JPS6380971A - Detection method for root gap - Google Patents

Detection method for root gap

Info

Publication number
JPS6380971A
JPS6380971A JP22624486A JP22624486A JPS6380971A JP S6380971 A JPS6380971 A JP S6380971A JP 22624486 A JP22624486 A JP 22624486A JP 22624486 A JP22624486 A JP 22624486A JP S6380971 A JPS6380971 A JP S6380971A
Authority
JP
Japan
Prior art keywords
welding
waveform
root gap
arc voltage
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22624486A
Other languages
Japanese (ja)
Other versions
JPH0671663B2 (en
Inventor
Yuji Sugitani
祐司 杉谷
Masao Kobayashi
小林 征夫
Masatomo Murayama
雅智 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22624486A priority Critical patent/JPH0671663B2/en
Publication of JPS6380971A publication Critical patent/JPS6380971A/en
Publication of JPH0671663B2 publication Critical patent/JPH0671663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To improve a welding quality by dividing the waveform of an arc voltage or that of a welding current at a fixed angle at the front and rear part points in the welding progressing direction and detecting the root gap based on the variation in the difference of the areas formed by each waveform. CONSTITUTION:The rotary welding of a wire 6 is performed by rotating an electrode nozzle 5 in a fillet welding of a lower plate 1 and vertical plate 2. In this case, the arc voltage waveform is divided in the right and left of the welding direction at the constant angle phi0<=+ or -90 deg. respectively with the front point Cf and rear point Cr as the center and the areas Scf, Scr of the waveform between the angle + or -phi0 are found. Since the variation from the reference value of the difference in these both areas has a close correlative relation with the root gap, the root gap and its variation can be detected with a non-contact and at real time by detecting the fluctuation value of the difference in both areas. Consequently the welding control is always optimized and welding quality can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高速回転アーク溶接で例えば隅肉溶接を行な
う場合のルート間隙の検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting a root gap when performing, for example, fillet welding by high-speed rotating arc welding.

(従来の技術) 従来、例えば隅肉溶接を行なう際には開先部は原則とし
てメタルタッチであることが要求されている。
(Prior Art) Conventionally, for example, when performing fillet welding, the groove portion is required to have a metal touch in principle.

(発明が解決しようとする問題点) 隅肉溶接の開先は、あらゆるところで密着を期待するこ
とができず、種々の大きさのルート間隙が生じビード形
状や脚長などに悪影響を及ぼすだけでなく、アークセン
サならいにおいては開先ならい制御も乱れるという問題
点がある。
(Problems to be Solved by the Invention) It is not possible to expect that the grooves of fillet welding will adhere tightly at all locations, and root gaps of various sizes occur, which not only adversely affects the bead shape and leg length, but also In arc sensor tracing, there is a problem that groove tracing control is also disturbed.

同様に、突合せ継手においてもルート間隙が変化すると
溶接部に、種々の欠陥が生じるという問題点がある。
Similarly, butt joints also have the problem that various defects occur in the weld when the root gap changes.

この発明はかかる問題点を解決するためになされたもの
であり、高速回転アーク溶接において開先に生じるルー
ト間隙及びその大きさを非接触で検出することができる
ルート間隙の検出方法を提案することを目的とするもの
である。
This invention has been made to solve such problems, and an object of the present invention is to propose a root gap detection method that can detect the root gap and its size in a groove in high-speed rotating arc welding without contact. The purpose is to

(問題点を解決するための手段〕 この発明に係るルート間隙の検出方法は、電極を回転す
ることによりアークを高速回転しながら行なう高速回転
アーク溶接において、 ■ 上記回転する電極のアーク電圧波形又は溶接電流波
形を検出し、 ■ 上記アーク電圧波形又は溶接電流波形を溶接進行方
向後方点C,及び溶接進行方向後方点crを中心にそれ
ぞれ±90度以下の範囲で一定角度±φ0で分割し、 ■ 上記前方点C,側に一定角度±φ。で分割したアー
ク電圧波形又は溶接電流波形の作る面積Scfと、上記
後方点C1側に一定角度±φ。で分割したアーク電圧波
形又は溶接電流波形で作る面積S crを7寅算し、 ■ 上記面積の差(S cf−S cr)を演算し、こ
の面積の差(S et−S cr)の変化を検出してル
ート間隙を検出することを特徴とする。
(Means for Solving the Problems) The root gap detection method according to the present invention is applicable to high-speed rotating arc welding in which the arc is rotated at high speed by rotating the electrode. ■ The arc voltage waveform of the rotating electrode or Detecting the welding current waveform, ■ Divide the arc voltage waveform or welding current waveform at a constant angle ±φ0 within a range of ±90 degrees or less centering on the rear point C in the welding direction and the rear point CR in the welding direction, respectively; ■ The area Scf created by the arc voltage waveform or welding current waveform divided by a constant angle ±φ on the front point C side, and the arc voltage waveform or welding current waveform divided at a constant angle ±φ on the rear point C1 side. Calculate the area S cr made by 7 times, calculate the difference in the above areas (S cf - S cr), and detect the change in this area difference (S et - S cr) to detect the root gap. It is characterized by

(作用〕 この発明においては、回転するアークの電圧波形または
溶接電流波形の変動に基いてルート間隙の存在及びその
大きさを検出するから、非接触かつリアルタイムでルー
ト間隙を検出することができる。
(Function) In the present invention, the presence and size of the root gap is detected based on fluctuations in the voltage waveform of the rotating arc or the welding current waveform, so the root gap can be detected non-contact and in real time.

〔実施例) 第1図はこの発明の一実施例により溶接する隅肉溶接継
手の側面図を示し、第1図において■は下板、2は下板
1に立設した立板、3は開先のルート、4は下板1と立
板2間に生じたルート間隙である。5は電極ノズル、6
は電極ノズル5先端の通電チップの偏心孔を通過ずるワ
イヤであり、電極ノズル5は不図示の回転モータにより
溶接電流、溶接速度に適応した回転速度で矢印7方向に
回転して、ワイヤ6を回転することによりアーク8を高
速回転しながら開先のルート3に沿って溶接を行なう。
[Embodiment] Fig. 1 shows a side view of a fillet weld joint to be welded according to an embodiment of the present invention. The root of the groove, 4, is the root gap created between the lower plate 1 and the vertical plate 2. 5 is an electrode nozzle, 6
is a wire that passes through the eccentric hole of the current-carrying tip at the tip of the electrode nozzle 5, and the electrode nozzle 5 is rotated in the direction of the arrow 7 by a rotating motor (not shown) at a rotation speed adapted to the welding current and welding speed, and the wire 6 is By rotating, the arc 8 is rotated at high speed and welding is performed along the groove route 3.

なお、第1図において溶接方向は紙面と垂直で、紙面裏
面から表面に向かう方向であり、λaはアーク長、1e
はワイヤ突出長、E×は電極ノズル5と母材間の距離で
ある。
In addition, in Fig. 1, the welding direction is perpendicular to the page, from the back side of the page to the front side, λa is the arc length, and 1e
is the wire protrusion length, and Ex is the distance between the electrode nozzle 5 and the base material.

第2図は第1図に示した電極ノズル5を回転軸線方向か
ら見た図であり、図においてCf。
FIG. 2 is a view of the electrode nozzle 5 shown in FIG. 1 viewed from the rotation axis direction, and is Cf in the figure.

C,、R,Lは電極ノズル5が回転しているときのワイ
ヤ6の位置を示し、Cfは溶接方向9前方のワイヤ6の
位置、Rは溶接方向9に向って90度右側のワイヤ6の
位置、Lは90度左側のワイヤ6の位置、Crは溶接方
向9に対して後方のワイヤ6の位置を示す。またφは溶
接方向9に対するワイヤ60回転角を示す。
C, , R, and L indicate the position of the wire 6 when the electrode nozzle 5 is rotating, Cf indicates the position of the wire 6 in front of the welding direction 9, and R indicates the position of the wire 6 on the right side by 90 degrees toward the welding direction 9. , L indicates the position of the wire 6 on the left side by 90 degrees, and Cr indicates the position of the wire 6 at the rear with respect to the welding direction 9. Further, φ indicates the rotation angle of the wire 60 with respect to the welding direction 9.

第1図、第2図に示すように、ワイヤ送給速度一定のも
とて電極ノズル5を回転すると、回転時のワイヤ6の位
置によりアーク長2aが異なり、二極ノズル5と母材間
の距離Exが変化する。距朗I E Xが変化すると負
荷特性が変化して溶接電流■や電極ノズル5と母材間の
電圧E(以下、アーク電圧という。)が変化する。
As shown in Figs. 1 and 2, when the electrode nozzle 5 is rotated with the wire feeding speed constant, the arc length 2a varies depending on the position of the wire 6 during rotation, and the arc length 2a varies between the bipolar nozzle 5 and the base material. The distance Ex changes. When the distance IEX changes, the load characteristics change, and the welding current ■ and the voltage E between the electrode nozzle 5 and the base metal (hereinafter referred to as arc voltage) change.

距離Exの変化による溶接電流Iあるいはアーク電圧E
の変化は距11f E xの変化が大幅でなければ、距
離Exと直線関係で変化する。第1図に示すように隅肉
溶接において電極ノズル5が回転するとワイヤ6の位置
に応じて距離E丈は正弦波を基準形として変化するから
、溶接電流I、アーク電圧Eもワイヤ6の位置に対応し
て正弦波を基準形として変化する。なお、この関係は消
耗電極のみならず、非消耗二極でも成立する。
Welding current I or arc voltage E due to change in distance Ex
The change in distance 11fE changes in a linear relationship with the distance Ex unless the change in x is large. As shown in FIG. 1, when the electrode nozzle 5 rotates during fillet welding, the distance E changes according to the position of the wire 6 using a sine wave as a reference form, so the welding current I and arc voltage E also change depending on the position of the wire 6. It changes according to the sine wave as a reference form. Note that this relationship holds true not only for the consumable electrode but also for the non-consumable two poles.

第3図は下板1と立板2が密着していて、開先にルート
間隙4がない場合の回転するワイヤ6すなわちアークの
位置に対応して変化するアーク電圧Eの波形を示し、第
4図はアークの位置に対応して変化する溶接電流Iの波
形を示す。第3図に示すアーク電圧Eの波形と第4図に
示す溶接電流Iの波形は上下逆転した形状となり、第4
図に示す溶接電流Iの波形は定電圧特性の溶接電源のみ
で得ることができるが、第3図に示したアーク・電圧巳
の波形は定電圧特性、定電流特性のいずれの溶接電源に
おいても得ることができる。
Figure 3 shows the waveform of the arc voltage E that changes depending on the position of the rotating wire 6, that is, the arc, when the lower plate 1 and the upright plate 2 are in close contact and there is no root gap 4 in the groove. Figure 4 shows the waveform of welding current I that changes depending on the position of the arc. The waveform of arc voltage E shown in FIG. 3 and the waveform of welding current I shown in FIG.
The welding current I waveform shown in the figure can be obtained only with a welding power source with constant voltage characteristics, but the arc/voltage waveform shown in Figure 3 can be obtained with either a welding power source with constant voltage characteristics or constant current characteristics. Obtainable.

開先にルート間隙4がない場合は、第3図、第4図に示
すように溶接進行方向前方点Cfを中心とした波形と、
溶接進行方向後方点Crを中心とした波形とは、はぼ対
称な波形となり、Cf点及びC,点を中心に±90度の
範囲内の一定角度±φ。で作る波形の面積ScfとS 
crの差5O=(S et−S c−)はほぼ一定とな
る。
If there is no root gap 4 in the groove, the waveform centered at the forward point Cf in the welding direction as shown in FIGS. 3 and 4,
The waveform is almost symmetrical to the waveform centered on the rear point Cr in the welding direction, and has a constant angle ±φ within a range of ±90 degrees around the Cf point and the C point. The area of the waveform created by Scf and S
The difference in cr, 5O=(Set-Sc-), is approximately constant.

しかし、開先にルート間隙4が存在し、回転するアーク
がルート間隙4の始端に達すると、ルート間隙4の存在
により溶接進行方向前方点Cfにおけるアーク長j2a
が長くなり、第3図に示したアーク電圧波形は第5図に
示すように前方点Cfを中心に局部的にレベルが上昇し
たアーク電圧波形となる。このため第5図に示したアー
ク電圧波形が前方点Cfと後方点Crを中心にそれぞれ
一定角度±φ0で作る面積Scfと面積scrの差(S
 ct  S cr)はルート間隔4がないときの面積
差S。より大となる。
However, when the root gap 4 exists in the groove and the rotating arc reaches the starting end of the root gap 4, the arc length j2a at the forward point Cf in the welding direction due to the existence of the root gap 4
becomes longer, and the arc voltage waveform shown in FIG. 3 becomes an arc voltage waveform in which the level locally increases around the forward point Cf, as shown in FIG. Therefore, the arc voltage waveform shown in Fig. 5 is the difference (S
ct S cr) is the area difference S when there is no root spacing 4. becomes larger.

そこで下記式 %式%(1) で示すΔSの変化を検出することによりルート間隙4を
検出することができる。
Therefore, the root gap 4 can be detected by detecting the change in ΔS expressed by the following formula % (1).

第6図は上記ΔSと溶接時間Tとの関係を示し、第6図
においてTIは前方点CFがルート間隙4の始端に達し
たとき、T2は前方点Crがルート間隙4の終端に達し
たときを示す。第6図に示すようにルート間隙4が存在
しないときはΔSは零となるが、ルート間隙4にアーク
が達するとΔSのレベルが高くなる。このΔSのレベル
の上昇が一定レベルの不感帯S、を超えるときを検出す
ることによりルート間隙4の存在を検出することができ
る。またルート間隙4の大きさにより前方点Cfを中心
とした面積Scfが変るため、ルート間隙4の大きさと
変化するΔSのレベルとは良い相関関係がある。したが
ってルート間隙4の存在により変化するΔSのレベルを
検出することによりルート間隙4の大きさも検出するこ
とができる。
Figure 6 shows the relationship between the above ΔS and the welding time T. In Figure 6, TI is when the front point CF reaches the start of the root gap 4, and T2 is when the front point Cr reaches the end of the root gap 4. Indicates the time. As shown in FIG. 6, when the root gap 4 does not exist, ΔS is zero, but when the arc reaches the root gap 4, the level of ΔS increases. The existence of the root gap 4 can be detected by detecting when the rise in the level of ΔS exceeds a certain level of the dead zone S. Further, since the area Scf centered on the front point Cf changes depending on the size of the root gap 4, there is a good correlation between the size of the root gap 4 and the changing level of ΔS. Therefore, by detecting the level of ΔS that changes due to the presence of the root gap 4, the size of the root gap 4 can also be detected.

上記ルート間隙の検出の際一定角度±φ0の範囲は上2
゜5度から±90度の範囲とする。一定角度±φ0の下
限を上2゜5度としたのは波形に乗るノズル成分の影響
を防止するためである。
When detecting the root gap mentioned above, the range of constant angle ±φ0 is upper 2
The range is from ゜5 degrees to ±90 degrees. The reason why the lower limit of the constant angle ±φ0 is set at 2°5 degrees is to prevent the influence of nozzle components riding on the waveform.

上記ルート間隙の検出方法を第7図に示した制御回路の
ブロック図に基づいて説明する。
The route gap detection method described above will be explained based on the block diagram of the control circuit shown in FIG.

まずアーク電圧検出器40でアーク電圧Eを検出し、こ
の検出したアーク電圧Eを切換器41で溶接方向前方点
Cf側と後方点C,側に分割する。切換器41によるア
ーク電圧Eの分割のタイミングはスイッチング論理回路
42からの指令信号で行なう。スイッチング論理回路4
2は回転位置検出器43で検出したワイヤ6の回転角φ
と、あらかじめ定めた2、5度から90度の範囲の一定
角度φ。を設定したφ。設定器44の出力φ。例えば4
5度とを比較演算し、ワイヤ6の回転角が溶接方向前方
点Cfを中心に±φ。である区間の波形を切換器41の
f側から出力する。同様にしてワイヤ6の回転角が溶接
方向後方点Crを中心に±φ。である区間の波形を切換
器41のr側から出力する。切換器41のf側から出力
された波形は前方積分器45で積分され、切換器41の
r側から出力された波形は後方積分器46で積分される
。n設定器57には、これらの積分の処理回数nが設定
されており、二個の積分器45.46はスイッチング論
理回路42を介して出力されるn回分のアークの回転に
対して波形積分を行ない、その出力S。、およびS c
rをそれぞれ前方記憶器47及び後方記憶器48に出力
する。各記憶器47.48はn回毎に各積分器45.4
6から人力した信号Scfおよびscrの記憶保持を繰
り返しながら信号Scfとscrを差動増幅器49に出
力する。差動増幅器49ではこの信号の差Scf  S
crを求め、次段の差動増幅器50に出力する。差動増
幅器50では上記差信号5cf−3crとあらかじめ基
準電圧設定器51に設定しである基糸信号S0の差Δ5
=(Scf  5cr)  Soを求めルート間隙判別
回路52に出力する。この差動増幅器50で出力する信
号ΔSは第6図に示すようにルート間隙がない場合はτ
となる。
First, an arc voltage detector 40 detects an arc voltage E, and a switch 41 divides the detected arc voltage E into a front point Cf side and a rear point C side in the welding direction. The timing of division of the arc voltage E by the switch 41 is determined by a command signal from the switching logic circuit 42. Switching logic circuit 4
2 is the rotation angle φ of the wire 6 detected by the rotation position detector 43
and a predetermined constant angle φ in the range of 2.5 degrees to 90 degrees. φ is set. Output φ of the setting device 44. For example 4
5 degrees and the rotation angle of the wire 6 is ±φ centered on the forward point Cf in the welding direction. A waveform in a certain section is output from the f side of the switch 41. Similarly, the rotation angle of the wire 6 is ±φ around the rear point Cr in the welding direction. A waveform in a certain section is output from the r side of the switch 41. The waveform output from the f side of the switch 41 is integrated by a forward integrator 45, and the waveform output from the r side of the switch 41 is integrated by a rear integrator 46. The n setting device 57 is set with the number n of times these integrals are processed, and the two integrators 45 and 46 perform waveform integration for n arc rotations outputted via the switching logic circuit 42. and its output S. , and S c
r is output to the front storage device 47 and the rear storage device 48, respectively. Each memory 47.48 is connected to each integrator 45.4 every n times.
The signals Scf and scr are outputted to the differential amplifier 49 while repeating the storage and holding of the signals Scf and scr manually inputted from 6. In the differential amplifier 49, this signal difference Scf S
cr is determined and output to the next stage differential amplifier 50. The differential amplifier 50 calculates the difference Δ5 between the difference signal 5cf-3cr and the base thread signal S0, which is preset in the reference voltage setter 51.
=(Scf 5cr) So is determined and output to the root gap determination circuit 52. The signal ΔS output from this differential amplifier 50 is τ when there is no root gap as shown in FIG.
becomes.

