時間連続通電試験での静電
容量の変化の測定を行った。また比較として、本発明の
電極ペーストに替えて、従来例として熱硬化性エポキシ
樹脂10に1μmの銀粉末9を80wt%添加した導電
性電極ペーストを用い電極16を形成した積層セラミッ
クコンデンサ18についても上記測定を行い、併せてそ
の結果を(表1)に示した。
The obtained multilayer ceramic capacitor 7-1
For 00 pieces, the capacitance at room temperature and the change in capacitance after dipping in a solder bath at 270 ° C. and soldering to the surface of the external electrode 6 were measured, and DC 50 V was applied in a wet bath at a temperature of 85 ° C. and a relative humidity of 85%. A change in capacitance was measured in a continuous conduction test at a voltage of 1000 hours. For comparison, a multilayer ceramic capacitor 18 in which an electrode 16 is formed using a conductive electrode paste obtained by adding 80 wt% of 1 μm silver powder 9 to a thermosetting epoxy resin 10 instead of the electrode paste of the present invention is also used as a conventional example. The above measurements were performed, and the results are shown in (Table 1).

【0025】[0025]

【表1】 [Table 1]

【0026】(表1)から明らかなように、本発明の積
層セラミックコンデンサ7は半田付け後、また連続通電
試験後においても静電容量が±10%以上変化する不良
は発生していないのに対し、電極3に替えて熱硬化性エ
ポキシ樹脂10に銀粉末9のみを添加した積層セラミッ
クコンデンサ18は、連続通電試験で10%以上の不良
が発生している。これは、酢酸銀が熱分解し析出した微
細な銀粒子8は、電極3ペースト中に添加した銀粉末9
より表面活性が高く、内部電極2端部表面、及び銀粉末
9表面と化学的により強く結合すると共に、熱硬化した
エポキシ樹脂10の内部に広く分散し、分散した銀粒子
8を介して良好な電気的接続が得られたものと考えられ
る。これに対し熱硬化性エポキシ樹脂10に銀粉末9の
みを添加した場合は、添加した銀粉末9と内部電極2端
部との接触、及び熱硬化したエポキシ樹脂10中に分散
した銀粉末9を介しての電気的接続であるため連続通電
試験において、その接点が熱的に劣化し不良が発生した
ものと思われる。
As is clear from Table 1, the multilayer ceramic capacitor 7 of the present invention does not have a defect that the capacitance changes by ± 10% or more even after the soldering and after the continuous conduction test. On the other hand, the multilayer ceramic capacitor 18 obtained by adding only the silver powder 9 to the thermosetting epoxy resin 10 instead of the electrode 3 has a failure of 10% or more in the continuous conduction test. This is because the fine silver particles 8 precipitated by the thermal decomposition of silver acetate are the silver powder 9 added to the electrode 3 paste.
It has higher surface activity and chemically bonds more strongly to the inner electrode 2 end surface and the surface of the silver powder 9, and is widely dispersed in the thermosetting epoxy resin 10, and is good via the dispersed silver particles 8. It is considered that an electrical connection was obtained. On the other hand, when only the silver powder 9 was added to the thermosetting epoxy resin 10, the contact between the added silver powder 9 and the end of the internal electrode 2 and the silver powder 9 dispersed in the thermosetting epoxy resin 10 were removed. It is considered that the contact was thermally degraded and a defect occurred in the continuous energization test because of the electrical connection through the contact.

【0027】以上本発明によれば、卑金属のように酸化
されやすい金属を内部電極2を用いた積層セラミックコ
ンデンサ7においても、空気中での加熱処理において
も、内部電極2端部と安定した良好な電気的接続が確保
できる電極3を形成することが可能となる。
According to the present invention, the multilayer ceramic capacitor 7 using the internal electrode 2 made of a metal that is easily oxidized, such as a base metal, and the end portion of the internal electrode 2 are stable and excellent even in the heat treatment in the air. It is possible to form the electrode 3 that can secure a proper electrical connection.

