JPS6384807A - Drill - Google Patents

Drill

Info

Publication number
JPS6384807A
JPS6384807A JP22867586A JP22867586A JPS6384807A JP S6384807 A JPS6384807 A JP S6384807A JP 22867586 A JP22867586 A JP 22867586A JP 22867586 A JP22867586 A JP 22867586A JP S6384807 A JPS6384807 A JP S6384807A
Authority
JP
Japan
Prior art keywords
drill
groove
cutting
heel
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22867586A
Other languages
Japanese (ja)
Other versions
JPH0369646B2 (en
Inventor
Kohei Matsumoto
公平 松本
Yoshio Nakahara
中原 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22867586A priority Critical patent/JPS6384807A/en
Publication of JPS6384807A publication Critical patent/JPS6384807A/en
Publication of JPH0369646B2 publication Critical patent/JPH0369646B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PURPOSE:To prevent the shift of a rotary center due to a walking phenomenon in a cutting process and an increase in cutting resistance, and obviate thinning by forming an approximately U-shaped recess of sub-groove at the center side of the heel face of a cutter and applying a small web thickness and a small chisel edge. CONSTITUTION:A drill 11 has a standard tooth form within a predetermined range in an axial direction in such a way that a heel face 11b and a cutting edge back face 11a constituting a chip discharge groove 6 form smooth curvature at the section of a drill axis. And a sub-groove 11c is formed, approximately U-shape recessed from the heel face 11b to the center thereof and extending about 0.5-1.1 times a drill diameter in an axial direction, and each heel part 11d is shaved, thereby enlarging the space of the chip discharge groove 6 and improving the permeability of cutting oil. Therefore, chips generated via a cutting process with the cutting edge of the drill 11 appear along the cutting edge back face 11a and the chips pressed with a chisel edge are guided together from the sub-groove 11c to the discharge groove 6, thereby being discharged outside.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ドリルに関し、特に、基本的にはシンニング
が不要なドリルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to drills, and more particularly to drills that essentially do not require thinning.

従来の技術 従来、一般に、ドリルによる穴明は加工において、高能
率化を図るためには、ドリルの剛性を高が高められたド
リル2は、第3図に示すように、ドリル軸直交方向の刃
部断面において、図中点線3で示す標準ドリル3よりも
、刃裏面2b及びヒール面2cを夫々肉厚に形成して、
心厚を大きくして剛性をもたせるようにしている。
BACKGROUND OF THE INVENTION Conventionally, in order to increase the efficiency of hole drilling using a drill, a drill 2 with increased rigidity is used to drill holes in the direction perpendicular to the drill axis, as shown in Fig. 3. In the cross section of the blade part, the blade back surface 2b and heel surface 2c are each formed thicker than the standard drill 3 shown by the dotted line 3 in the figure,
The core thickness is increased to provide rigidity.

発明が解決しようとする問題点 しかしながら、上記構造のものでは、心厚が大きいため
に、刃立を行ったときチゼルエツジが標準ドリル3のも
のよりも大きくなる結果、いわゆる歩行現象が生じてド
リルの回転中心が移動して穴明は精度が悪くなるととも
に、切削抵抗が大きくなって切削性が悪くなり、第15
.16.17図に夫々斜線で示すような比較的広範囲に
シンニングを精度良く行なう必要が生じ、このシンニン
グの巧拙が穴明は精度に影響するといった問題がある。
Problems to be Solved by the Invention However, with the structure described above, since the core thickness is large, the chisel edge becomes larger than that of the standard drill 3 when the cutting edge is sharpened, resulting in a so-called walking phenomenon, which causes the drill to deteriorate. As the center of rotation moves, the accuracy of hole drilling deteriorates, and the cutting resistance increases, resulting in poor machinability.
.. 16.17 It becomes necessary to accurately perform thinning over a relatively wide area as indicated by diagonal lines in Figures 16 and 17, and there is a problem in that the skill of thinning and hole drilling affect accuracy.

また、このシンニングは再研削毎に行なう必要があり、
煩雑であるといった問題もある。さらに、心厚が大きく
なることに対応してチップ排出溝の断面積が標準ドリル
3よりも小さくなり、チラー擾山h++叱よI語lし斗
デL1%−↓−n日デ膚λJk−↓〜したがって、本発
明の目的は、シンニングを行わずとも精度良く穴明は加
工を行うことができるとともに、チップ排出性も良いド
リルを提供することにある。
In addition, this thinning must be performed every time re-grinding.
There is also the problem that it is complicated. Furthermore, in response to the increase in core thickness, the cross-sectional area of the chip ejection groove is smaller than that of the standard drill 3, and the chiller mount h ++ scolding I word L 1% − ↓ − n day de skin λJk − ↓ ~ Therefore, an object of the present invention is to provide a drill that can drill holes with high accuracy without thinning and also has good chip ejection properties.