ルート間隙判別回路52では上記信号ΔSと不感帯設定
器53に設定された不惑帯のレベル信号S1とを比較し
、信号ΔSが不感帯のレベル信号Slを超えたとき及び
不感帯のレベル信号S1より低下したときを検出して、
ルート間隙の存在を検出する。
The route gap determination circuit 52 compares the signal ΔS with the dead zone level signal S1 set in the dead zone setting device 53, and determines when the signal ΔS exceeds the dead zone level signal Sl or becomes lower than the dead zone level signal S1. Detect the time and
Detecting the presence of root gaps.

また、ルート間隙判別回路52では人力する信号ΔSの
レベルを検出することによりルート間隙の大きさを検出
する。
Further, the root gap determination circuit 52 detects the size of the root gap by detecting the level of the manually input signal ΔS.

上記のようにルート間隙判別回路52によりルート間隙
を検出すると、ならい制御法をかえたり、溶接条件をか
えて溶接を行なう。
When the root gap is detected by the root gap discrimination circuit 52 as described above, welding is performed by changing the profile control method or by changing the welding conditions.

なお、上記実施例ではアーク電圧波形を検出して、ルー
ト間隙を検出したが第4図に示す溶接電流波形を検出し
ても上記実施例と同様にルート間隙を検出することがで
きる。
In the above embodiment, the root gap is detected by detecting the arc voltage waveform, but the root gap can also be detected by detecting the welding current waveform shown in FIG. 4 in the same manner as in the above embodiment.

さらに、上記実施例は隅肉溶接について説明したが、突
合せ継手においてもルート間隙の変化を検出することか
でき、溶接条件の適応制御を行なうことができる。
Furthermore, although the above embodiments have been described with respect to fillet welding, changes in the root gap can also be detected in butt joints, and welding conditions can be adaptively controlled.

(発明の効果) この発明は以上説明したように、回転するアークの電圧
波形または溶接電流波形の変動に基いてルート間隙の存
在およびその大きさを検出することができるから、非接
触がリアルタイムで溶接線上のルート間隙あるいはその
変化を検出することができ最適制御を行なうことができ
る効果を有する。
(Effects of the Invention) As explained above, the present invention can detect the existence and size of the root gap based on the fluctuations of the voltage waveform of the rotating arc or the welding current waveform, so it is possible to detect the presence and size of the root gap in real time without contact. This has the effect of being able to detect the root gap on the weld line or its change, allowing optimal control to be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例により溶接する隅肉溶接継手
の側面図、第2図は上記実施例のワイヤ位置を示した説
明図、第3図はアーク電圧波形図、第4図は溶接電流波
形図、第5図はルート間隙が存在するときのアーク電圧
波形図、第6図は上記実施例のルート間隙判別用の波形
図、第7図は上記実施例の制御回路のブロック図である
。 !・・・下板、2・・・立板、3・・・開先のルート、
4・・・ルート間隙、5・・・電極ノズル、6・・・ワ
イヤ。
Fig. 1 is a side view of a fillet weld joint to be welded according to an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the wire position of the above embodiment, Fig. 3 is an arc voltage waveform diagram, and Fig. 4 is a welding joint. Figure 5 is a current waveform diagram, Figure 5 is an arc voltage waveform diagram when a root gap exists, Figure 6 is a waveform diagram for root gap determination in the above embodiment, and Figure 7 is a block diagram of the control circuit of the above embodiment. be. ! ...lower board, 2...vertical board, 3...bevel root,
4... Root gap, 5... Electrode nozzle, 6... Wire.

Claims (1)

【特許請求の範囲】 電極を回転することによりアークを高速回転しながら行
なう高速回転アーク溶接において、[1]上記回転する
電極のアーク電圧波形又は溶接電流波形を検出し、 [2]上記アーク電圧波形又は溶接電流波形を溶接進行
方向前方点C_f及び溶接進行方向後方点C_rを中心
にそれぞれ±90度以下の範囲で一定角度±φ_0で分
割し、 [3]上記前方点C_f側に一定角度±φ_0で分割し
たアーク電圧波形又は溶接電流波形の作る面積S_c_
fと、上記後方点C_r側に一定角度±φ_0で分割し
たアーク電圧波形又は溶接電流波形の作る面積S_c_
rを演算し、 [4]上記面積の差(S_c_f−S_c_r)を演算
し、この面積の差(S_c_f−S_c_r)の変化を
検出してルート間隙を検出する、 ことを特徴とするルート間隙の検出方法。
[Claims] In high-speed rotating arc welding performed while rotating an electrode at high speed, [1] detecting the arc voltage waveform or welding current waveform of the rotating electrode; [2] detecting the arc voltage Divide the waveform or welding current waveform at a constant angle ±φ_0 within a range of ±90 degrees centering on the forward point C_f in the welding direction and the backward point C_r in the welding direction, [3] At a constant angle ±φ_0 on the forward point C_f side. Area S_c_ created by arc voltage waveform or welding current waveform divided by φ_0
f and the area S_c_ created by the arc voltage waveform or welding current waveform divided by a constant angle ±φ_0 on the rear point C_r side.
[4] Calculating the area difference (S_c_f - S_c_r), and detecting a change in this area difference (S_c_f - S_c_r) to detect the root gap. Detection method.
JP22624486A 1986-09-26 1986-09-26 Root gap detection method Expired - Fee Related JPH0671663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22624486A JPH0671663B2 (en) 1986-09-26 1986-09-26 Root gap detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22624486A JPH0671663B2 (en) 1986-09-26 1986-09-26 Root gap detection method

Publications (2)

Publication Number Publication Date
JPS6380971A true JPS6380971A (en) 1988-04-11
JPH0671663B2 JPH0671663B2 (en) 1994-09-14

Family

ID=16842151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22624486A Expired - Fee Related JPH0671663B2 (en) 1986-09-26 1986-09-26 Root gap detection method

Country Status (1)

Country Link
JP (1) JPH0671663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043773A1 (en) * 1997-03-27 1998-10-08 Nkk Corporation Method of detecting root gap and arc welding method using the former

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043773A1 (en) * 1997-03-27 1998-10-08 Nkk Corporation Method of detecting root gap and arc welding method using the former
US6150631A (en) * 1997-03-27 2000-11-21 Nkk Corporation Method of detecting root gap and arc welding method using the former

Also Published As

Publication number Publication date
JPH0671663B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US4704513A (en) Groove tracing control method for high-speed rotating arc fillet welding
JPS6380971A (en) Detection method for root gap
JPS61249667A (en) Automatic fillet welding method with high speed rotating arc
JPS63192562A (en) Method and device for profile control in welding
JPH0671662B2 (en) Torch angle control method
JPH0671665B2 (en) How to detect temporary beads
JPS6384775A (en) Weld line follow-up controlling method for welding torch
JPH09253846A (en) Measuring method for electric characteristics of welding equipment
JP3230476B2 (en) Root gap detection method in arc welding
JPH0671664B2 (en) How to detect temporary beads
JPS6384772A (en) Detection of tack bead
JP3115206B2 (en) Arc sensor device
JP3323935B2 (en) Arc sensor
JPS6234674A (en) Weld line following-up control device
JP3075032B2 (en) Arc sensor
JP2969694B2 (en) Welding line profiling control method
JPH09253857A (en) Method for controlling profiling of welding line and device therefor
JPH0370581B2 (en)
JPS6224870A (en) Rotary arc fillet welding method
JPS6349369A (en) Weld line profiling device
JPS58176076A (en) Arc welding method
JPS62254980A (en) Method for controlling oscillation width of rotating nozzle in rotating arc welding method
JPS62158569A (en) Two electrode rotary arc fillet welding method
JPH01157778A (en) Automatic welding method by arc sensor
JPH01148465A (en) High-speed rotating arc pulse fillet welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees