JPS6384775A - Weld line follow-up controlling method for welding torch - Google Patents

Weld line follow-up controlling method for welding torch

Info

Publication number
JPS6384775A
JPS6384775A JP22624886A JP22624886A JPS6384775A JP S6384775 A JPS6384775 A JP S6384775A JP 22624886 A JP22624886 A JP 22624886A JP 22624886 A JP22624886 A JP 22624886A JP S6384775 A JPS6384775 A JP S6384775A
Authority
JP
Japan
Prior art keywords
welding
arc
waveform
rotating
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22624886A
Other languages
Japanese (ja)
Other versions
JPH0671667B2 (en
Inventor
Yuji Sugitani
祐司 杉谷
Masao Kobayashi
小林 征夫
Masatomo Murayama
雅智 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22624886A priority Critical patent/JPH0671667B2/en
Publication of JPS6384775A publication Critical patent/JPS6384775A/en
Publication of JPH0671667B2 publication Critical patent/JPH0671667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0216Seam profiling, e.g. weaving, multilayer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To follow a weld line with high accuracy by comparing the difference of integration values in the specific range which are calculated from arc voltage waveforms, etc., detected at a front point and a rear point in the welding proceeding direction with a predetermined reference value in the arc welding rotating at a high speed. CONSTITUTION:The welding is performed following the weld line 3 while rotating at a high speed an arc 9 of the tip of a welding wire 8 while rotating an electrode nozzle 4. At this time, the integration values of the arc voltages or the welding current waveforms in the range of a prescribed angle in the range of + or -2.5-+ or -90 deg. with the front point (cf) and the rear point (cr) in the welding proceeding direction as centers are calculated and the difference between the respective integration values (SCf - SCr) is compared with the predetermined specific value and controlled. The weld line is followed and controlled with the high accuracy by this method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、屈曲する溶接線に沿って行なう高速回転ア
ーク隅肉溶接における溶接トーチの溶接線追従制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling a welding torch to follow a welding line in high-speed rotating arc fillet welding performed along a curved welding line.

〔従来の技術〕[Conventional technology]

従来、T継手、かど継手等の隅肉溶接を自動で行なう場
合は、例えばアークセンサによる開先倣いにより溶接電
極を開先ルートに追従させて行なっている。
Conventionally, when automatically performing fillet welding of T-joints, corner joints, etc., the welding electrode is made to follow the groove route by tracing the groove using an arc sensor, for example.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、例えば第11図に示すように下板1と立板2の溶
接線3が左に屈曲している溶接継手において、溶接トー
チ4を溶接線乙に沿って矢印5の方向に移動しながら自
動溶接する場合、溶接トーチAh−屈曲占Xを4所4品
ナス鈴は庖塙トー枡Aけ慄接線3に対して直角をなして
いるが、溶接トーチ4が屈曲点6を通過した後は溶接ト
ーチ4は溶接線3に対し後退角θをとる。このように溶
接線3が屈曲しているため溶接トーチ4のトーチ角度が
変化すると、開先ならいを行なっていてもビード形状が
不連続、となったり溶込み深さが変化し溶接不良となる
問題点があった。
Conventionally, for example, in a welding joint where the weld line 3 of the lower plate 1 and the upright plate 2 is bent to the left as shown in FIG. 11, while moving the welding torch 4 in the direction of the arrow 5 along the weld line O, When welding automatically, welding torch Ah - bending point The welding torch 4 has a receding angle θ with respect to the welding line 3. Since the welding line 3 is bent in this way, if the torch angle of the welding torch 4 changes, the bead shape may become discontinuous or the penetration depth may change, resulting in poor welding even if the bevel is traced. There was a problem.