問題点を解決するための手段 上記目的を達成するために、本発明は、心厚部分に上記
チップ排出溝に連通した副溝を形成するように構成した
。すなわち、チップ排出溝を構成するヒール面と刃裏面
とがドリル軸方向断面において、大略滑らかな曲面をな
す標準断面刃形に対して、上記標準断面刃形のヒール面
よりヒール面中心側に略U字状にくぼんだ副溝を有する
ようにした断面形状を先端部より軸方向沿いの所定範囲
内に有するように構成した。
Means for Solving the Problems In order to achieve the above object, the present invention is configured such that a sub-groove communicating with the chip ejection groove is formed in the thick core portion. In other words, for a standard cross-sectional blade shape in which the heel surface and the back surface of the blade that constitute the chip ejection groove form a roughly smooth curved surface in the axial cross-section of the drill, there is a section approximately closer to the center of the heel surface than the heel surface of the standard cross-sectional blade shape. It is configured to have a cross-sectional shape having a U-shaped sub-groove within a predetermined range along the axial direction from the tip.

発明の作用 上記構成においては、切削時、ドリルの先端が被切削材
に対していわゆる歩行現象を行こさずドリルの回転中心
が移動しないとともに、切削抵抗も小さくなり、精度良
く穴明加工が行える一方、ドリル軸方向断面において、
チゼルエツジで圧壊した切屑は上記副溝からチップ排出
溝を通り良好に排出されるとともに、切刃で切削して生
じたチップの一部は上記副溝を介しチップ排出溝を通っ
て良好に排出されるとともに、上記チップの残りは直接
チップ排出溝内を通って良好に排出される。
Effect of the Invention With the above configuration, during cutting, the tip of the drill does not perform a so-called walking phenomenon with respect to the material to be cut, and the center of rotation of the drill does not move, and the cutting resistance is also reduced, making it possible to drill holes with high precision. On the other hand, in the drill axial cross section,
Chips crushed by the chisel edge are well discharged from the above-mentioned sub-groove through the chip ejection groove, and a part of chips generated by cutting with the cutting blade is well ejected through the above-mentioned sub-groove and through the chip ejection groove. At the same time, the remaining chips are directly ejected through the chip ejection groove.

叉鬼皿 以下に、本発明にかかる実施例を第1〜14図に示す図
面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail below with reference to the drawings shown in FIGS. 1 to 14.

第1図は第1実施例に係るドリル11の刃部の端面図で
ある。該ドリル11は、各チップ排出溝6を構成するヒ
ール面11bと刃裏面11aとがドリル軸方向断面にお
いて大略滑らかな曲面をなす標準断面刃形を先端部より
軸方向沿いの所定範囲内に有する。この標準断面刃形は
図中点線で示す従来の標準ドリル3の断面刃形と同様な
ものである。この標準断面刃形のヒール面11bよりヒ
ール面中心側には、略U字状にくぼみかつ軸方向沿いに
延びた副111cを形成する。各ヒール部lldは削り
落としてチップ排出溝6のスペースを大きくし、切削油
の浸透をより良くする。
FIG. 1 is an end view of the blade portion of a drill 11 according to the first embodiment. The drill 11 has a standard cross-sectional blade shape in which the heel surface 11b and the blade back surface 11a forming each chip ejection groove 6 form a substantially smooth curved surface in the axial cross section of the drill, within a predetermined range from the tip end along the axial direction. . This standard cross-sectional blade shape is similar to the cross-sectional blade shape of the conventional standard drill 3 shown by the dotted line in the figure. A sub 111c is formed closer to the center of the heel surface than the heel surface 11b of this standard cross-sectional blade shape, and is recessed in a substantially U-shape and extends along the axial direction. Each heel portion lld is shaved off to enlarge the space of the chip discharge groove 6 and improve penetration of cutting oil.

従って、ドリル11の切刃の切削により生じるチップは
刃裏面11aに沿ってチップ排出溝6内に案内され良好
に排出されるとともに、チゼルエツジで圧壊された屑は
上記側′frIllcから上記チップ排出溝6内に案内
されて良好に排出される。
Therefore, the chips generated by the cutting of the cutting edge of the drill 11 are guided into the chip ejection groove 6 along the back surface 11a of the blade and are efficiently ejected, and the chips crushed by the chisel edge are removed from the above side 'frIllc into the chip ejection groove 6. 6 and is well discharged.

上記第1実施例によれば、ヒール面11bの中心側に断
面U字状にくぼんだ副溝11cを備えたので、チゼルエ
ツジが小さくなり、切削時、いわゆる歩行現象が生じず
精度良く穴明は加工を行うことができる。また、チップ
排出溝6を、従来の高剛性ドリル2や標準ドリル3のチ
ップ排出溝よりも大きくすることができ、刃裏面11a
沿いにチップをチップ排出溝6内に円滑に案内できるの
で、チップの排出性が向上する。
According to the first embodiment, since the heel surface 11b is provided with the sub-groove 11c recessed in a U-shaped cross section on the center side, the chisel edge becomes small and the so-called walking phenomenon does not occur during cutting, and the hole can be drilled with high accuracy. Can be processed. In addition, the chip ejection groove 6 can be made larger than the chip ejection groove of the conventional high-rigidity drill 2 or standard drill 3, and the back surface of the blade 11a
Since the chips can be smoothly guided into the chip ejection groove 6 along the same line, the ejection performance of the chips is improved.

第2,3図は夫々第2実施例に係るドリルlの刃部の端
面図及びドリルlの側面図で、第3図中、点線は、チッ
プ排出溝を構成するヒール面3bと刃裏面3aとがドリ
ル軸方向断面において大略滑らかな曲面をなした標準断
面刃形を有する従来の標錦ドリル3を示し、2点鎖線は
従来の心厚の大きな高剛性ドリル2を示す。また、第4
.5.6図に夫々本第2実施例にかかるドリルの刃先端
面、断面側面図及び第5図の■−■線断面図を示す。
2 and 3 are an end view of the blade part of the drill l and a side view of the drill l according to the second embodiment, respectively. In FIG. 3, dotted lines indicate the heel surface 3b and the blade back surface 3a that constitute the chip ejection groove. and indicates a conventional brocade drill 3 having a standard cross-sectional cutting edge shape with a substantially smooth curved surface in the axial cross-section of the drill, and the two-dot chain line indicates a conventional high-rigidity drill 2 with a large core thickness. Also, the fourth
.. Figures 5.6 and 6 show a cutting edge surface, a cross-sectional side view, and a cross-sectional view taken along the line ■--■ in Figure 5, respectively, of the drill according to the second embodiment.

上記ドリルlは、先端部より軸方向沿いの所定範囲内の
ドリル軸方向断面において第3図中軸心O点を中心に点
対称に形成されており、一対のチップ排出溝6,6を軸
方向沿いに螺旋状に形成するとともに、湾曲した各チッ
プ排出溝6の溝壁面に刃裏面4とヒール面5を夫々備え
る。
The drill l is formed symmetrically about the axis O point in FIG. The groove wall surface of each curved chip ejection groove 6 is formed spirally along the direction, and a blade back surface 4 and a heel surface 5 are respectively provided.

上記刃裏面4は、上記ドリル軸方向断面において、標準
ドリル3より略三角形状にチップ排出溝6内に突出させ
て突出部4cを形成して、標準ドリル3より肉厚にする
。すなわち、刃裏面4の外側4aを従来の高剛性ドリル
2と同様に突出させる一方、中心側4bを上記高剛性ド
リル2の中心側よりくぼませて心厚が小さくなるように
する。
The blade back surface 4 is made thicker than the standard drill 3 by projecting into the chip ejection groove 6 in a substantially triangular shape from the standard drill 3 in the axial cross section of the drill to form a protrusion 4c. That is, the outer side 4a of the back surface 4 of the blade protrudes like the conventional high-rigidity drill 2, while the center side 4b is depressed from the center side of the high-rigidity drill 2 to reduce the core thickness.

また、上記ヒール面5は、上記ドリル軸方向断面におい
て、その外側端部5bを第3図中−点鎖線で示すように
高剛性ドリル2と同様にチップ排出溝6内に突出させる
ととらに、該外側端部5bより中心側にかけてU字状に
くぼんだ副溝5aを軸方向沿いに螺旋状に形成する。従
って、ヒール部5の外側端部5bにおいては標準ドリル
3より肉厚に形成する一方、中心側においては上記高剛
性ドリル2や標準ドリル3よりもくぼませて心厚を小さ
くする。なお、上記心厚部分はドリル軸方向に平行な平
行心厚(0/100)に形成する。上記副溝5aはドリ
ル先端側より軸方向沿いの一定範囲内に形成し、この範
囲を上記ドリルlの切刃の再研削しうる範囲とする。ま
た、上記ドリルlは、例えば副溝5aを形成する砥石で
第3図中実線で示すようにヒール部7を削り落としてチ
ップ排出WIf6のスペースを大きくし、切削油の浸透
をより良くするのが好ましい。この場合、ヒール部7を
削り落としても、ドリルの剛性が落ちたことによるドリ
ルの寿命低下は起こらなかった。
Further, in the axial cross section of the drill, the heel surface 5 has an outer end 5b that protrudes into the chip ejection groove 6 as in the high-rigidity drill 2, as shown by the dashed line in FIG. , a U-shaped concave sub-groove 5a is formed spirally along the axial direction from the outer end 5b toward the center. Therefore, the outer end 5b of the heel portion 5 is made thicker than the standard drill 3, while the center side is recessed to have a smaller core thickness than the high-rigidity drill 2 and the standard drill 3. Note that the core thickness portion is formed to have a parallel core thickness (0/100) parallel to the drill axis direction. The auxiliary groove 5a is formed within a certain range along the axial direction from the tip side of the drill, and this range is the range in which the cutting edge of the drill l can be reground. In addition, the drill l has a grinding wheel for forming the sub-groove 5a, for example, by grinding off the heel portion 7 as shown by the solid line in FIG. is preferred. In this case, even if the heel portion 7 was shaved off, the life of the drill did not decrease due to the decrease in the rigidity of the drill.

従って、ドリル1の切削により生じるチップは、刃裏面
4の略三角形状突出部4cの外側4aの湾曲面に沿って
チップ排出溝6内に案内されて良好に排出されるととも
に、チゼルエツジで圧壊された屑は上記側′7R5aか
ら上記チップ排出溝6内に案内されて良好に排出される
Therefore, chips generated by cutting with the drill 1 are guided into the chip ejection groove 6 along the curved surface of the outer side 4a of the approximately triangular protrusion 4c on the back surface 4 of the blade, and are well discharged, and are crushed by the chisel edge. The waste is guided into the chip discharge groove 6 from the side '7R5a and is properly discharged.

上記第2実施例にかかるドリル!であって、鉄鋼用ドリ
ルの具体例を第7図に示す。溝幅比が1=1〜0.8:
1.心厚Dlが0.04〜0.11D(但し、Dはドリ
ル径)とする。そして、両刃裏面4゜4の外端を結ぶ線
と刃裏面4の中心側湾曲面の接線とのなす角αがlO°
〜15°、刃裏面4の中心側湾曲面の曲率半径R,を0
.1〜0.2D、刃裏面4からヒール面5にかけての湾
曲面の直径D3をφ0.1〜0.2D、ヒール面5の中
心側湾曲面の曲率半径R1を0.5〜0.8D、ヒール
面5の外側端部5bと副溝5aとの境界部のドリル中心
からの距離すなわち直径り、をφ0.85Dとする。上
記副溝5aは、その軸方向長さe(第2図参照)、すな
わち切刃と副溝5aとの接点からの軸方向長さは0.5
〜1.1Dとする。この軸方向長さがこれだけあれば、
従来のドリルと同数だけ再研削できるとともに寿命も従
来のドリルと同程度となる。
Drill according to the second embodiment above! A specific example of a drill for steel is shown in FIG. Groove width ratio 1 = 1 to 0.8:
1. The core thickness Dl is 0.04 to 0.11D (where D is the drill diameter). Then, the angle α between the line connecting the outer ends of the back surface 4 of both blades and the tangent to the curved surface on the center side of the back surface 4 of the blade is lO°.
~15°, the radius of curvature R of the curved surface on the center side of the back surface 4 of the blade is 0
.. 1 to 0.2D, the diameter D3 of the curved surface from the back surface 4 of the blade to the heel surface 5 is φ0.1 to 0.2D, the radius of curvature R1 of the curved surface on the center side of the heel surface 5 is 0.5 to 0.8D, The distance from the center of the drill, that is, the diameter of the boundary between the outer end 5b of the heel surface 5 and the sub-groove 5a is φ0.85D. The sub-groove 5a has an axial length e (see Fig. 2), that is, the axial length from the contact point of the cutting edge and the sub-groove 5a is 0.5.
~1.1D. If the axial length is this much,
It can be re-ground the same number of times as a conventional drill, and its lifespan is also comparable to that of a conventional drill.

しかし、寿命を延ばすためには上記長さは短いほうがよ
い。
However, in order to extend the service life, the shorter the above length, the better.

なお、従来の鉄屑用高剛性ドリルでは、肩幅比が0.8
〜0.9:1.心厚が0.2〜0.45Dであり、シン
ニングを行う必要があった。また、鉄鋼用標準ドリルで
は、溝幅比が1.3:1〜1:11心厚が0.1〜0.
20Dであり、場合によりシンニングが必要であった。
In addition, in conventional high-rigidity drills for scrap metal, the shoulder width ratio is 0.8.
~0.9:1. The core thickness was 0.2 to 0.45D, and it was necessary to perform thinning. In addition, standard drills for steel have a groove width ratio of 1.3:1 to 1:11 and a core thickness of 0.1 to 0.
20D, and thinning was necessary in some cases.

また、ドリルIの溝幅比や心厚などは、軽合金用、アル
ミ用のドリルと上記鉄鋼用のドリルとは異なり、夫々用
途に応じて溝幅比や心厚などを決めて、シンニングを行
わなくてもよいようにする必要がある。この軽合金用、
アルミ用のドリルの参考例としては、溝幅比を1.5:
1−1.6+1として大きくし、ねじれ角を38〜42
度として大きくする一方、心厚は鉄鋼用ドリルと同じに
したものがある。
In addition, the flute width ratio and core thickness of Drill I are different from the drills for light alloys and aluminum and the steel drills mentioned above, so the flute width ratio and core thickness are determined depending on the application and thinning is performed. We need to make it so that we don't have to do it. For this light alloy,
As a reference example of a drill for aluminum, the groove width ratio is 1.5:
Increase the torsion angle to 1-1.6+1 and set the twist angle to 38 to 42.
There are drills that have a larger core thickness but the same core thickness as steel drills.

上記第2実施例によれば、ヒール面5に副溝5aを備え
たので、心厚が標準ドリル3や高剛性ドリル2よりも小
さくなって、刃立をしたときチゼルエツジも小さくなる
結果、切削時、いわゆる歩行現象が生じず精度良く穴明
は加工を行うことができるとともに、切削抵抗が小さく
なって切削性が良くなり、シンニングを行なう必要がな
くなる。
According to the second embodiment, since the heel surface 5 is provided with the sub-groove 5a, the core thickness is smaller than that of the standard drill 3 or the high-rigidity drill 2, and as a result, the chisel edge becomes smaller when the blade is raised. At the same time, the so-called walking phenomenon does not occur and holes can be drilled with high precision, cutting resistance is reduced, machinability is improved, and there is no need for thinning.

従って、従来の高剛性ドリル2のようにシンニングの巧
拙が穴明は精度に影響するといった問題を確実に解消で
きる。また、再研削毎にシンニングを行なう必要もなく
、ただ、ドリル先端の切刃の刃立てを行うだけで十分に
切削できる。また、ヒール面5の中心側に副溝5aを備
えたので、チップ排出溝6を従来の高剛性ドリル2や標
準ドリル3のチップ排出溝よりも大きくすることができ
るとともに、刃裏面4の突出部4cの外側4aの湾曲面
沿いにチップをチップ排出溝6内に円滑に案内できるの
で、チップの排出性が向上する。また、ヒール面5の外
側端部5bを厚肉にするとと乙に、刃裏面4に突出部4
cを形成して厚肉にすることにより、心厚を大きくする
ことなく、ドリル剛性を向上させろことができる。さら
に、上記のように心厚が小さくなることに対応してチッ
プ排出溝6の断面積が標準ドリル3や高剛性ドリル2よ
りも大きくなり、チップ排出性能が良くなる。
Therefore, it is possible to reliably solve the problem of the conventional high-rigidity drill 2 in which the skill of thinning affects the precision of hole drilling. Further, there is no need to perform thinning every time the drill is re-grinded, and sufficient cutting can be achieved by simply sharpening the cutting edge at the tip of the drill. In addition, since the sub-groove 5a is provided on the center side of the heel surface 5, the chip ejection groove 6 can be made larger than the chip ejection groove of the conventional high-rigidity drill 2 or standard drill 3, and the protrusion of the back surface 4 of the blade can be made larger. Since the chips can be smoothly guided into the chip ejection groove 6 along the curved surface of the outer side 4a of the portion 4c, the ejection performance of the chips is improved. Moreover, if the outer end 5b of the heel surface 5 is made thick, the protrusion 4 on the back surface 4 of the blade
By forming c and making it thick, drill rigidity can be improved without increasing the core thickness. Furthermore, in response to the reduced core thickness as described above, the cross-sectional area of the chip ejection groove 6 is larger than that of the standard drill 3 or the high-rigidity drill 2, and the chip ejection performance is improved.

なお、本発明は上記2つの実施例に限定されるものでは
なく、その池種々の態様で実施できる。
Note that the present invention is not limited to the above two embodiments, and can be implemented in various ways.

例えば、上記心厚部分にはドリル軸方向にごく僅かにテ
ーパ(0〜0.5/100)をつけてもよい。
For example, the thick core portion may be tapered very slightly (0 to 0.5/100) in the axial direction of the drill.

また、第8図に示すように、心厚部分にはもっと大きな
テーパ(1〜2/100)をつけてもよい。
Further, as shown in FIG. 8, a larger taper (1 to 2/100) may be applied to the thick core portion.

また、ドリルは、第9.10図に示すように、ドリル軸
方向の先端部から中央部にかけての前部8を第6図に示
すような断面形状とする一方、中央部から後端部にかけ
ての後部9を第10図に示すような断面形状とするとと
もに、第9図に示すように、前部8、後部9とも心厚部
分にはドリル軸方向に平行な平行心厚(0/100)を
つけてもよい。
Further, as shown in Fig. 9.10, the front part 8 from the tip to the center in the axial direction of the drill has a cross-sectional shape as shown in Fig. 6, while the cross-sectional shape from the center to the rear end is The rear part 9 of the drill has a cross-sectional shape as shown in FIG. 10, and as shown in FIG. ) may be added.

また、第11図に示すように、前部6の心厚部分にはド
リル軸方向に心厚テーパ(O〜0.57100)を僅か
につけるとともに、後部9の心厚部分には平行心厚(0
/100)をつけるようにしてもよい。
In addition, as shown in FIG. 11, the thick core part of the front part 6 is slightly tapered (O~0.57100) in the axial direction of the drill, and the thick core part of the rear part 9 has a parallel core thickness. (0
/100) may be added.

また、第12図に示すように、前部8の心厚部分を平行
心厚(0/100)とする一方、後部9の心厚部分には
僅かにテーパ(0〜0.5/I OO)をつけるように
してもよい。
In addition, as shown in FIG. 12, the front part 8 has a parallel core thickness (0/100), while the rear part 9 has a slightly tapered core thickness (0 to 0.5/IOO). ) may be added.

さらに、第13図に示すように、前部8の心厚部分には
僅かにテーパ(0〜0.5/100)をつける一方、後
部9の心厚部分には心厚テーパ(1〜2/l 00)を
つけるようにしてもよい。
Furthermore, as shown in FIG. /l 00) may be added.

また、第14図に示すように、先端部10のみでカッタ
としての砥石等で押し付は加工を行い、残りの部分には
平行心厚あるいは図中二点鎖線で示すような−様なテー
パをつけるようにしてもよい。
In addition, as shown in Fig. 14, only the tip 10 is pressed with a grindstone or the like as a cutter, and the remaining part has a parallel core thickness or a --like taper as shown by the two-dot chain line in the figure. You may also add .

なお、上記各変形例において、第9.11,12゜13
.14図中のVI−Vl線断面図は第6図に示し、x−
X線断面図は第10図に示す。
In addition, in each of the above modifications, No. 9.11, 12°13
.. The cross-sectional view taken along the VI-Vl line in FIG. 14 is shown in FIG.
An X-ray cross-sectional view is shown in FIG.

漁肌q墓里 上記構成によれば、刃部のヒール面の中心側に略U字状
にくぼんだ副溝を形成することにより、心厚が小さくな
りチゼルエツジが小さくなって、切削時、いわゆる歩行
現象が生じずドリルの回転中心が移動するのを効果的に
防止することができる。また、チゼルエツジが小さくな
ることにより切削抵抗が小さくなるので、シンニングが
不要となり、シンニングの巧拙が穴明は精度に影響する
ことがない。従って、シンニングを行わずとも精度の良
い穴明は加工を行うことができる。また、ドリルの再研
削毎にシンニングを行なう必要もなく、ただ、ドリル先
端の切刃の刃立てを行うだけで十分に切削できる。また
、ヒール面の中心側に副溝を備えたので、チップ排出溝
の断面積が標準ドリルや高剛性ドリルよりも大きくなり
、チップ排出性能が良くなる。
According to the above structure, by forming a substantially U-shaped sub-groove on the center side of the heel surface of the blade, the core thickness becomes smaller and the chisel edge becomes smaller, so that when cutting, the so-called The walking phenomenon does not occur and the center of rotation of the drill can be effectively prevented from moving. Furthermore, since the cutting resistance is reduced due to the smaller chisel edge, thinning is not necessary, and the skill of thinning does not affect the accuracy of the hole. Therefore, accurate drilling can be performed without thinning. Further, there is no need to perform thinning every time the drill is re-grinded, and sufficient cutting can be achieved simply by sharpening the cutting edge at the tip of the drill. Furthermore, since the sub-groove is provided on the center side of the heel surface, the cross-sectional area of the chip ejection groove is larger than that of a standard drill or a high-rigidity drill, improving chip ejection performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係るドリルの刃部を示す
断面図、第2.3図は夫々本発明の第2実施例に係るド
リルの側面図及びその刃部を示す断面図、第4,5図は
夫々第3図に示すドリルの刃先端面図及び断面側面図、
第6図は第5.8,9゜II  +’)  IQ  I
LrEnのVl−Vl鴻断面M−筺7図はより具体的な
ドリルの刃先端面図、第8,9゜11.12,13.1
4図は夫々他の実施例にかかるドリルの断面側面図、第
10図は第9.11,12.13図のX−X線断面図、
第15.16.17図は夫々従来の高剛性ドリルにシン
ニングを行った場合の説明図である。 1.11・・・実施例に係るドリル、2・・・従来のド
リル、2b・・・刃裏面、2c・・・ヒール面、3・・
・標準ドリル、3a・・・刃裏面、3b・・・ヒール面
、4.lla・・・刃裏面、4a・・・外側、4b・・
・中心側、4c・・・突出部、5.1lb−・・ヒール
面、5 a、 l 1 c−副溝、5 b−・・外側端
部、6・・・チップ排出溝、7,11d・・・ヒール部
。 特許出願人 株式会社神戸製鋼所 代理人 弁理士  青 山 葆 ほか2名第2図 第4図 第5図 第6図         第7v!J t4′58図 −第15■      第16113      第1
7図手続補正書 特許庁長官殿    昭和62年 12月 14日1、
事件の表示 昭和 61年特許願第  228675  !シ。 2、発明の名称 〔゛・ ド  リ  ル 3、 補正をする者 事件との関係 特許出願人 住所兵庫県神戸市中央区脇浜町1丁目3番18号名称(
119)   株式会社 神 戸 製 鋼 所代表者 
  亀  高  素  吉 4、代理人 住所 〒540 大阪府大阪市東区域見2丁目1番61
号7、補正の内容 (1)明細書中、下記の箇所を訂正します。 (A)特許請求の範囲の欄 別紙のとおり。 (I3、発明の詳細な説明の欄 (1)第3頁第8行目〜第14行目 「チップ排出溝を・・・・・・構成した。」とあるを「
チップ排出溝を構成するヒール面と刃裏面とがドリル軸
方向断面において、大略滑らかな曲面をなす標準断面刃
形に対して、上記標準断面刃形のヒール面よりヒール面
中心側に略U字状にくぼんだ副溝を有するようにした断
面形状を、該副溝と切刃との接点から軸方向長さ寸法が
ドリル径の0.5〜1.1倍となる軸方向沿いの所定範
囲内に有するように構成した。」と訂正します。 (2)第13頁第13行目の後に下記の文章を挿入しま
す。 「実験例 上記実施例にがかるド、リルの寿命を実験により例に相
当するドリルとを用意し、夫々、全長は1491111
1と109mm、溝長さはllllnmと49mra、
副溝長さ111mm(iM長さの全体にわたって形成さ
れたしの)と9 mm、先端心厚は1.78mmと0.
83mm、主溝心厚テーパは上記実施例のものではOと
する。さらに、上記標準ドリルと上記実施例のドリルは
、夫々、その副溝心厚テーパを1.8/100と6/1
00、溝幅比を1.0:Iと0.9:1、ねじれ角を3
3°と25°、先端角を118°と135゜とし、さら
に、各ドリルの外径を12n+n+、切削速度(回転数
)を25m/min、ドリルの送り速度を0.22mm
/ m1nx披切削材料をJIS  550C(1−I
B 245〜255)とし、ドリルの切削深さを60m
m。 すなわち60mmの板厚の被削材をドリルが貫通するよ
うにした。また、上記実施例にかかるドリルは、その副
溝が9mm(0,75D)、I 2mm(I D)、1
8 mm(1,5D)の3種類を夫々5本ずつ使用し、
従来のドリルはその副溝カ月11mm(0,2,5D)
のものを5本使用し、いずれも湿式方式で被削材の確認
した。実験条件は、従来の標準ドリルと実施結果を第1
8図に示す。9IIlfflの実施例では5本のドリル
の平均貫通穴数が158個、12nn+の実施例では5
本のドリルの平均貫通穴数が143個、18mmの実施
例では5本のドリルの平均貫通穴数が120個、従来の
ドリルでは5本のドリルの平均貫通穴数が63個であっ
た。」 (C)図面の簡単な説明の欄 (1)第14頁第6行目 「説明図である。」とあるを 「説明図、第18図は実験例の結果を示す図である。」
と訂正します。 (II)図面中、第18図を別紙のとおり追加します。 以上 特許請求の範囲 「(1)チップ排出)1が(6)を構成するヒール面(
3b)と刃裏面(3a)とがドリル軸方向断面において
、大略滑らかな曲面をなす標桑断面刃形に対して、上記
漂q(断面刃形のヒール面(ttb、s)よりヒール面
中心側に略U字状にくぼんだ副溝(lie、5a)を有
するようにした断面形状を、該副tF(lie、5a)
と切刃ろことを特徴とするドリル。」 −N七都
FIG. 1 is a cross-sectional view showing the cutting edge of a drill according to the first embodiment of the present invention, and FIGS. 2 and 3 are a side view and a cross-sectional view showing the cutting edge of the drill according to the second embodiment of the invention, respectively. , Figures 4 and 5 are a top view and a cross-sectional side view of the drill bit shown in Figure 3, respectively;
Figure 6 is 5.8,9゜II +') IQ I
Figure 7 of LrEn's Vl-Vl cross section is a more specific view of the tip of the drill blade, Nos. 8, 9, 11.12, 13.1
4 is a sectional side view of a drill according to another embodiment, FIG. 10 is a sectional view taken along the line X-X of FIGS. 9.11 and 12.13,
Figures 15, 16, and 17 are explanatory diagrams of cases in which a conventional high-rigidity drill is thinned. 1.11...Drill according to the embodiment, 2...Conventional drill, 2b...Blade back surface, 2c...Heel surface, 3...
・Standard drill, 3a...Blade back side, 3b...Heel side, 4. lla...Back side of the blade, 4a...Outside, 4b...
・Center side, 4c...Protrusion, 5.1lb--Heel surface, 5a, l1c-minor groove, 5b--Outer end, 6...Chip ejection groove, 7, 11d ...heel part. Patent Applicant: Kobe Steel, Ltd. Agent Patent Attorney: Aoyama Aoyama and 2 others Figure 2 Figure 4 Figure 5 Figure 6 Figure 7v! J t4'58 figure - 15■ 16113 1st
Figure 7 Procedural Amendments Dear Commissioner of the Patent Office, December 14, 1988, 1.
Display of the incident 1988 Patent Application No. 228675! Sh. 2. Name of the invention [゛・Drill 3. Relationship with the case of the person making the amendment Patent applicant address 1-3-18 Wakihama-cho, Chuo-ku, Kobe, Hyogo Prefecture Name (
119) Representative of Kobe Steel Co., Ltd.
Motokichi Kame Taka 4, Agent address: 2-1-61 Mi, Higashi District, Osaka City, Osaka Prefecture 540
Item 7. Contents of amendment (1) The following parts of the specification will be corrected. (A) As shown in the appendix to the scope of claims. (I3, Detailed Description of the Invention Column (1) Page 3, Lines 8 to 14, "The chip ejection groove was constructed."
In contrast to the standard cross-sectional blade shape in which the heel surface and the back surface of the blade that make up the chip ejection groove form a roughly smooth curved surface in the axial cross-section of the drill, there is an approximately U-shape located closer to the center of the heel surface than the heel surface of the standard cross-sectional blade shape. A predetermined range along the axial direction in which the axial length dimension from the contact point between the minor groove and the cutting edge is 0.5 to 1.1 times the drill diameter. It is configured so that it is contained within. ” I am corrected. (2) Insert the following sentence after page 13, line 13. ``Experimental example'' The lifespan of the drill and drill according to the above example was tested by preparing drills corresponding to the example, each with a total length of 1,491,111 mm.
1 and 109mm, the groove length is llllnm and 49mra,
The minor groove length is 111 mm (formed over the entire iM length) and 9 mm, and the tip core thickness is 1.78 mm and 0.
The main groove core thickness taper is O in the above example. Furthermore, the standard drill and the drill of the embodiment have a minor groove center thickness taper of 1.8/100 and 6/1, respectively.
00, groove width ratio of 1.0:I and 0.9:1, helix angle of 3
3° and 25°, and the tip angles are 118° and 135°. Furthermore, the outer diameter of each drill is 12n+n+, the cutting speed (rotation speed) is 25 m/min, and the feed rate of the drill is 0.22 mm.
/ m1nx cutting material JIS 550C (1-I
B 245~255), and the cutting depth of the drill is 60 m.
m. In other words, the drill was designed to penetrate a work material with a thickness of 60 mm. Further, the drill according to the above embodiment has the minor grooves of 9 mm (0.75D), I 2 mm (I D), 1
Using 5 pieces each of 3 types of 8 mm (1.5D),
The conventional drill has a minor groove of 11mm (0, 2, 5D).
Five pieces were used, and the work material was confirmed using a wet method. The experimental conditions were the conventional standard drill and the results of the experiment.
It is shown in Figure 8. In the 9IIlffl example, the average number of through holes for 5 drills is 158, and in the 12nn+ example, it is 5.
The average number of through holes for the standard drill was 143, the average number of through holes for the five drills in the 18 mm example was 120, and the average number of through holes for the five drills for the conventional drill was 63. (C) Brief description of drawings column (1) Page 14, line 6, "This is an explanatory diagram." has been replaced with "Explanatory diagram. Figure 18 is a diagram showing the results of an experimental example."
I will correct it. (II) Figure 18 will be added to the drawings as shown in the attached sheet. Claims ``(1) Chip ejection) 1 constitutes (6) heel surface (
3b) and the blade back surface (3a) form a roughly smooth curved surface in the axial cross section of the drill. The cross-sectional shape having a substantially U-shaped sub-groove (lie, 5a) on the side is referred to as the sub-tF(lie, 5a).
A drill featuring a cutting blade and a filter. ” -N Shichito

Claims (1)

【特許請求の範囲】[Claims] (1)チップ排出溝(6)を構成するヒール面(3b)
と刃裏面(3a)とがドリル軸方向断面において、大略
滑らかな曲面をなす標準断面刃形に対して、上記標準断
面刃形のヒール面(11b、5)よりヒール面中心側に
略U字状にくぼんだ副溝(11c、5a)を有するよう
にした断面形状を先端部より軸方向沿いの所定範囲内に
有することを特徴とするドリル。
(1) Heel surface (3b) forming chip ejection groove (6)
In contrast to the standard cross-sectional blade shape in which the blade back surface (3a) and the blade back surface (3a) form a roughly smooth curved surface in the axial cross-section of the drill, there is a substantially U-shape on the heel surface center side from the heel surface (11b, 5) of the standard cross-sectional blade shape. A drill characterized in that it has a cross-sectional shape having sub-grooves (11c, 5a) recessed in the shape of a shape within a predetermined range along the axial direction from the tip.
JP22867586A 1986-09-26 1986-09-26 Drill Granted JPS6384807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22867586A JPS6384807A (en) 1986-09-26 1986-09-26 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22867586A JPS6384807A (en) 1986-09-26 1986-09-26 Drill

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22867486A Division JPS6268213A (en) 1986-09-26 1986-09-26 Drill

Publications (2)

Publication Number Publication Date
JPS6384807A true JPS6384807A (en) 1988-04-15
JPH0369646B2 JPH0369646B2 (en) 1991-11-01

Family

ID=16880050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22867586A Granted JPS6384807A (en) 1986-09-26 1986-09-26 Drill

Country Status (1)

Country Link
JP (1) JPS6384807A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025608A (en) * 1983-07-19 1985-02-08 Masao Kubota Twist drill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025608A (en) * 1983-07-19 1985-02-08 Masao Kubota Twist drill

Also Published As

Publication number Publication date
JPH0369646B2 (en) 1991-11-01

Similar Documents

Publication Publication Date Title
EP0761352B1 (en) A roll-forged drill bit
EP1694458B1 (en) Twist drill
EP2913131B1 (en) Small-diameter drill
CN111093871B (en) Drill bit
JP2007007831A (en) Stepped drill
JPH08155713A (en) Twist drill
US5176476A (en) Router cutting bit
JPS6056809A (en) Drill
EP3733334A1 (en) Drill
JP2008142834A (en) Drill
JP3337804B2 (en) End mill
JPS6384807A (en) Drill
JP2001121332A (en) Twist drill
WO2012053090A1 (en) Three-bladed drill
JPH05261612A (en) Drill
JP2623304B2 (en) Cermet twist drill
JP2022142055A (en) Drill
WO2021074958A1 (en) Drill
JP2003136319A (en) Cutting edge tip replacing type twist drill
JPH10315021A (en) Drill
JPS64167B2 (en)
JP2003094220A (en) Drilling tool
JPH02237711A (en) Twist drill
JP2005205526A (en) Deep hole boring tool
CN211516185U (en) Hard alloy drill bit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term