JPH0671662B2 - Torch angle control method - Google Patents
Torch angle control methodInfo
- Publication number
- JPH0671662B2 JPH0671662B2 JP22624286A JP22624286A JPH0671662B2 JP H0671662 B2 JPH0671662 B2 JP H0671662B2 JP 22624286 A JP22624286 A JP 22624286A JP 22624286 A JP22624286 A JP 22624286A JP H0671662 B2 JPH0671662 B2 JP H0671662B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- torch
- waveform
- arc
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
- B23K9/0216—Seam profiling, e.g. weaving, multilayer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、屈曲する溶接線に沿って行なう高速回転ア
ーク隅肉溶接のトーチ角度制御方法に関する。TECHNICAL FIELD The present invention relates to a torch angle control method for high speed arc fillet welding performed along a bending welding line.
従来、T継手,かど継手等の隅肉溶接を自動で行なう場
合は、例えばアークセンサによる開先倣いにより溶接電
極を開先ルートに追従させて行なっている。Conventionally, in the case of automatically performing fillet welding of a T joint, a corner joint, etc., for example, the welding electrode is made to follow the groove route by following the groove profile by an arc sensor.
従来、例えば第11図に示すように下板1と立板2の溶接
線3が左に屈曲している溶接継手において、溶接トーチ
4を溶接線3に沿って矢印5の方向に移動しながら自動
溶接する場合、溶接トーチ4が屈曲点6を通過する前は
溶接トーチ4を溶接線3に対して直角をなしているが、
溶接トーチ4が屈曲点6を通過した後は溶接トーチ4は
溶接線3に対し後退角θをとる。このように溶接線3が
屈曲しているため溶接トーチ4のトーチ角度が変化する
と、開先ならいを行なっていてもビード形状が不連続と
なったり溶込み深さが変化し溶接不良となる問題点があ
った。Conventionally, for example, in a welded joint in which the welding line 3 of the lower plate 1 and the standing plate 2 is bent to the left as shown in FIG. 11, while moving the welding torch 4 in the direction of arrow 5 along the welding line 3. In the case of automatic welding, the welding torch 4 is perpendicular to the welding line 3 before the welding torch 4 passes through the bending point 6.
After the welding torch 4 passes the bending point 6, the welding torch 4 makes a receding angle θ with respect to the welding line 3. When the torch angle of the welding torch 4 changes due to the bending of the welding line 3 in this way, the bead shape becomes discontinuous and the penetration depth changes, resulting in poor welding even when performing groove profiling. There was a point.
この発明は、かかる問題点を解決するためになされたも
のであり、屈曲している溶接線に対して自動でトーチ角
度を修正することができるトーチ角度制御方法を提案す
ることを目的とするものである。The present invention has been made to solve such a problem, and an object thereof is to propose a torch angle control method capable of automatically correcting a torch angle with respect to a bending welding line. Is.
この発明に係るトーチ角度制御方法は、アークを高速回
転させながら屈曲する溶接線に沿って行なう隅肉溶接に
おいて、 (イ)上記回転するアークのアーク電圧波形又は溶接電
流波形を検出し、 (ロ)上記アーク電圧波形又は溶接電流波形を溶接進行
方向前方点Cf及び溶接進行方向後方点Crを中心に±2.5
度から±90度の範囲で一定角度±φoで分割し、 (ハ)上記前方点Cf側に一定角度±φoで作るアーク電
圧波形又は溶接電流波形の面積Scfと、上記後方点Cr側
に一定角度±φoで作るアーク電圧波形又は溶接電流波
形の面積Scrを演算し、 (ニ)上記面積の差Scf-Scrを演算し、この面積の差が
あらかじめ定めた基準値より変化する量を検出し、 (ホ)上記変化する量に応じてトーチ角度を変化させる
ことを特徴とする。The torch angle control method according to the present invention, in fillet welding performed along a welding line that bends while rotating the arc at high speed, (a) detects an arc voltage waveform or a welding current waveform of the rotating arc, ) The arc voltage waveform or the welding current waveform is ± 2.5 around the front point Cf of the welding advancing direction and the rear point Cr of the welding advancing direction.