この発明は、かかる問題点を解決するためになされたも
のであり、屈曲している溶接線に対し常に溶接合車に固
定した溶接トーチを適正トーチ角度に維持することがで
きる溶接トーチの溶接線追従制御方法を提案することを
目的とするものである。
This invention was made to solve this problem, and provides a welding torch that can always maintain a welding torch fixed to a welding wheel at an appropriate torch angle for a bent welding line. The purpose of this paper is to propose a follow-up control method.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る溶接トーチの溶接線追従制御方法は、台
車上に固定した溶接トーチによりアークを高速回転させ
ながら屈曲する溶接線に沿って行なう隅肉溶接において
、 (イ)上記回転するアークのアーク電圧波形又は溶接電
流波形を検出し、 (ロ)上記アーク電圧波形又は溶接電流波形を溶接進行
方向前方点Cf及び溶接進行方向後方点Crを中心に±
2.5度から±90度の範囲で一定角度±φ0で分割し
、 G−3上記前方点Cf側に一定角度±φ。で作るアーク
電圧波形又は溶接電流波形の面積Scfと、上記後方点
Cr側に一定角度±φ0で作るアーク電圧波形又は溶接
電流波形の面積scrを演算し、に)上記面積の差Se
f −Scrを演算し、この面積の差があらかじめ定め
た基準値より変化する量を検出し、 (ホ)上記変化する量に応じて上記溶接トーチ進行方向
を左右に修正することを%徴とする。
The welding line tracking control method of a welding torch according to the present invention is performed in fillet welding along a curved welding line while rotating the arc at high speed with a welding torch fixed on a trolley. (a) The arc of the rotating arc Detect the voltage waveform or welding current waveform, and (b) calculate the arc voltage waveform or welding current waveform ± around the forward point Cf in the welding direction and the backward point Cr in the welding direction.
Divide at a constant angle ±φ0 in the range of 2.5 degrees to ±90 degrees, and set a constant angle ±φ on the Cf side of the forward point of G-3. Calculate the area Scf of the arc voltage waveform or welding current waveform created by and the area scr of the arc voltage waveform or welding current waveform created at a fixed angle ±φ0 on the rear point Cr side, and
Calculate f - Scr, detect the amount by which the difference in area changes from a predetermined reference value, and (e) correct the traveling direction of the welding torch to the left or right according to the amount of change. do.

〔作用〕[Effect]

この発明においては、溶接線に対するトーチ角度が変動
すると、回転するアークの電圧波形又は溶接電流波形が
変動することから、溶接中のアーク電圧波形又は溶接電
流波形の変動を検出し、この変動に基いて溶接トーチを
固定している溶接合車の進行方向を制御する。
In this invention, since the voltage waveform of the rotating arc or the welding current waveform changes when the torch angle with respect to the welding line changes, the fluctuation of the arc voltage waveform or welding current waveform during welding is detected and based on this fluctuation. The direction of movement of the welding wheel, which has a welding torch fixed to it, is controlled.

〔実施例〕〔Example〕

@1図はこの発明の一実施例に係る回転アークにより隅
肉溶接する場合の説明図であシ、図において1は下板、
2は下板1に立設した立板3は溶接線、4は不図示の台
車に固定した溶接トーチである。
@Figure 1 is an explanatory diagram of fillet welding using a rotating arc according to an embodiment of the present invention. In the figure, 1 indicates the lower plate,
A standing plate 3 erected on the lower plate 1 is a welding line 2, and a welding torch 4 is fixed to a cart (not shown).

まず上記実施例によυ、この発明の詳細な説明する。溶
接トーチ4は不図示の回転モータにより溶接電流、溶接
速度に適応した回転速度で矢印7の方向に回転して溶接
トーチ4先端の通電チップの偏心孔を通過するワイヤ8
を回転することによりアーク9を高速回転しながら溶接
線3に沿って溶接を行なう。なお、第1図において、溶
接進行方向は紙面と出直で紙面裏面から表面に向かう方
向であl) 、taはアーク長、t・はワイヤ突出長、
Exは溶接トーチ4と母材間の距離である。
First, the present invention will be explained in detail based on the above embodiment. The welding torch 4 is rotated in the direction of the arrow 7 by a rotating motor (not shown) at a rotational speed adapted to the welding current and welding speed, and a wire 8 is passed through the eccentric hole of the current-carrying tip at the tip of the welding torch 4.
Welding is performed along the welding line 3 while rotating the arc 9 at high speed. In Fig. 1, the welding direction is perpendicular to the page and from the back side of the page to the front side, ta is the arc length, t is the wire protrusion length,
Ex is the distance between the welding torch 4 and the base metal.