【0028】次に、積層セラミックコンデンサ7の10
0個について回路基板19に半田20実装を行った後、
図7に示すように、回路基板19を90mmの2点間支
持し、半田20付け面と反対側の中央に撓み加重棒21
を用い、0.5mm/秒の加重速度で回路基板19が5
mm撓むまで加重をかけ、試験前、後の積層セラミック
コンデンサ7の静電容量の変化を測定した。また、比較
例として、本発明の電極3に替えて焼付電極11を形成
した積層セラミックコンデンサ15についても同様な測
定を行い、その結果を併せて(表2)に示した。
Next, the multilayer ceramic capacitor 7
After performing the solder 20 mounting on the circuit board 19 for 0 pieces,
As shown in FIG. 7, the circuit board 19 is supported between two points of 90 mm, and a bending weight bar 21 is provided at the center opposite to the soldering surface.
And the circuit board 19 is moved at a load speed of 0.5 mm / sec.
A load was applied until the bending of the multilayer ceramic capacitor 7 before and after the test, and the change in the capacitance of the multilayer ceramic capacitor 7 before and after the test was measured. Further, as a comparative example, the same measurement was performed on the laminated ceramic capacitor 15 having the baked electrode 11 instead of the electrode 3 of the present invention, and the results are also shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】(表2)から明らかなように、本発明の積
層セラミックコンデンサ7は、回路基板19の撓み応力
試験で静電容量の変化率が±10%を超える不良品が発
生していないのに対し、従来の積層セラミックコンデン
サ15は20%以上の不良が発生している。この不良品
を顕微鏡観察した結果、焼結体端部のガラス拡散層13
とガラス非拡散層14の界面にクラックの発生が認めら
れた。
As is clear from Table 2, in the multilayer ceramic capacitor 7 of the present invention, there is no defective product whose change rate of the capacitance exceeds ± 10% in the bending stress test of the circuit board 19. On the other hand, the conventional multilayer ceramic capacitor 15 has a failure of 20% or more. As a result of observing the defective product under a microscope, the glass diffusion layer 13 at the end of the sintered body was found.
Cracks were observed at the interface between the glass and the non-diffusion layer 14.

【0031】以上の結果から、焼結体端面に内部電極2
端部と電気的に接続する電極3の材料に、酢酸銀、銀粉
末9、熱硬化性エポキシ樹脂10からなる電極ペースト
を用い、塗布後の加熱で酢酸銀を熱分解させ、微細な銀
粒子8を内部電極2端部表面、銀粉末9表面、及び硬化
したエポキシ樹脂10内部に析出させることにより、内
部電極2と良好な電気的接続を確保した連続通電試験に
耐える、信頼性の高い電極3が得られると共に、得られ
た積層セラミックコンデンサ7を回路基板19に半田2
0実装後に、撓み加重試験を行っても安定した接着強度
を有する電極3が得られることがわかる。また、比較的
低い温度で電極3を形成するため、卑金属等の酸化され
やすい金属を内部電極2に用いた場合においても、内部
電極2と電極3との間で安定した電気的接続が確保され
静電容量の不良を発生することはない。従って、卑金属
を用いた場合においても、電極3の焼付時に特殊ガスを
使用する必要がなく、積層セラミックコンデンサ7の製
造コストを大幅に削減することができる。
From the above results, the internal electrode 2 was placed on the end face of the sintered body.
An electrode paste made of silver acetate, silver powder 9 and thermosetting epoxy resin 10 is used as a material of the electrode 3 electrically connected to the end portion, and silver acetate is thermally decomposed by heating after application to produce fine silver particles. By depositing 8 on the end surface of the internal electrode 2, on the surface of the silver powder 9, and inside the cured epoxy resin 10, a highly reliable electrode that withstands a continuous conduction test that ensures good electrical connection with the internal electrode 2. 3 is obtained, and the obtained multilayer ceramic capacitor 7 is soldered to the circuit board 19.
It can be seen that the electrode 3 having stable adhesive strength can be obtained even after performing a bending load test after the mounting. Further, since the electrode 3 is formed at a relatively low temperature, a stable electrical connection between the internal electrode 2 and the electrode 3 is ensured even when a readily oxidizable metal such as a base metal is used for the internal electrode 2. There is no occurrence of capacitance failure. Therefore, even when the base metal is used, it is not necessary to use a special gas at the time of baking the electrode 3, and the manufacturing cost of the multilayer ceramic capacitor 7 can be greatly reduced.