Angle ± φo within a range of ± 90 ° from (°) to (c) the area Scf of the arc voltage waveform or welding current waveform made at the constant angle ± φo on the front point Cf side and the rear point Cr side. Calculate the area Scr of the arc voltage waveform or welding current waveform made at the angles ± φo, and (d) calculate the area difference Scf-Scr and detect the amount by which this area difference changes from the predetermined reference value. (E) The torch angle is changed according to the changing amount.
この発明においては、溶接線に対するトーチ角度が変動
すると、回転するアークの電圧波形又は溶接電流波形が
変動することから、溶接中のアーク電圧波形又は溶接電
流波形の変動を検出し、この変動に基づいて溶接線が屈
曲しているときのトーチ角度の修正を行なう。In the present invention, when the torch angle with respect to the welding line fluctuates, the voltage waveform or welding current waveform of the rotating arc fluctuates, so fluctuations in the arc voltage waveform or welding current waveform during welding are detected and based on this fluctuation. Correct the torch angle when the welding line is bent.
第1図はこの発明の一実施例により隅肉溶接する場合の
説明図であり、図において1は下板、2は下板1に立設
した立板、3は溶接線、4は溶接トーチである。FIG. 1 is an explanatory view of fillet welding according to an embodiment of the present invention. In the drawing, 1 is a lower plate, 2 is a standing plate standing on the lower plate 1, 3 is a welding line, 4 is a welding torch. Is.
溶接トーチ4は不図示の回転モータにより溶接電流,溶
接速度に適応した回転速度で矢印7の方向に回転して、
溶接トーチ4先端の通電チップの偏心孔を通過するワイ
ヤ8を回転することによりアーク9を高速回転しながら
溶接線3に沿って溶接を行なう。なお、第1図におい
て、溶接進行方向は紙面と垂直で紙面裏面から表面に向
かう方向であり、laはアーク長、leはワイヤ突出長、Ex
は溶接トーチ4と母材間の距離である。The welding torch 4 is rotated in the direction of arrow 7 by a rotation motor (not shown) at a rotation speed adapted to the welding current and welding speed,
By rotating the wire 8 passing through the eccentric hole of the current-carrying tip at the tip of the welding torch 4, the arc 9 is rotated at high speed and welding is performed along the welding line 3. In FIG. 1, the welding progress direction is perpendicular to the paper surface and extends from the back surface to the front surface, la is the arc length, le is the wire protrusion length, and Ex is
Is the distance between the welding torch 4 and the base metal.
第2図は第1図に示した溶接トーチ4を回転軸線10方向
から見た説明図であり、図においてCf,Cr,R,Lは溶接ト
ーチ4が回転しているときのワイヤ8の位置を示し、Cf
は溶接進行方向5前方のワイヤ8の位置、Rは溶接進行
方向5に向って90度右側のワイヤ8の位置、Lは90度左
側のワイヤ8の位置、Crは溶接進行方向に対して後方の
ワイヤ8の位置をそれぞれ示す。またφは溶接進行方向
5に対するワイヤ8の回転角を示す。FIG. 2 is an explanatory view of the welding torch 4 shown in FIG. 1 as seen from the direction of the rotation axis 10 and Cf, Cr, R, L in the drawing are the positions of the wire 8 when the welding torch 4 is rotating. Indicates, Cf
Is the position of the wire 8 in front of the welding advancing direction 5, R is the position of the wire 8 on the right side of 90 degrees toward the welding advancing direction 5, L is the position of the wire 8 on the left side of 90 degrees, and Cr is behind the welding advancing direction. The positions of the wires 8 are shown respectively. Further, φ represents a rotation angle of the wire 8 with respect to the welding proceeding direction 5.