第2図はW11図に示した溶接トーチ4を回転軸線10
方向から見た説明図であシ、図においてC1r Cr、
 RLは溶接トーチ4が回転しているときのワイヤ8の
位置を示し、Cfは溶接進行方向5前方のワイーv9t
r1行畳−Rけ遺坪備鐸嘴面Ef面りイ90度右側のワ
イヤ8の位置、Lは90度左側のワイヤ8の位置、Cr
は溶接進行方向に対して後方のワイヤ8の位置をそれぞ
れ示す、またφは溶接進行方向5に対するワイヤ80回
転角を示す。
Figure 2 shows the welding torch 4 shown in Figure W11 on the rotation axis 10.
This is an explanatory diagram seen from the direction, and in the diagram C1r Cr,
RL indicates the position of the wire 8 when the welding torch 4 is rotating, and Cf indicates the position of the wire 8 in the forward welding direction 5.
r1 row tatami - Rke Itsubo Bei Takuzaku surface Ef side I position of wire 8 on 90 degree right side, L is position of wire 8 on 90 degree left side, Cr
indicates the position of the wire 8 at the rear with respect to the welding direction, and φ indicates the rotation angle of the wire 80 with respect to the welding direction 5.

′g1図、第2図に示すようにワイヤ送給速度を一定の
もとで溶接トーチ4を回転すると、回転時のワイヤ乙の
位置により溶接トーチ4と母材間の距離Exが異なシア
ーク長1hが変化する。アーク長ムが変化すると負荷特
性が変化して溶接電流Iやアーク電圧Eが変化する。こ
のアーク長taの変化による溶接電流!あるいはアーク
電圧Eの変化は距離Exの変化が大幅でなげれば、距離
EXの変化と直線関係で変化する。第1図に示すように
隅肉溶接において溶接トーチ4が回転すると、ワイヤ8
0位置に応じて距離Exは正弦波を基準形として変化す
るから、溶接電流工、アーク電圧Eもワイヤ8の位置に
対応して正弦波を基準形として変化する。なお、この関
係は消耗電極のみならず非消耗電極でも成立する。
As shown in Figure 1 and Figure 2, when the welding torch 4 is rotated with the wire feeding speed constant, the distance Ex between the welding torch 4 and the base metal will vary depending on the position of the wire O at the time of rotation. 1h changes. When the arc length changes, the load characteristics change and the welding current I and arc voltage E change. Welding current due to this change in arc length ta! Alternatively, if the change in distance Ex is large, the change in arc voltage E will change in a linear relationship with the change in distance EX. As shown in FIG. 1, when the welding torch 4 rotates during fillet welding, the wire 8
Since the distance Ex changes according to the 0 position using a sine wave as a reference form, the welding current and arc voltage E also change corresponding to the position of the wire 8 using a sine wave as a reference form. Note that this relationship holds true not only for consumable electrodes but also for non-consumable electrodes.

1F、3図W、 (b)は、筑4図に示すよちに溶楊ト
ーテ4が溶接線3に対し直角のときの回転するワイヤ8
すなわちアークの位置に対応して変化するアーク電圧E
および溶接電施工の波形を示す。第3図において(a)
はアーク電圧Eの波形、(b)は溶接電流Iの波形であ
シ、それぞれの波形は上下逆転した形状となる。なお、
溶接電施工の波形は定電圧特性の溶接電源のみで得るこ
とができ、アーク電圧Eの波形は定電圧特性、定電流特
性のいずれの溶接電源でも得ることができる。
1F, Figure 3 W, (b) shows the rotating wire 8 when the welding tote 4 is perpendicular to the welding line 3 as shown in Figure 4.
In other words, the arc voltage E changes depending on the position of the arc.
and waveforms of electric welding work. In Figure 3 (a)
is the waveform of the arc voltage E, and (b) is the waveform of the welding current I, and each waveform has an upside-down shape. In addition,
The waveform of electric welding can be obtained only with a welding power source with constant voltage characteristics, and the waveform of arc voltage E can be obtained with either a welding power source with constant voltage characteristics or constant current characteristics.

第4図に示すように溶接トーチ4が溶接線3に対して直
角のときは、溶接進行方向5に対するワイヤ8の前方位
置Ct及び後方位[Crを中心とした波形は第3図(a
)、 (b)に示すように、はぼ同一形状の波形となる
When the welding torch 4 is perpendicular to the welding line 3 as shown in FIG.
) and (b), the waveforms have almost the same shape.

しかし、第5図に示すように溶接トーチ4が溶接進行方
向5に対して後方に傾き、前進角θをとるときにはワイ
ヤ8の前方位置Cfにおけるアークta は後方位@C
rVcおけるアーク長ムより長くなシ、アーク電圧波形
は第6図に示すように前方位置Cfの電圧レベルが後方
位置Crの電圧レベルより高い波形となる。逆に第7図
に示すように溶接トーチ4が溶接進行方向5に対して前
方に傾き後退角θをとるときには前方位置Cfにおける
アーク長ムが後方位置Crにおけるアーク長ムより短か
くなシ、アーク電圧波形も第8図に示すように前方位l
 Cfの電圧レベルが後方位置Crの電圧レベルより低
い波形となる。
However, as shown in FIG. 5, when the welding torch 4 is tilted backward with respect to the welding progress direction 5 and takes an advancing angle θ, the arc ta at the forward position Cf of the wire 8 is at the backward position @C
When the arc length at rVc is longer than m, the arc voltage waveform becomes such that the voltage level at the front position Cf is higher than the voltage level at the rear position Cr, as shown in FIG. Conversely, as shown in FIG. 7, when the welding torch 4 is tilted forward with respect to the welding direction 5 and takes a receding angle θ, the arc length M at the front position Cf is not shorter than the arc length M at the rear position Cr. The arc voltage waveform is also in the forward direction as shown in Figure 8.
The voltage level of Cf becomes a waveform lower than the voltage level of rear position Cr.

したがって上記アーク電圧波形の変化を検出することに
より、溶接線6が屈曲しているために生じるトーチ角度
の変化を検出することができる。
Therefore, by detecting the change in the arc voltage waveform, it is possible to detect the change in the torch angle caused by the bending of the welding line 6.

すなわち、アーク電圧波形をCf点及びCr点を中心と
して溶接方向に対して各々左右に一定角度へで分割し、
この角度40間で作る波形の面積Scf、Scrを求め
、面積Scfと面積Scrの差によりトーチ角度の変化
量を検出することができ、このトーチ角度の変化に基き
溶接トーチを固定した溶接台車の走行方法を制御できる
That is, the arc voltage waveform is divided into left and right angles at fixed angles with respect to the welding direction centering on the Cf point and the Cr point,
The areas Scf and Scr of the waveform created between these angles 40 are calculated, and the amount of change in the torch angle can be detected from the difference between the area Scf and the area Scr. You can control how you drive.

ここで一定角度φGは2.5度から90度とする。Here, the constant angle φG is from 2.5 degrees to 90 degrees.

角度φ、t−2,s度以上としたのは、角度φ。が2.
5未満となると波形にのるノイズの影響を受は易くなる
からである6 第9図は、この発明の実施例の動作説明図であシ、11
は溶接トーチ4を固定した台車であシ、台車110走行
により屈曲した溶接線3に追従して溶接を行なう。この
溶接に際しての台車11の溶接線追従制御方法を第10
図に示した制御回路のブロック図に基いて説明する。
The angle φ is set to be greater than t-2,s degrees. 2.
This is because if the value is less than 5, the waveform will be easily affected by noise.6 FIG. 9 is an explanatory diagram of the operation of the embodiment of the present invention.
Welding is carried out using a truck to which a welding torch 4 is fixed, following the welding line 3 bent by the traveling of the truck 110. The method for controlling the welding line follow-up of the truck 11 during this welding is described in the 10th section.
The explanation will be based on the block diagram of the control circuit shown in the figure.

まず電圧検出器40でアーク電圧Eを検出し、この検出
したアーク電圧Eを切換器41で溶接方向前方点Cf側
と後方点Cr側に分割する。切換器41によるアーク電
圧Eの分割のタイミングはスイッチング論理回路42か
らの指令信号で行なう。スイッチング論理回路42は回
転位置検出器43で検出したワイヤ8の回転角φと、あ
らかじめ定めた2、5度から90度の範囲の一定角度φ
ot−設定した4設定器44の出力φ。例えば45度と
を比較演算し、ワイヤ80回転角が溶接進行方向前方点
Cfを中心に±φ0である区間の波形を切換器41のf
側から出力する。同様にしてワイヤ乙の回転角が波形を
切換器41のr側から出力する。切換器41のfaから
出力された波形は積分器45で積分され、切換器41の
r側から出力された波形は積分器46で積分される。n
設定器53には、これらの積分の処理回数nが設定され
ており、二個の積分器45.46はスイッチング論理回
路42を介して出力されるn回分のアークの回転に付し
て波形積分を行ない、その出力ScfおよびScrをそ
れぞれ記憶器47.48に出力する。記憶器47゜48
はn回毎に積分器45.46から入力した信号Scfお
よびScrの記憶保持を繰シ返しながら信号ScfとS
crを差動増幅器49に出力する。差動増幅器49では
この信号の差Scf −Scrを求め、次段の差動増幅
器50に出力する。差動増幅器間では上記差信号Scf
 −Scrとあらかじめ基単電圧設定器51に設定しで
ある適正トーチ角度のときの基準値もとの差Δ5=(S
cf −5cr) −86を求め台車走行制御手段52
に出力する。なお、基臨値S0は適正トーチ角度として
溶接トーチ4が溶接線3に対して垂直になるように定め
られている場合は零となる。
First, a voltage detector 40 detects an arc voltage E, and a switch 41 divides the detected arc voltage E into a front point Cf side and a rear point Cr side in the welding direction. The timing of division of the arc voltage E by the switch 41 is determined by a command signal from the switching logic circuit 42. The switching logic circuit 42 detects the rotation angle φ of the wire 8 detected by the rotational position detector 43 and a predetermined constant angle φ in the range of 2.5 degrees to 90 degrees.
ot-The output φ of the set 4 setting device 44. For example, by comparing and calculating 45 degrees with
Output from the side. Similarly, the rotation angle of wire O outputs a waveform from the r side of the switch 41. The waveform output from fa of the switch 41 is integrated by an integrator 45, and the waveform output from the r side of the switch 41 is integrated by an integrator 46. n
The setting device 53 is set with the number n of times these integrals are processed, and the two integrators 45 and 46 perform waveform integration for n arc rotations outputted via the switching logic circuit 42. The outputs Scf and Scr are outputted to the memory devices 47 and 48, respectively. Memory device 47°48
The signals Scf and Scr are stored while repeating the storage of the signals Scf and Scr input from the integrators 45 and 46 every n times.
cr is output to the differential amplifier 49. The differential amplifier 49 calculates the difference Scf -Scr between these signals and outputs it to the differential amplifier 50 at the next stage. Between the differential amplifiers, the difference signal Scf
-Scr and the original reference value at the proper torch angle set in advance in the base single voltage setting device 51 Δ5=(S
cf -5cr) -86 and the bogie running control means 52
Output to. Note that the base value S0 becomes zero when the welding torch 4 is set perpendicular to the welding line 3 as the appropriate torch angle.

台車走行制御手段52は上記入力信号ΔSの正・負を判
断し、この正・負の信号及びΔSの値に応じて台車11
の進行方向を制御する。すなわち信号ΔSが負のときは
台車11の進行方向を左側に修正し、信号ΔSが正のと
きは台車11を右側に修正する。例えば第9図に示すよ
うに溶接線6が円弧となっているときは台車11はその
円弧に沿って矢印12方向に走行しなから隅肉溶接を行
なう。したがって溶接トーチ4を常に適正トーチ角度に
維持することができる。
The bogie traveling control means 52 determines whether the input signal ΔS is positive or negative, and the bogie travel control means 52 determines whether the input signal ΔS is positive or negative.
control the direction of travel. That is, when the signal ΔS is negative, the traveling direction of the truck 11 is corrected to the left, and when the signal ΔS is positive, the traveling direction of the truck 11 is corrected to the right. For example, when the welding line 6 is an arc as shown in FIG. 9, the truck 11 travels along the arc in the direction of the arrow 12 before performing fillet welding. Therefore, the welding torch 4 can always be maintained at an appropriate torch angle.

なお、上記実施例ではアーク電圧波形を検出して台車1
1を溶接ね乙に追従させる場合を示したが、第3図(b
)に示す溶接電流波形を検出しても上記実施例と同様に
台車11t−溶接線6に追従させることができる。
In addition, in the above embodiment, the arc voltage waveform is detected and the bogie 1 is
Fig. 3 (b)
) Even if the welding current waveform shown in FIG.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、回転するアークの電圧
波形または溶接電流波形の変動に基いて屈曲している溶
接線に溶接トーチを追従させるから、常に適正トーチ角
度で溶接をすることができ、溶接線全長にわたυ連続し
たかつ一定の溶込み深さのビードを形成することができ
る。
As explained above, this invention allows the welding torch to follow a welding line that is bent based on fluctuations in the voltage waveform of the rotating arc or the welding current waveform, so welding can always be performed at an appropriate torch angle. It is possible to form a bead that is continuous over the entire length of the weld line and has a constant penetration depth.

さらに、溶接線に追従して溶接トーチを固定した溶接台
車が走行するから、溶接台車を自走させることができる
効果も有する。
Furthermore, since the welding cart to which the welding torch is fixed runs following the welding line, the welding cart has the effect of being able to run on its own.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の回転アーク隅肉溶接の説明図、第
2図は上記実施例のワイヤ位置を示す説明図、第3図(
a’)はアーク電圧波形図、第3図(b)は溶接電流波
形図、第4図、第5図及び第7図は溶接線に対する溶接
トーチ位置の説明図、第6図、第8図はアーク電圧波形
図、第9図はこの発明の詳細な説明図、第10図は上記
実施例の制御回路のブロック図、第11図は従来方法を
示す説明図である。 1・・・下鈑、2・・・立板、3・・・溶接線、4・−
・溶接トーチ、8・・・ワイヤ、11・・・台車。 代理人 弁理士 佐 藤 正 年 (b) 第6図 第8図 @9図 @11  図 一丁−
Fig. 1 is an explanatory diagram of rotating arc fillet welding of the present invention, Fig. 2 is an explanatory diagram showing the wire position of the above embodiment, and Fig. 3 (
a') is an arc voltage waveform diagram, Figure 3(b) is a welding current waveform diagram, Figures 4, 5 and 7 are explanatory diagrams of the welding torch position relative to the welding line, Figures 6 and 8. 9 is an arc voltage waveform diagram, FIG. 9 is a detailed explanatory diagram of the present invention, FIG. 10 is a block diagram of the control circuit of the above embodiment, and FIG. 11 is an explanatory diagram showing a conventional method. 1... Lower plate, 2... Vertical plate, 3... Welding line, 4... -
・Welding torch, 8... wire, 11... trolley. Agent Patent Attorney Masatoshi Sato (b) Figure 6 Figure 8 @ Figure 9 @ 11 Figure 1-

Claims (1)

【特許請求の範囲】 アークを高速回転させながら屈曲する溶接線に沿つて行
なう隅肉溶接において、 (イ)上記回転するアークのアーク電圧波形又は溶接電
流波形を検出し、 (ロ)上記アーク電圧波形又は溶接電流波形を溶接進行
方向前方点Cf及び溶接進行方向後方点Crを中心に±
2.5度から±90度の範囲で一定角度±φ_0で分割
し、 (ハ)上記前方点Cf側に一定角度±φ_0で作るアー
ク電圧波形又は溶接電流波形の面積Scfと、上記後方
点Cr側に一定角度±φ_0で作るアーク電圧波形又は
溶接電流波形の面積Scrを演算し、 (ニ)上記面積の差Scf−Scrを演算し、この面積
の差があらかじめ定めた基準値より変化する量を検出し
、 (ホ)上記変化する量に応じて上記溶接トーチの進行方
向を左右に修正し、溶接速度を一定に制御する ことを特徴とする溶接トーチの溶接線追従制御方法。
[Claims] In fillet welding performed along a curved welding line while rotating an arc at high speed, (a) detecting the arc voltage waveform or welding current waveform of the rotating arc; (b) detecting the arc voltage The waveform or welding current waveform is ± centered on the forward point Cf in the welding direction and the backward point Cr in the welding direction.
Divide by a constant angle ±φ_0 in the range of 2.5 degrees to ±90 degrees, (c) Area Scf of the arc voltage waveform or welding current waveform created at a constant angle ±φ_0 on the front point Cf side and the rear point Cr Calculate the area Scr of the arc voltage waveform or welding current waveform created with a constant angle ±φ_0 on the side, (d) Calculate the difference in the above areas Scf - Scr, and calculate the amount by which this area difference changes from a predetermined reference value. and (e) correcting the traveling direction of the welding torch left and right according to the amount of change, and controlling the welding speed to a constant value.
JP22624886A 1986-09-26 1986-09-26 Welding line tracking control method for welding torch Expired - Lifetime JPH0671667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22624886A JPH0671667B2 (en) 1986-09-26 1986-09-26 Welding line tracking control method for welding torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22624886A JPH0671667B2 (en) 1986-09-26 1986-09-26 Welding line tracking control method for welding torch

Publications (2)

Publication Number Publication Date
JPS6384775A true JPS6384775A (en) 1988-04-15
JPH0671667B2 JPH0671667B2 (en) 1994-09-14

Family

ID=16842214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22624886A Expired - Lifetime JPH0671667B2 (en) 1986-09-26 1986-09-26 Welding line tracking control method for welding torch

Country Status (1)

Country Link
JP (1) JPH0671667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293653A (en) * 1992-04-16 1993-11-09 Nkk Corp Method for controlling rear bead in one side welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293653A (en) * 1992-04-16 1993-11-09 Nkk Corp Method for controlling rear bead in one side welding

Also Published As

Publication number Publication date
JPH0671667B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
KR900003972B1 (en) Groove tracing control method for high-speed rotating arc fillet welding
JPS644875B2 (en)
JP2921390B2 (en) Masume welding robot
EP0112579B1 (en) Method and apparatus for welding line tracer control
JPS6384775A (en) Weld line follow-up controlling method for welding torch
JP3203998B2 (en) Rough tracking control method for traveling by arc sensor
JPS6380971A (en) Detection method for root gap
JPS6234674A (en) Weld line following-up control device
JPS6380977A (en) Torch angle control method
JP3230476B2 (en) Root gap detection method in arc welding
JPH0112591B2 (en)
JP3115206B2 (en) Arc sensor device
JP2969694B2 (en) Welding line profiling control method
JPH0671665B2 (en) How to detect temporary beads
JPS60174270A (en) Rotating arc welding method
JPH0191964A (en) High-speed rotating arc welding method
JPS6384770A (en) Detection of tack bead
JPH0420709B2 (en)
JPH074667B2 (en) Automatic groove tracking control method using arc sensor
JPH04157068A (en) Rotating arc rotational position control method for measure fillet welding
JPS6068173A (en) Detection of profiling for welding
JPH0141439B2 (en)
JPS6284873A (en) Arc welding method
JPH0379107B2 (en)
JPS62254980A (en) Method for controlling oscillation width of rotating nozzle in rotating arc welding method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term