【0032】尚、本発明では積層セラミックコンデンサ
7を用いて説明したが、本発明は積層セラミックコンデ
ンサ7に限らず、内部電極と外部電極を電気的に接続す
る構成の電子部品であれば、如何なる電子部品に対して
も適応が可能である。また、本実施形態において熱分解
性金属体に硝酸銀を用いたが、内部電極2のニッケルが
酸化されない350℃以下の温度範囲で熱分解する化合
物であれば、その他の有機銀化合物を用いてもよく、更
に銀粉末9の替わりに導電性金属粉末を用いても、熱硬
化性エポキシ樹脂10に替えてその外の熱硬化性樹脂に
用いて電極3の形成を行ってもよい。また更にガラスフ
リットを含む焼付用電極ペーストに対しても、熱分解性
有機金属体を添加することも可能である。
Although the present invention has been described using the multilayer ceramic capacitor 7, the present invention is not limited to the multilayer ceramic capacitor 7, but may be any electronic component having a structure in which an internal electrode and an external electrode are electrically connected. It can be applied to electronic components. In this embodiment, silver nitrate is used as the thermally decomposable metal body. However, any organic silver compound may be used as long as it is a compound that thermally decomposes in a temperature range of 350 ° C. or lower where nickel of the internal electrode 2 is not oxidized. Alternatively, the electrode 3 may be formed by using a conductive metal powder instead of the silver powder 9 or using another thermosetting resin instead of the thermosetting epoxy resin 10. Further, it is also possible to add a thermally decomposable organometallic substance to a baking electrode paste containing a glass frit.

【0033】[0033]

【発明の効果】以上、本発明によれば、積層セラミック
電子部品の端面に露出させた内部電極の端部に、熱分解
性有機金属体を含む電極ペーストを用い、内部電極と電
気的に接続する電極を形成することによって、内部電極
と電極間の安定した良好な電気的接続を確保し、しかも
得られた積層セラミック電子部品を回路基板にハンダ実
装後、基板に曲げ応力を印加しても安定した接着強度を
有する電極を形成することが可能となる。また、卑金属
材料で内部電極を形成した積層セラミック電子部品に対
し空気中での加熱処理においても、内部電極と良好な電
気的接続を確保した電極を形成することも可能となる。
As described above, according to the present invention, the end of the internal electrode exposed at the end face of the multilayer ceramic electronic component is electrically connected to the internal electrode by using an electrode paste containing a thermally decomposable organic metal body. By forming the electrodes to secure stable and good electrical connection between the internal electrodes and the electrodes, even after applying the bending stress to the board after soldering the obtained multilayer ceramic electronic component to the circuit board, An electrode having stable adhesive strength can be formed. In addition, even in a heating process in air on a multilayer ceramic electronic component having an internal electrode formed of a base metal material, it is possible to form an electrode that ensures good electrical connection with the internal electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の積層セラミックコンデン
サの断面図
FIG. 1 is a sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

【図2】同、外部電極部の部分拡大断面図FIG. 2 is a partially enlarged cross-sectional view of the external electrode unit.

【図3】従来例の焼付電極方法の積層セラミックコンデ
ンサの断面図
FIG. 3 is a cross-sectional view of a conventional multilayer ceramic capacitor using a firing electrode method.

【図4】同、熱硬化電極方法の積層セラミックコンデン
サの断面図
FIG. 4 is a cross-sectional view of the multilayer ceramic capacitor according to the thermosetting electrode method.

【図5】同、熱硬化電極部の部分拡大断面図FIG. 5 is a partially enlarged cross-sectional view of the thermosetting electrode portion.

【図6】回路基板曲げ応力試験で破壊した焼付電極方法
の積層セラミックコンデンサの断面図
FIG. 6 is a cross-sectional view of a multilayer ceramic capacitor using the burn-in electrode method broken in a circuit board bending stress test.

【図7】回路基板曲げ応力試験方法の概念図FIG. 7 is a conceptual diagram of a circuit board bending stress test method.

【符号の説明】[Explanation of symbols]

1 セラミック層 2 内部電極 3 電極 4 Niメッキ膜 5 半田メッキ膜 6 外部電極 7 本発明の積層セラミックコンデンサ 8 銀粒子 9 銀粉末 10 エポキシ樹脂 DESCRIPTION OF SYMBOLS 1 Ceramic layer 2 Internal electrode 3 Electrode 4 Ni plating film 5 Solder plating film 6 External electrode 7 Multilayer ceramic capacitor of this invention 8 Silver particle 9 Silver powder 10 Epoxy resin

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E001 AB03 AC09 AF00 AF06 AH01 AH07 AH08 AJ03 5E082 AB03 BC32 BC33 EE23 FG54 GG10 GG11 GG26 GG28 JJ03 JJ05 JJ12 JJ21 JJ23 LL01 LL03 MM24 PP06  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セラミック層と内部電極を交互に複数層
積層した積層体と、前記積層体の端部に前記内部電極と
電気的に接続するように形成した外部電極を有する積層
セラミック電子部品において、前記積層体の端面の外部
電極は、熱分解性有機金属体を含む導電性外部電極ペー
ストを積層体端部に塗布後、加熱硬化時の温度で熱分解
性有機金属体を熱分解させ、その金属成分を内部電極端
部表面と外部電極内に析出させた状態で形成する積層セ
ラミック電子部品の製造方法。
1. A multilayer ceramic electronic component comprising: a laminate in which a plurality of ceramic layers and internal electrodes are alternately laminated; and an external electrode formed at an end of the laminate so as to be electrically connected to the internal electrode. The external electrode on the end face of the laminate, after applying a conductive external electrode paste containing a thermally decomposable organic metal body to the edge of the laminate, thermally decompose the thermally decomposable organic metal body at the temperature during heat curing, A method for manufacturing a multilayer ceramic electronic component in which the metal component is formed in a state where the metal component is deposited on the end surface of the internal electrode and in the external electrode.
【請求項2】 外部電極として用いる導電性電極ペース
ト中に含まれる熱分解性有機金属体の分解温度が350
℃より低い組成の材料を用いることを特徴とする請求項
1に記載の積層セラミック電子部品の製造方法。
2. The decomposition temperature of a thermally decomposable organometallic substance contained in a conductive electrode paste used as an external electrode is 350.
The method according to claim 1, wherein a material having a composition lower than C is used.
【請求項3】 熱分解性有機金属体に酢酸銀を用いるこ
とを特徴とする請求項1記載の積層セラミック電子部品
の製造方法。
3. The method for manufacturing a multilayer ceramic electronic component according to claim 1, wherein silver acetate is used as the thermally decomposable organic metal body.
【請求項4】 熱硬化性樹脂、熱分解性有機金属体、金
属粉末からなる導電性外部電極ペーストを用いることを
特徴とする請求項1記載の積層セラミック電子部品の製
造方法。
4. The method for producing a multilayer ceramic electronic component according to claim 1, wherein a conductive external electrode paste comprising a thermosetting resin, a thermally decomposable organic metal body, and a metal powder is used.
JP10355652A 1998-12-15 1998-12-15 Manufacture of laminated ceramic electronic component Pending JP2000182883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10355652A JP2000182883A (en) 1998-12-15 1998-12-15 Manufacture of laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10355652A JP2000182883A (en) 1998-12-15 1998-12-15 Manufacture of laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2000182883A true JP2000182883A (en) 2000-06-30

Family

ID=18445077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10355652A Pending JP2000182883A (en) 1998-12-15 1998-12-15 Manufacture of laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2000182883A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674848B1 (en) 2005-04-01 2007-01-26 삼성전기주식회사 High Capacitancy Metal-Ceramic-Polymer Dielectric Material And Preparing Method For Embedded Capacitor Using The Same
JP2007201022A (en) * 2006-01-24 2007-08-09 Murata Mfg Co Ltd Electronic component
JP2008147211A (en) * 2006-12-06 2008-06-26 Matsushita Electric Ind Co Ltd Process for manufacturing laminated ceramic electronic component
JP2008263013A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Ceramic electronic component
US8168889B2 (en) 2005-12-22 2012-05-01 Namics Corporation Thermosetting conductive paste and multilayer ceramic part having an external electrode formed using the same
US20170140874A1 (en) * 2013-06-19 2017-05-18 Murata Manufacturing Co., Ltd. Ceramic electronic component and method of manufacturing the same
KR101892849B1 (en) 2017-03-02 2018-08-28 삼성전기주식회사 Electronic component
KR20190143802A (en) 2018-06-21 2019-12-31 가부시키가이샤 무라타 세이사쿠쇼 Electronic component and method of producing electronic component
CN112992539A (en) * 2019-12-12 2021-06-18 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same
US11342110B2 (en) 2017-10-25 2022-05-24 Samsung Electro-Mechanics Co., Ltd. Inductor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674848B1 (en) 2005-04-01 2007-01-26 삼성전기주식회사 High Capacitancy Metal-Ceramic-Polymer Dielectric Material And Preparing Method For Embedded Capacitor Using The Same
US8168889B2 (en) 2005-12-22 2012-05-01 Namics Corporation Thermosetting conductive paste and multilayer ceramic part having an external electrode formed using the same
JP2007201022A (en) * 2006-01-24 2007-08-09 Murata Mfg Co Ltd Electronic component
JP2008147211A (en) * 2006-12-06 2008-06-26 Matsushita Electric Ind Co Ltd Process for manufacturing laminated ceramic electronic component
JP2008263013A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Ceramic electronic component
US10283273B2 (en) * 2013-06-19 2019-05-07 Murata Manufacturing Co., Ltd. Method of manufacturing a ceramic electronic component
US20170140874A1 (en) * 2013-06-19 2017-05-18 Murata Manufacturing Co., Ltd. Ceramic electronic component and method of manufacturing the same
KR101892849B1 (en) 2017-03-02 2018-08-28 삼성전기주식회사 Electronic component
US11183325B2 (en) 2017-03-02 2021-11-23 Samsung Electro-Mechanics Co., Ltd. Electronic component
US11817251B2 (en) 2017-03-02 2023-11-14 Samsung Electro-Mechanics Co., Ltd. Electronic component
US11342110B2 (en) 2017-10-25 2022-05-24 Samsung Electro-Mechanics Co., Ltd. Inductor
KR20190143802A (en) 2018-06-21 2019-12-31 가부시키가이샤 무라타 세이사쿠쇼 Electronic component and method of producing electronic component
US11011307B2 (en) 2018-06-21 2021-05-18 Murata Manufacturing Co., Ltd. Electronic component
CN112992539A (en) * 2019-12-12 2021-06-18 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2001307947A (en) Laminated chip component and its manufacturing method
JPH10284343A (en) Chip type electronic component
JPS59226178A (en) Formation of copper metal coating
JP2000182883A (en) Manufacture of laminated ceramic electronic component
JPH10294239A (en) Multilayer ceramic electronic component and its manufacture
JPH0837127A (en) Monolithic ceramic capacitor and its production
JP2007234774A (en) Ceramic electronic component and manufacturing method thereof
JPH097878A (en) Ceramic electronic part and manufacture thereof
JP4993545B2 (en) Electronic component and method for manufacturing electronic component
JPH09190950A (en) Outer electrode of electronic part
JP2002203736A (en) Method of manufacturing laminated ceramic capacitor
JPH06169173A (en) Method for manufacturing aluminum nitride substrate
JP2002298649A (en) Conductive paste and chip type electronic component using the same
JPH10163067A (en) External electrode of chip electronic component
JPH10172346A (en) Terminal electrode for electronic component and laminated ceramic capacitor using the same
JP2000077260A (en) Laminated ceramic electronic component and its manufacture
JPH03296205A (en) Ceramic capacitor
JP2003243249A (en) Laminated ceramic capacitor and its manufacturing method
JPH04293214A (en) Conductive paste for chip type electronic component
JPH0897075A (en) Production of ceramic device
JP2850200B2 (en) Multilayer ceramic electronic components
JPH09115772A (en) External electrode for chip electronic component
JPH04329616A (en) Laminated type electronic component
JP2002298643A (en) Conductive paste for outer electrode and laminated ceramic capacitor
JPH09266129A (en) External electrode of chip type electronic parts