第1図,第2図に示すようにワイヤ送給速度を一定のも
とで溶接トーチ4を回転すると、回転時のワイヤ6の位
置により溶接トーチ4と母材間の距離Exが異なりアーク
長laが変化する。アーク長laが変化すると負荷特性が変
化して溶接電流Iやアーク電圧Eが変化する。このアー
ク長laの変化による溶接電流Iあるいはアーク電圧Eの
変化は距離Exの変化が大幅でなければ、距離Exの変化と
直線関係で変化する。第1図に示すように隅肉溶接にお
いて溶接トーチ4が回転すると、ワイヤ8の位置に応じ
て距離Exは正弦波を基準形として変化するから、溶接電
流I,アーク電圧Eもワイヤ8の位置に対応して正弦波を
基準形として変化する。なお、この関係は消耗電極のみ
ならず非消耗電極でも成立する。As shown in Figs. 1 and 2, when the welding torch 4 is rotated under a constant wire feeding speed, the distance Ex between the welding torch 4 and the base metal differs depending on the position of the wire 6 during rotation, and the arc length. la changes. When the arc length la changes, the load characteristics change and the welding current I and the arc voltage E change. The change in the welding current I or the arc voltage E due to the change in the arc length la changes linearly with the change in the distance Ex unless the change in the distance Ex is large. As shown in FIG. 1, when the welding torch 4 rotates during fillet welding, the distance Ex changes with the sine wave as the reference shape according to the position of the wire 8, so that the welding current I and the arc voltage E are also at the position of the wire 8. Corresponding to the sine wave as a reference form changes. Note that this relationship holds true not only for consumable electrodes but also for non-consumable electrodes.
第3図(a),(b)は、第4図に示すように溶接トー
チが溶接線3に対し直角のときの回転するワイヤ8すな
わちアークの位置に対応して変化するアーク電圧Eおよ
び溶接電流Iの波形を示す。第3図において(a)にア
ーク電圧Eの波形、(b)は溶接電流Iの波形であり、
それぞれの波形は上下逆転した形状となる。なお、溶接
電流Iの波形は定電圧特性の溶接電源のみで得ることが
でき、アーク電圧Eの波形は定電圧特性,定電流特性の
いずれの溶接電源でも得ることができる。3 (a) and 3 (b) are arc voltage E and welding which change corresponding to the position of the rotating wire 8 or arc when the welding torch is perpendicular to the welding line 3 as shown in FIG. The waveform of the current I is shown. In FIG. 3, (a) is the waveform of the arc voltage E, (b) is the waveform of the welding current I,
Each waveform has a vertically inverted shape. The waveform of the welding current I can be obtained only by the welding power source having the constant voltage characteristic, and the waveform of the arc voltage E can be obtained by the welding power source having either the constant voltage characteristic or the constant current characteristic.
第4図に示すように溶接トーチ4が溶接線3に対して直
角のときは、溶接進行方向5に対するワイヤ8の前方位
置Cf及び後方位置Crを中心とした波形は第3図(a),
(b)に示すように、ほぼ同一形状の波形となる。As shown in FIG. 4, when the welding torch 4 is perpendicular to the welding line 3, the waveform centering on the front position Cf and the rear position Cr of the wire 8 with respect to the welding proceeding direction 5 is as shown in FIG.
As shown in (b), the waveforms have substantially the same shape.
しかし、第5図に示すように溶接トーチ4が溶接進行方
向5に対して後方に傾き、前進角θをとるときにはワイ
ヤ8の前方位置Cfにおけるアークlaは後方位置Crにおけ
るアーク長laより長くなり、アーク電圧波形は第6図に
示すように前方位置Cfの電圧レベルが後方位置Crの電圧
レベルより高い波形となる。逆に第7図に示すように溶
接トーチ4が溶接進行方向5に対して前方に傾き後退角
θをとるときには前方位置Cfにおけるアーク長laが後方
位置Crにおけるアーク長laより短くなり、アーク電圧波
形も第8図に示すように前方位置Cfの電圧レベルが後方
位置Crの電圧レベルより低い波形となる。However, as shown in FIG. 5, when the welding torch 4 is tilted backward with respect to the welding advancing direction 5 and the advancing angle θ is taken, the arc la at the front position Cf of the wire 8 becomes longer than the arc length la at the rear position Cr. As shown in FIG. 6, the arc voltage waveform has a voltage level at the front position Cf higher than that at the rear position Cr. On the contrary, as shown in FIG. 7, when the welding torch 4 tilts forward with respect to the welding advancing direction 5 and takes a receding angle θ, the arc length la at the front position Cf becomes shorter than the arc length la at the rear position Cr, and the arc voltage As for the waveform, the voltage level at the front position Cf is lower than the voltage level at the rear position Cr as shown in FIG.
したがって上記アーク電圧波形の変化を検出することに
より、第9図に示すように溶接線3が左に屈曲している
溶接継手において、溶接トーチ4が屈曲点6を通過した
後のトーチ角度の変化及びその変化量を検出・修正する
ことができる。すなわち、アーク電圧波形をCf点及びCr
点を中心として溶接方向に対して各々左右に一定角度φ
oで分割し、この角度φo間で作る波形の面積Scf,Scr
を求め、面積Scfと面積Scrの差によりトーチ角度を修正
することができる。Therefore, by detecting the change in the arc voltage waveform, the change in the torch angle after the welding torch 4 has passed the bending point 6 in the welded joint in which the welding line 3 is bent to the left as shown in FIG. And its change amount can be detected and corrected. That is, the arc voltage waveform is set to Cf point and Cr
A certain angle φ to the left and right with respect to the welding direction centered on the point
Waveform area Scf, Scr created by dividing by o
Then, the torch angle can be corrected by the difference between the area Scf and the area Scr.
ここで一定角度φoは2.5度から90度とする。角度φo
を2.5度以上としたのは角度φoが2.5度未満となると波
形にのるノイズの影響を受け易くなるからである。Here, the constant angle φo is set to 2.5 degrees to 90 degrees. Angle φo
Is set to 2.5 degrees or more because if the angle φo is less than 2.5 degrees, it is easily affected by noise on the waveform.
上記トーチ角度制御方法を、第9図に示すように溶接線
3が屈曲した溶接継手を台車11上に載置した溶接トーチ
4により自動溶接する場合を第10図に示した制御回路の
ブロック図に基いて説明する。なお第9図において12は
溶接トーチ4を矢印13方向に回転する電動機である。A block diagram of the control circuit shown in FIG. 10 in the case of automatically welding the above-mentioned torch angle control method by the welding torch 4 having the welded joint 3 in which the welding line 3 is bent as shown in FIG. 9 placed on the carriage 11. It will be explained based on. In FIG. 9, 12 is an electric motor for rotating the welding torch 4 in the direction of arrow 13.
まず電圧検出器40でアーク電圧Eを検出し、この検出し
た電圧Eを切換器41で溶接方向前方点Cf側と後方点Cr側
に分割する。切換器41によるアーク電圧Eの分割のタイ
ミングはスイッチング論理回路42からの指令信号で行な
う。スイッチング論理回路42は回転位置検出器43で検出
したワイヤ8の回転角中と、あらかじめ定めた2.5度か
ら90度の範囲の一定角度φoを設定したφo設定器44の
出力φo例えば45度とを比較演算し、ワイヤ8の回転角
が溶接進行方向前方点Cfを中心に±φoである区間の波
形を切換器41のf側から出力する。同様にしてワイヤ6
の回転角が溶接進行方向後方点Crを中心に±φoである
区間の波形を切換器41のr側から出力する。切換器41の
f側から出力された波形は積分器45で積分され、切換器
41のr側から出力された波形は積分器46で積分される。
n設定器53には、これらの積分の処理回数nが設定され
ており、二個の積分器45,46はスイッチング論理回路42
を介して出力されるn回分のアークの回転に対して波形
積分を行ない、その出力ScfおよびScrをそれぞれ記憶器
47,48に出力する。記憶器47,48はn回毎に積分器45,46
から入力した信号ScfおよびScrの記憶保持を繰り返しな
がら信号ScfとScrを差動増幅器49に出力する。差動増幅
器49ではこの信号の差Scf-Scrを求め、次段の差動増幅
器50に出力する。差動増幅器50では上記差信号Scf-Scr
とあらかじめ基準電圧設定器51に設定してある適正トー
チ角度のときの基準値Soとの差ΔS=(Scf-Scr)‐So
を求めトーチ回転手段52に出力する。なお、基準値Soは
溶接トーチ4が溶接線3に対して垂直のときは零とな
る。First, the voltage detector 40 detects the arc voltage E, and the switch 41 divides the detected voltage E into the front point Cf side and the rear point Cr side in the welding direction. The timing of division of the arc voltage E by the switch 41 is controlled by a command signal from the switching logic circuit 42. The switching logic circuit 42 sets the rotation angle of the wire 8 detected by the rotation position detector 43 and the output φo of the φo setter 44, which sets a predetermined angle φo in the range of 2.5 degrees to 90 degrees, for example, 45 degrees. A comparison calculation is performed, and a waveform in a section in which the rotation angle of the wire 8 is ± φo centering on the forward point Cf in the welding advancing direction is output from the f side of the switch 41. Wire 6
The waveform of the section in which the rotation angle is ± φo around the rear point Cr in the welding traveling direction is output from the r side of the switch 41. The waveform output from the f side of the switch 41 is integrated by the integrator 45,
The waveform output from the r side of 41 is integrated by the integrator 46.
The n setter 53 is set with the number of times n of these integration processes, and the two integrators 45 and 46 are connected to the switching logic circuit 42.
Waveform integration is performed for n times of arc rotations output via, and the outputs Scf and Scr are stored in a memory respectively.
Output to 47, 48. Memories 47, 48 are integrators 45, 46 every n times
The signals Scf and Scr output from the differential amplifier 49 are repeatedly stored and retained. The differential amplifier 49 obtains this signal difference Scf-Scr and outputs it to the differential amplifier 50 at the next stage. In the differential amplifier 50, the above difference signal Scf-Scr
Difference ΔS = (Scf-Scr) -So from the reference value So when the proper torch angle is preset in the reference voltage setting device 51.
Is output to the torch rotating means 52. The reference value So is zero when the welding torch 4 is perpendicular to the welding line 3.
トーチ回転手段52では上記信号ΔSの正負を判断し、こ
の正負の信号及び信号ΔSの値に応じて第9図に示した
電動機12を回転して溶接トーチ4を回転し、溶接トーチ
4のトーチ角度を適正トーチ角度にする。The torch rotating means 52 judges whether the signal ΔS is positive or negative, and the welding torch 4 is rotated by rotating the electric motor 12 shown in FIG. 9 according to the positive and negative signals and the value of the signal ΔS. Adjust the angle to the proper torch angle.
なお、上記実施例ではアーク電圧波形を検出してトーチ
角度を制御する場合を示したが、第3図(b)に示す溶
接電流波形を検出しても上記実施例と同様にトーチ角度
を制御することができる。In the above embodiment, the torch angle is controlled by detecting the arc voltage waveform. However, even if the welding current waveform shown in FIG. 3 (b) is detected, the torch angle is controlled similarly to the above embodiment. can do.
この発明は以上説明したように、回転するアークの電圧
波形または溶接電流波形の変動に基いて、溶接線が屈曲
しているときのトーチ角度を修正するから、溶接線の屈
曲点におけるビード形状の不連続を防止することができ
る。さらに溶接線が屈曲していても常に適正トーチ角度
で溶接することができるから一定の溶込み深さを確保す
ることができ、溶接線全長にわたり良好なビードを形成
することができる効果を有する。As described above, the present invention corrects the torch angle when the welding line is bent based on the fluctuation of the voltage waveform or the welding current waveform of the rotating arc, so that the bead shape at the bending point of the welding line is corrected. Discontinuity can be prevented. Further, even if the welding line is bent, it is possible to always weld at an appropriate torch angle, so that a certain penetration depth can be secured, and good beads can be formed over the entire length of the welding line.
第1図は、この発明の実施例の溶接部側面図、第2図は
上記実施例のワイヤ位置を示す説明図、第3図(a)は
アーク電圧波形図、第3図(b)は溶接電流波形図、第
4図,第5図及び第7図は溶接線に対する溶接トーチ位
置の説明図、第6図,第8図はアーク電圧波形図、第9
図は、この発明の実施例の説明図、第10図は上記実施例
の制御回路のブロッ図、第11図は従来方法を示す説明図
である。 1……下板、2……立板、3……溶接線、4……溶接ト
ーチ、8……ワイヤ。FIG. 1 is a side view of a welded portion of an embodiment of the present invention, FIG. 2 is an explanatory view showing the wire position of the above embodiment, FIG. 3 (a) is an arc voltage waveform diagram, and FIG. 3 (b) is Welding current waveform diagram, FIGS. 4, 5 and 7 are explanatory diagrams of welding torch position with respect to welding line, FIGS. 6 and 8 are arc voltage waveform diagram, 9
FIG. 10 is an explanatory view of an embodiment of the present invention, FIG. 10 is a block diagram of the control circuit of the above embodiment, and FIG. 11 is an explanatory view showing a conventional method. 1 ... Lower plate, 2 ... Standing plate, 3 ... Welding line, 4 ... Welding torch, 8 ... Wire.
Claims (2)
線に沿って行なう隅肉溶接において、 (イ)上記回転するアークのアーク電圧波形又は溶接電
流波形を検出し、 (ロ)上記アーク電圧波形又は溶接電流波形を溶接進行
方向前方点Cf及び溶接進行方向後方点Crを中心に±2.5
度から±90度の範囲で一定角度±φoで分割し、 (ハ)上記前方点Cf側に一定角度±φoで作るアーク電
圧波形又は溶接電流波形の面積Scfと、上記後方点Cr側
に一定角度±φoで作るアーク電圧波形又は溶接電流波
形の面積Scrを演算し、 (ニ)上記面積の差Scf-Scrを演算し、この面積の差が
あらかじめ定めた基準値より変化する量を検出し、 (ホ)上記変化する量に応じてトーチ角度を変化させる
ことを特徴とするトーチ角度制御方法。1. In fillet welding performed along a welding line that bends while rotating the arc at a high speed, (a) the arc voltage waveform or the welding current waveform of the rotating arc is detected, and (b) the arc voltage waveform. Alternatively, the welding current waveform is ± 2.5 around the front point Cf of the welding direction and the rear point Cr of the welding direction.
Angle ± φo within a range of ± 90 ° from (°) to (c) the area Scf of the arc voltage waveform or welding current waveform made at the constant angle ± φo on the front point Cf side and the rear point Cr side. Calculate the area Scr of the arc voltage waveform or welding current waveform made at the angles ± φo, and (d) calculate the area difference Scf-Scr and detect the amount by which this area difference changes from the predetermined reference value. (E) A torch angle control method characterized in that the torch angle is changed according to the changing amount.
のときのアーク電圧波形又は溶接電流波形の面積の差Se
f-Scrである特許請求の範囲第1項記載のトーチ角度制
御方法。2. The area difference Se of the arc voltage waveform or the welding current waveform when the predetermined reference value is the proper torch angle.
The torch angle control method according to claim 1, which is f-Scr.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22624286A JPH0671662B2 (en) | 1986-09-26 | 1986-09-26 | Torch angle control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22624286A JPH0671662B2 (en) | 1986-09-26 | 1986-09-26 | Torch angle control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6380977A JPS6380977A (en) | 1988-04-11 |
JPH0671662B2 true JPH0671662B2 (en) | 1994-09-14 |
Family
ID=16842121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22624286A Expired - Lifetime JPH0671662B2 (en) | 1986-09-26 | 1986-09-26 | Torch angle control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0671662B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1378310B1 (en) * | 2001-02-19 | 2011-08-24 | Hitachi Construction Machinery Co., Ltd. | Method of T or butt welding of first and second base materials |
-
1986
- 1986-09-26 JP JP22624286A patent/JPH0671662B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6380977A (en) | 1988-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900003972B1 (en) | Groove tracing control method for high-speed rotating arc fillet welding | |
JP3267912B2 (en) | Welding path correction method for welding torch | |
JPH0671662B2 (en) | Torch angle control method | |
JPH0671667B2 (en) | Welding line tracking control method for welding torch | |
JP3039196B2 (en) | Arc sensor | |
JPH0818132B2 (en) | Weaving Welding Method Using Arc Sensor | |
EP1013370A1 (en) | Method of detecting root gap and arc welding method using the former | |
JPS6380971A (en) | Detection method for root gap | |
JPH0671665B2 (en) | How to detect temporary beads | |
JP3230476B2 (en) | Root gap detection method in arc welding | |
JP2745951B2 (en) | Back bead control method in single side welding | |
JP3115206B2 (en) | Arc sensor device | |
JPS6349369A (en) | Weld line profiling device | |
JPH0671664B2 (en) | How to detect temporary beads | |
JPH0426949B2 (en) | ||
JP3323935B2 (en) | Arc sensor | |
JPH0671666B2 (en) | How to detect temporary beads | |
JP3243390B2 (en) | Groove width copying method | |
JP3189618B2 (en) | Rotating high-speed rotating arc welding method | |
JPH0671660B2 (en) | 2 electrode high speed rotating arc fillet welding method | |
JPH0461753B2 (en) | ||
JPH0420709B2 (en) | ||
JPH0426946B2 (en) | ||
JPH0370581B2 (en) | ||
JPS605388B2 (en) | automatic welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |