JPH0461753B2 - - Google Patents

Info

Publication number
JPH0461753B2
JPH0461753B2 JP17394786A JP17394786A JPH0461753B2 JP H0461753 B2 JPH0461753 B2 JP H0461753B2 JP 17394786 A JP17394786 A JP 17394786A JP 17394786 A JP17394786 A JP 17394786A JP H0461753 B2 JPH0461753 B2 JP H0461753B2
Authority
JP
Japan
Prior art keywords
electrode
welding
arc
trailing
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17394786A
Other languages
Japanese (ja)
Other versions
JPS6333178A (en
Inventor
Juji Sugitani
Masao Kobayashi
Masatomo Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP17394786A priority Critical patent/JPS6333178A/en
Publication of JPS6333178A publication Critical patent/JPS6333178A/en
Publication of JPH0461753B2 publication Critical patent/JPH0461753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は2電極を用いた高速回転アーク隅肉
溶接の開先ならい制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a groove profile control method for high-speed rotating arc fillet welding using two electrodes.

〔従来の技術〕[Conventional technology]

電極ノズルを同心状に高速回転することによ
り、アークを回転する溶接方法によれば、アーク
の物理的効果が周辺に分散され、溶込の周辺分
散、偏平ビード(わん曲ビード)の形成あるいは
回転遠心力によるワイヤ溶融速度の向上などの利
点が得られ、特に厚板の狭開先溶接に用いられて
大きな効果を発揮する。
According to a welding method in which the arc is rotated by concentrically rotating the electrode nozzle at high speed, the physical effects of the arc are dispersed in the surrounding area, resulting in peripheral dispersion of penetration, formation of a flat bead (curved bead), or rotation. Benefits such as improved wire melting speed due to centrifugal force are obtained, and it is particularly effective when used in narrow gap welding of thick plates.

この高速回転アーク溶接方法を下向水平隅肉溶
接に適用する溶接方法が、高速回転アーク隅肉溶
接方法としてこの出願の出願人によつて提案され
ている(特願昭60−88732号)。
A welding method in which this high-speed rotating arc welding method is applied to downward horizontal fillet welding has been proposed by the applicant of the present application as a high-speed rotating arc fillet welding method (Japanese Patent Application No. 88732/1988).

第13図は上記高速回転アーク隅肉溶接方法の
概要を示す斜視図であり、図において1は電極ノ
ズル、2は電極ノズル1を回転する回転モータ、
3は電極ノズル1の先端に備えた通電チツプの偏
心孔を通過するワイヤ、4はアーク、5は溶融
池、6は溶接ビード、7は下板、8は下板7に立
設した立板、9は開先のルートである。
FIG. 13 is a perspective view showing an overview of the above-mentioned high-speed rotating arc fillet welding method, in which 1 is an electrode nozzle, 2 is a rotary motor that rotates the electrode nozzle 1,
3 is a wire passing through the eccentric hole of the current-carrying chip provided at the tip of the electrode nozzle 1, 4 is an arc, 5 is a molten pool, 6 is a weld bead, 7 is a lower plate, and 8 is a standing plate installed on the lower plate 7. , 9 is the root of the groove.

この高速回転アーク隅肉溶接方法においては、
回転モータ2により溶接電流、溶接速度に適応し
た回転数で電極ノズル1を回転することによりワ
イヤ3先端を回転させてアーク4を回転させなが
ら開先のルート9に沿つて下板7と立板8の溶接
を行ない、等脚長の溶接ビード6を形成してい
る。
In this high-speed rotating arc fillet welding method,
The electrode nozzle 1 is rotated by the rotary motor 2 at a rotation speed appropriate to the welding current and welding speed, thereby rotating the tip of the wire 3 and rotating the arc 4 to move the lower plate 7 and the vertical plate along the groove route 9. 8 is performed to form a weld bead 6 of equal length.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記高速回転アーク隅肉溶接方法においては、
適当な溶込深さを得るためワイヤ3の回転直径を
1mmから6mmの範囲としているため、単電極の溶
接では大脚長のビードを形成することは困難であ
る。したがつて大脚長のビードを高速で形成する
ために、開先線をはさんで等間隔に設けた先行電
極と後行電極を高速度で回転することが必要とな
る。
In the above high speed rotating arc fillet welding method,
Since the rotating diameter of the wire 3 is set in the range of 1 mm to 6 mm in order to obtain an appropriate penetration depth, it is difficult to form a bead with a large leg length by single electrode welding. Therefore, in order to form a long-legged bead at high speed, it is necessary to rotate at high speed the leading electrode and the trailing electrode, which are provided at equal intervals across the groove line.

この場合、先行電極と後行電極の開先線に対す
る位置がわづかでもずれると溶接欠陥が広範囲に
発生することになる。この溶接欠陥の発生を防止
するため先行電極と後行電極の自動ならいは不可
欠である。
In this case, if the positions of the leading electrode and the trailing electrode with respect to the groove line are even slightly shifted, welding defects will occur over a wide range. In order to prevent this welding defect from occurring, automatic alignment of the leading and trailing electrodes is essential.

この発明はかかる要望に対処するためになされ
たものであり、なんらの検出器をも必要としない
で、回転するアークそのものの特性を利用して高
精度かつリアルタイムで、ならい制御を行なう2
電極隅肉溶接の開先ならい制御方法を提案するこ
とを目的とする。
This invention was made in response to such a need, and it is possible to perform profile control with high precision and in real time by utilizing the characteristics of the rotating arc itself without the need for any detector.
The purpose of this paper is to propose a groove profile control method for electrode fillet welding.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る2電極隅肉溶接の開先ならい制
御方法は、 同一ならい機構によりトーチ位置が制御される
先行電極と後行電極を前後して配置するとともに
溶接線をはさんで一定間隔で設け、先行電極と後
行電極の各電極ノズルを、回転速度範囲はアーク
の回転による溶融池の固有振動数をNo(Hz)とす
ると、下限をNo(Hz)、上限を120(Hz)の範囲と
し、各電極ノズルのワイヤ先端の回転直径は1mm
から6mmの範囲としながら回転することによりア
ークを高速回転して行なう隅肉溶接において、 (イ) 上記回転する先行電極及び後行電極のアーク
電圧波形又は溶接電流波形を検出し、 (ロ) 上記先行電極の電圧波形又は電流波形を溶接
進行方向前方点Cfを基準に下板側へ180゜以下の
一定の角度φ1に分割し、 (ハ) 上記後行電極の電圧波形又は電流波形を溶接
進行方向前方点Cfを基準に立板側へ180゜以下の
一定角度φ1に分割し、 (ニ) 下板側に分割した先行電極の電圧波形又は電
流波形と上記一定の角度φ1で作る面積SL及び
立板側に分割した後行電極の電圧波形又は電流
波形と上記一定の角度φ1で作る面積SRを演算
し、 (ホ) 上記面積の差SL−SRを演算し、この差があら
かじめ定められた基準値と等しくなるように先
行電極と後行電極の位置を溶接線と直角方向に
修正し、 (ヘ) 上記先行電極と後行電極の電圧波形又は電流
波形を溶接進行方向前方点Cfを中心に180゜以下
の一定の角度φ2に分割し、 (ト) 先行電極と後行電極の各電圧波形又は電流波
形と上記一定の角度φ2で作る面積Sl,Stを演算
し、 (チ) 上記面積の和Sl+Stを演算し、この和があら
かじめ定められた基準値と等しくなるように先
行電極と後行電極の高さを修正する ことを特徴とするものである。
The groove tracing control method for two-electrode fillet welding according to the present invention involves arranging leading electrodes and trailing electrodes, whose torch positions are controlled by the same tracing mechanism, one behind the other, and at regular intervals across the weld line. , for each electrode nozzle of the leading electrode and trailing electrode, the rotation speed range is the lower limit of No (Hz) and the upper limit of 120 (Hz), assuming that the natural frequency of the molten pool due to the rotation of the arc is No (Hz). The rotating diameter of the wire tip of each electrode nozzle is 1 mm.
In fillet welding, which is performed by rotating the arc at high speed within a range of 6 mm from Divide the voltage waveform or current waveform of the leading electrode into a constant angle φ 1 of 180° or less toward the lower plate based on the forward point Cf in the welding direction, and (c) Weld the voltage waveform or current waveform of the trailing electrode. Divide into a constant angle φ 1 of 180° or less from the forward point Cf in the direction of travel to the standing plate side, and (d) Create the voltage waveform or current waveform of the preceding electrode divided to the lower plate side and the above constant angle φ 1 . Calculate the area S L and the area S R created by the voltage waveform or current waveform of the trailing electrode divided into the standing plate side and the above constant angle φ 1 , (e) Calculate the difference between the above areas S L - S R , Correct the positions of the leading electrode and trailing electrode in a direction perpendicular to the welding line so that this difference is equal to a predetermined reference value, and (f) adjust the voltage waveform or current waveform of the leading electrode and trailing electrode. Divide into fixed angles φ 2 of 180° or less with the forward point Cf in the welding direction as the center, (g) Area S l created by each voltage waveform or current waveform of the leading electrode and trailing electrode and the above fixed angle φ 2 . , S t , and (h) calculate the sum of the above areas S l +S t , and correct the heights of the leading and trailing electrodes so that this sum is equal to a predetermined reference value. This is a characteristic feature.

ここで、回転速度範囲を溶融池の固有振動数
No(Hz)〜120Hzとしたのは下記の理由による。
Here, the rotational speed range is defined as the natural frequency of the molten pool.
The reason for setting No (Hz) to 120Hz is as follows.

すなわち、高速回転アーク溶接法では、ある特
定の回転速度において、溶接ビードが片方に偏向
するという現象がみられる。例えば、溶接電流I
=300A、溶接速度v=25cm/minの狭開先溶接
では回転速度が7(Hz)のとき、この偏向現象が
最も顕著にみられる。ビードの偏向方向は、溶接
方向とアークの回転方向で定まり、アークの回転
方向を時計回りとすると、ビードは溶接方向の右
側に偏向する。
That is, in the high-speed rotating arc welding method, there is a phenomenon in which the weld bead is deflected to one side at a certain rotation speed. For example, welding current I
In narrow gap welding at = 300 A and welding speed v = 25 cm/min, this deflection phenomenon is most noticeable when the rotation speed is 7 (Hz). The direction of deflection of the bead is determined by the welding direction and the rotational direction of the arc, and if the rotational direction of the arc is clockwise, the bead will be deflected to the right of the welding direction.

このビードの偏向現象は、アークの回転により
溶融池にも回転振動が与えられていることを示し
ている。この溶融池の回転振動は高速度カメラに
よる観察でも確認されている。そして、アークに
より押し下げられた溶融池のくぼみは、アークが
右端(R)にあるときはクレータ前端にあり、ア
ークの回転方向の前方には大量の溶鋼のもり上が
りが認められ、一方アークが左端(L)にあると
きは、くぼみはクレータ後方になだらかに延びて
おり、アーク前方の溶鋼のもり上がりは少ない。
アークは溶融池の先端近傍にて回転しているため
である。したがつて、アーク直下の溶鋼層はR端
では厚く、L端では薄くなつており、このような
溶融池の非対称現象がアークの回転速度が溶融池
の固有振動数No(Hz)に一致したときに、最も顕
著に現れるものと考えられる。
This bead deflection phenomenon indicates that rotational vibration is also applied to the molten pool due to the rotation of the arc. This rotational vibration of the molten pool has also been confirmed by observation using a high-speed camera. The depression of the molten pool pushed down by the arc is at the front end of the crater when the arc is at the right end (R), and a large amount of molten steel is seen rising up in front of the arc in the rotation direction, while the arc is at the left end. When it is at (L), the depression extends gently behind the crater, and there is little molten steel rising up in front of the arc.
This is because the arc rotates near the tip of the molten pool. Therefore, the molten steel layer directly under the arc is thick at the R end and thinner at the L end, and this asymmetrical phenomenon of the molten pool causes the rotational speed of the arc to match the natural frequency No (Hz) of the molten pool. It is considered to be the most obvious at times.

この原理は水平隅肉溶接法でも同じであり、この
場合、溶鋼の重力ヘツドに抗して溶鋼を立板側へ
持ち上げるために、ビードの下垂れ現象を抑制
し、溶接欠陥のない良好な等脚長ビードが得られ
るのである。そして最もビードが立板側に偏向す
る回転速度Noは溶接速度の増加とともに増加す
るので、溶接速度のほうから上限を120(Hz)と定
めた。
This principle is the same for the horizontal fillet welding method, and in this case, in order to lift the molten steel to the vertical plate side against the gravity head of the molten steel, the drooping phenomenon of the bead is suppressed, and a good welding condition without welding defects is achieved. This results in long-legged beads. Since the rotational speed No. at which the bead is most deflected toward the vertical plate side increases as the welding speed increases, the upper limit was set at 120 (Hz) based on the welding speed.

次に、アークの回転直径を1〜6mmとした理由
は、1mm未満では開先ならいに必要な信号が得ら
れないからであり、また6mmを超えると溶接アー
クの拡がりが溶接ビードの幅よりも大となり、ア
ンダーカツトが生じるからである。
Next, the reason why the rotating diameter of the arc is set to 1 to 6 mm is that if it is less than 1 mm, the signal necessary for groove contouring cannot be obtained, and if it exceeds 6 mm, the welding arc will spread wider than the width of the weld bead. This is because it becomes large and an undercut occurs.

この発明は、隅肉溶接において大脚長ビードを
得るため、上記の回転速度とアーク回転直径でも
つて先行、後行の各アークを高速回転し、かつ、
(イ)〜(チ)の構成によつて、アーク自体をセンサとし
て応答性の良い高精度の開先ならい制御ができる
ものである。
In order to obtain a bead with long legs in fillet welding, this invention rotates each of the leading and trailing arcs at high speed at the above rotational speed and arc rotation diameter, and
With the configurations (a) to (h), highly responsive and highly accurate groove tracing control can be performed using the arc itself as a sensor.

〔作 用〕[Effect]

この発明においては、先行電極と後行電極の回
転するアークの電圧波形または溶接電流波形の変
動に基いて開先ならい制御を行なうから、応答性
の良い高精度な開先ならいを行なう。
In this invention, groove tracing control is performed based on fluctuations in the voltage waveform or welding current waveform of the rotating arc of the leading electrode and the trailing electrode, so highly responsive and highly accurate groove tracing is performed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例に係る溶接装置を
示した概略構成図であり、図において10Lは先
行電極、10Tは先行電極10Lと回転伝達機構
11の軸線を隔てて一定間隔をおいて、かつ、先
行電極10Lより後方に設けた後行電極であり、
先行電極10L、後行電極10Tは共に回転モー
タ2によつてA矢印の方向に回転する。
FIG. 1 is a schematic configuration diagram showing a welding apparatus according to an embodiment of the present invention. In the figure, 10L is a leading electrode, 10T is a leading electrode 10L, and is spaced apart from the leading electrode 10L at a constant interval across the axis of the rotation transmission mechanism 11. , and is a trailing electrode provided behind the leading electrode 10L,
The leading electrode 10L and the trailing electrode 10T are both rotated by the rotary motor 2 in the direction of arrow A.

12は開先のルート9と直角方向であるX軸方
向に先行電極10Lと後行電極10Tを同時に修
正するX軸ならい機構、13は先行電極10Lと
後行電極10Tの高さ方向であるY軸方向に両電
極10L,10Tを同時に修正するY軸ならい機
構、14は制御装置、15は先行電極10Lと後
行電極10Tに各々ワイヤを送給するワイヤフイ
ーダ、16は台車である。なお、第1図はならい
軸が回転伝達機構11の軸線方向と、その直交軸
方向に設けた場合を示す。
12 is an X-axis tracing mechanism that simultaneously corrects the leading electrode 10L and the trailing electrode 10T in the X-axis direction that is perpendicular to the root 9 of the groove, and 13 is the Y-axis direction that is the height direction of the leading electrode 10L and trailing electrode 10T. A Y-axis tracing mechanism that simultaneously corrects both electrodes 10L and 10T in the axial direction; 14 is a control device; 15 is a wire feeder that feeds wires to the leading electrode 10L and the trailing electrode 10T; and 16 is a cart. Note that FIG. 1 shows a case in which the profiling shaft is provided in the axial direction of the rotation transmission mechanism 11 and in the orthogonal axial direction.

第2図a,bは上記のように構成した溶接装置
により隅肉溶接を行なうときのビードの形成状態
を示し、先行電極10Lは下板7側にかたよつて
ビード17を形成し、後行電極10Tはこのビー
ド17上の立板8側にビード17に遅れてビード
18を形成する。
FIGS. 2a and 2b show the state of bead formation when fillet welding is performed using the welding device configured as described above, in which the leading electrode 10L is biased toward the lower plate 7 side to form a bead 17, and the trailing electrode 10L The electrode 10T forms a bead 18 on the side of the standing plate 8 above the bead 17, behind the bead 17.

第3図はルート9から回転軸線19がX軸方向
に距離X1ずれている先行電極10L先端部を示
す側面図であり、溶接方向は紙面と垂直で、紙面
裏面から表面に向う方向である。第3図におい
て、laはアーク長さ、leはワイヤ突出長、Exは先
行電極10Lと下板7間の距離である。Cf,R,
Lは先行電極10Lが回転しているときのワイヤ
3の位置を示し、Cfは溶接方向前方のワイヤ3
の位置、Rは溶接方向に向つて90度右側、Lは左
側のワイヤ3の位置を示す。第4図は第3図に示
した先行電極10Lを回転軸線19方向から見た
図であり、Crは溶接方向20に対して後方のワ
イヤ3の位置を示す。
FIG. 3 is a side view showing the tip of the leading electrode 10L in which the rotational axis 19 is deviated from the route 9 by a distance of X 1 in the X-axis direction, and the welding direction is perpendicular to the page, from the back of the page to the front. . In FIG. 3, la is the arc length, le is the wire protrusion length, and Ex is the distance between the leading electrode 10L and the lower plate 7. Cf,R,
L indicates the position of the wire 3 when the leading electrode 10L is rotating, and Cf indicates the position of the wire 3 in the forward direction in the welding direction.
, R indicates the position of the wire 3 on the right side by 90 degrees toward the welding direction, and L indicates the position of the wire 3 on the left side. FIG. 4 is a view of the leading electrode 10L shown in FIG. 3 viewed from the direction of the rotation axis 19, and Cr indicates the position of the wire 3 at the rear with respect to the welding direction 20.

第3図、第4図に示すようにワイヤ3が先行電
極10Lの回転軸線19に対して偏心して設け
て、ワイヤ送給速度を一定のもとで先行電極10
Lを回転軸線19を中心にして回転すると、回転
時のワイヤ3の位置によりアーク長laが異なり、
先行電極10Lと下板7間の距離Exが変化する。
距離Exが変化すると負荷特性が変化して溶接電
流Iやアーク電圧Eが変化する。この溶接電流
I、アーク電圧Eは溶接電源の特性によつて異な
る。なお、第4図においてCは回転方向、θは回
転角、20は溶接方向を示す。
As shown in FIGS. 3 and 4, the wire 3 is provided eccentrically with respect to the rotational axis 19 of the leading electrode 10L, and the leading electrode 10 is placed at a constant wire feeding speed.
When L is rotated around the rotation axis 19, the arc length la changes depending on the position of the wire 3 during rotation.
The distance Ex between the leading electrode 10L and the lower plate 7 changes.
When the distance Ex changes, the load characteristics change and the welding current I and arc voltage E change. This welding current I and arc voltage E differ depending on the characteristics of the welding power source. In FIG. 4, C indicates the rotation direction, θ indicates the rotation angle, and 20 indicates the welding direction.

第5図a,bは横軸に溶接電流Iを、縦軸にア
ーク電圧Eをとり距離Exの変化に応じた溶接電
流Iとアーク電圧Eの変化特性を示し、第5図a
は溶接電源の特性が定電圧特性、bは定電流特性
の場合である。第5図a,bにおいて31は溶接
電源の出力特性曲線、32は負荷特性曲線であ
り、距離Exの値Ex0,Ex1,Ex2に応じて図に示
すように、ほぼ平行に変化する。なお負荷特性曲
線32はEx2>Ex0>Ex1の場合を示す。
Figures 5a and 5b show welding current I on the horizontal axis and arc voltage E on the vertical axis, and show the change characteristics of welding current I and arc voltage E according to changes in distance Ex.
b is the case where the characteristics of the welding power source are constant voltage characteristics, and b is the case where the characteristics are constant current characteristics. In Figures 5a and 5b, 31 is the output characteristic curve of the welding power source, and 32 is the load characteristic curve, which changes almost in parallel according to the values of distance Ex Ex 0 , Ex 1 , Ex 2 as shown in the figure. . Note that the load characteristic curve 32 shows a case where Ex 2 >Ex 0 >Ex 1 .

アークの動作点は出力特性曲線31とそれぞれ
の負荷特性曲線32との交点であり、その点での
溶接電流Iとアーク電圧Eが定まる。すなわち距
離ExがEx2,Ex0,Ex1と減少して行くとき、溶
接電流Iとアーク電圧EはそれぞれI2,E2,I0
E0,I1,E1と変化する。なお図bに示した定電流
電源の場合はI0=I1=I2である。
The operating point of the arc is the intersection of the output characteristic curve 31 and each load characteristic curve 32, and the welding current I and arc voltage E at that point are determined. That is, when the distance Ex decreases from Ex 2 to Ex 0 to Ex 1 , the welding current I and arc voltage E become I 2 , E 2 , I 0 , respectively.
It changes as E 0 , I 1 , and E 1 . Note that in the case of the constant current power supply shown in Figure b, I 0 = I 1 = I 2 .

距離Exの変化による溶接電流Iあるいはアー
ク電圧Eの変化は距離Exの変化が大幅でなけれ
ば、距離Exと直線関係で変化する。第3図に示
すように先行電極10Lが下板7に対して傾斜し
ている場合に、先行電極10Lが回転するとワイ
ヤ3の位置に応じて距離Exは正弦波状に変化す
る。
A change in the welding current I or arc voltage E due to a change in the distance Ex changes in a linear relationship with the distance Ex unless the change in the distance Ex is large. As shown in FIG. 3, when the leading electrode 10L is inclined with respect to the lower plate 7, when the leading electrode 10L rotates, the distance Ex changes sinusoidally depending on the position of the wire 3.

第6図a,bは回転する先行電極10Lのワイ
ヤ3すなわちアークの位置に対応して変化するア
ーク電圧Eおよび溶接電流Iの波形を示す。図に
おいてaはアーク電圧Eの波形、bは溶接電流I
の波形であり、それぞれの波形は上下逆転した形
状となる。なお、図bに示した溶接電流Iの波形
は定電圧特性の溶接電源のみで得ることができ、
アーク電圧Eの波形は定電圧特性、定電流特性の
いずれの溶接電源においても得られることは第5
図a,bから明らかである。
FIGS. 6a and 6b show the waveforms of the arc voltage E and welding current I that change in accordance with the position of the wire 3 of the rotating leading electrode 10L, that is, the arc. In the figure, a is the waveform of arc voltage E, and b is the welding current I.
, and each waveform has an upside-down shape. Note that the waveform of welding current I shown in Figure b can be obtained only with a welding power source with constant voltage characteristics.
The fifth point is that the waveform of the arc voltage E can be obtained with either a welding power source with constant voltage characteristics or constant current characteristics.
It is clear from Figures a and b.

第6図a,bにおいて、破線で示した波形は第
3図、第4図に示すように開先のルート9と先行
電極10Lの回転軸線19との間隔がX1の場合
を示し、実線で示した波形はルート9と回転軸線
19との間隔がX1より大きい場合を示す。
In FIGS. 6a and 6b, the waveforms indicated by broken lines indicate the case where the distance between the root 9 of the groove and the rotation axis 19 of the preceding electrode 10L is X 1 , as shown in FIGS. 3 and 4, and the waveform indicated by the solid line The waveform shown in indicates the case where the distance between the root 9 and the rotation axis 19 is larger than X1 .

後行電極10Tも立板8に対して上記先行電極
10Lと同様な関係にあり、第7図a,bに示す
アーク電圧Eと溶接電流Iの波形を得る。第7図
a,bにおいても破線で示した波形は開先のルー
ト9と後行電極10Tの回転軸線の間隔がX1
場合、実線はこの間隔がX1より小さい場合を示
す。
The trailing electrode 10T has a similar relationship to the upright plate 8 as the preceding electrode 10L, and obtains the waveforms of the arc voltage E and welding current I shown in FIGS. 7a and 7b. In FIGS. 7a and 7b, the waveforms indicated by broken lines indicate the case where the distance between the root 9 of the groove and the axis of rotation of the trailing electrode 10T is X1 , and the solid line indicates the case where this distance is smaller than X1 .

開先ルート9をはさんで設けた先行電極10L
と後行電極10Tの間隔は第1図に示すように一
定であるから、先行電極10Lの回転軸線19と
開先のルート9の間隔がX1よりΔXだけ大きくな
ると後行電極10Tの回転軸線とルート間隔は
X1よりΔXだけ小となり、第6図a,b及び第7
図a,bの実線で示すように、先行電極10Lと
後行電極10Tのアーク電圧波形又は溶接電流波
形のレベルが各々変化する。すなわち、この場合
先行電極10Lのアーク電圧波形のレベルは低下
し、後行電極10Tのアーク電圧波形のレベルは
高くなる。したがつて先行電極10Lと後行電極
10Tのアーク電圧波形あるいは溶接電圧波形の
レベルの変化量を検出し、修正することによりX
軸方向のずれ量ΔXを修正することができる。
Leading electrode 10L provided across groove route 9
Since the distance between the leading electrode 10L and the trailing electrode 10T is constant as shown in FIG. 1, if the distance between the rotation axis 19 of the leading electrode 10L and the groove root 9 is larger than and the root spacing is
ΔX is smaller than X 1 , and Figure 6 a, b and 7
As shown by solid lines in FIGS. a and b, the levels of the arc voltage waveform or welding current waveform of the leading electrode 10L and the trailing electrode 10T change, respectively. That is, in this case, the level of the arc voltage waveform of the leading electrode 10L decreases, and the level of the arc voltage waveform of the trailing electrode 10T increases. Therefore, by detecting and correcting the amount of change in the level of the arc voltage waveform or welding voltage waveform of the leading electrode 10L and the trailing electrode 10T,
The amount of deviation ΔX in the axial direction can be corrected.

すなわち、第6図、第7図、第8図に示すよう
に先行電極10Lの波形をCf点を基準として下
板7側であるL側に180゜以下の一定角度φ1の間だ
け取り出し、後行電極10Tの波形をCf点を基
準として立板8側であるR側に180゜以下の一定角
度φ1の間だけ取り出し、この角度φ1間で作る波
形の面積SL,SRを求め、この面積の差SL−SRがあ
らかじめ定められた基準値Sx0と等しくなるよう
にX軸ならい機構12によりX軸方向のずれ量
ΔXを修正する。
That is, as shown in FIGS. 6, 7, and 8, the waveform of the leading electrode 10L is taken out for a certain angle φ 1 of 180° or less on the L side, which is the lower plate 7 side, with respect to the Cf point. Take out the waveform of the trailing electrode 10T from point Cf as a reference to the R side, which is the side of the standing plate 8, for a certain angle φ 1 of 180° or less, and calculate the areas S L and S R of the waveform created between this angle φ 1 . The deviation amount ΔX in the X-axis direction is corrected by the X-axis tracing mechanism 12 so that this area difference S L −S R becomes equal to a predetermined reference value Sx 0 .

ここで波形の取り出し角度範囲を先行電極10
Lは下板7側とし、後行電極10Tは立板8側と
し、かつ角度範囲を180゜以内としたのは下板7あ
るいは立板8を検出し易いためである。
Here, the waveform extraction angle range is set at the leading electrode 10.
The reason why L is placed on the lower plate 7 side, the trailing electrode 10T is placed on the upright plate 8 side, and the angular range is within 180° is to make it easier to detect the lower plate 7 or the upright plate 8.

次に先行電極10Lと後行電極10Tの高さ方
向すなわちY軸方向の距離制御について説明す
る。
Next, distance control in the height direction, that is, the Y-axis direction, between the leading electrode 10L and the trailing electrode 10T will be explained.

上記X軸方向のならいを前提として、先行電極
10L、後行電極10Tの位置が開先のルート9
からy軸方向にはなれるように距離ΔYだけずれ
ると、先行電極10Lと後行電極10Tのアーク
電圧波形のレベルは共に高くなり、溶接電流波形
のレベルは低くなる。そこで、第9図に示すよう
に先行電極10Lと後行電極10Tの波形を各々
Cf点を中心として一定角度φ2だけ取り出し、こ
の角度で作る波形の面積Sl,Stを求め、この面積
の和Sl+Stがあらかじめ定められた基準値SY0
等しくなるようにY軸ならい機構13を制御し、
Y軸方向のずれ量ΔYを修正する。ここで角度φ2
は180゜以下とする。
Assuming the above-mentioned alignment in the X-axis direction, the positions of the leading electrode 10L and the trailing electrode 10T are the groove route 9.
When the arc voltage waveforms of the leading electrode 10L and the trailing electrode 10T are shifted by a distance ΔY so as to be separated from each other in the y-axis direction, the levels of the arc voltage waveforms of both the leading electrode 10L and the trailing electrode 10T become high, and the level of the welding current waveform becomes low. Therefore, as shown in FIG. 9, the waveforms of the leading electrode 10L and the trailing electrode 10T are
Take a certain angle φ 2 from point Cf as the center, find the areas S l and S t of the waveform created by this angle, and adjust Y so that the sum of these areas S l + S t is equal to the predetermined reference value S Y0 . Controls the axis tracing mechanism 13,
Correct the amount of deviation ΔY in the Y-axis direction. Here the angle φ 2
shall be 180° or less.

上記X軸方向のならい及びY軸方向のならいに
おいて基準値Sx0,SY0は先行電極10Lと後行電
極10Tの適正位置に対応してあらかじめ設定す
るが、電極の位置が適正位置であるときの波形の
面積の差SL−SRと和Sl+Stの値を記憶保持してお
けば良い。
In the above-mentioned tracing in the X-axis direction and tracing in the Y-axis direction, the reference values Sx 0 and S Y0 are set in advance corresponding to the appropriate positions of the leading electrode 10L and the trailing electrode 10T, but when the positions of the electrodes are at the appropriate positions. It is sufficient to store the values of the area difference S L −S R and the sum S l +S t of the waveforms.

また面積の差Sx=SL−SRと和SY=Sl+Stの値は
アークの回転の1回もしくは整数n回の値とす
る。
Further, the values of the area difference Sx=S L -S R and the sum S Y =S l +S t are the values of one rotation of the arc or an integral number n times.

上記開先ならい制御方法を第10図に示したX
軸方向のならい制御回路のブロツク図及び第11
図に示したY軸方向のならい制御回路のブロツク
図に基づいて説明する。
The groove profile control method described above is shown in Figure 10.
Block diagram of axial profiling control circuit and 11th
The explanation will be made based on the block diagram of the profile control circuit in the Y-axis direction shown in the figure.

まず電圧検出器50L,50Rで先行電極10
Lと後行電極10Tの各アーク電圧EL,ERを検
出する。この検出した先行電極10Lのアーク電
圧ELをスイツチ51LでL側の一定角度φ1だけ
取り出し、後行電極10Tのアーク電圧ERをス
イツチ51RでR側の一定角度φ1だけ取り出す。
スイツチ51L,51Rにおける角度φ1を取り
出すタイミングはスイツチング論理回路52L,
52Rからの指令信号で行なう。スイツチング論
理回路52L,52Rは回転位置検出器53L,
53Rで検出した先行電極10Lと後行電極10
Tの回転角と、あらかじめ定めた180゜以下の一定
の角度φ1を設定したφ1設定器54L,54Rの
出力φ1例えば90゜とを比較し指令信号として出力
する。
First, use the voltage detectors 50L and 50R to
The respective arc voltages E L and E R of L and trailing electrode 10T are detected. The detected arc voltage E L of the leading electrode 10L is taken out by a certain angle φ 1 on the L side by a switch 51L, and the arc voltage E R of the trailing electrode 10T is taken out by a certain angle φ 1 on the R side by a switch 51R.
The timing for taking out the angle φ 1 in the switches 51L and 51R is determined by the switching logic circuit 52L,
This is done using a command signal from 52R. The switching logic circuits 52L, 52R are the rotational position detector 53L,
Leading electrode 10L and trailing electrode 10 detected by 53R
The rotation angle of T is compared with the output φ 1 of the φ 1 setters 54L, 54R, which are set at a predetermined constant angle φ 1 of 180 degrees or less, for example, 90 degrees, and outputted as a command signal.

スイツチ51L,51Rから出力された各アー
ク電圧は積分器55L,55Rで角度φ1間積分
される。n設定器56L,56Rは、これらの積
分の処理回数nが設定されており、積分器55
L,55Rは各スイツチング論理回路52L,5
2Rを介して出力されるnにより、n回分のアー
クの回転に対して波形積分を行ない、その出力SL
およびSRを記憶器57L,,57Rに出力する。
記憶器57L,57Rは積分器55L,55Rか
ら入力した信号SLおよびSRをn回毎に記憶・保持
を繰り返しながらSL,SRを差動増幅器58に出力
する。差動増幅器58はこの信号の差Sx=SL
SRを求め、この差Sxを後段の差動増幅器59に
入力し、基準値設定器60にあらかじめ設定され
た基準値Sx0と比較し、この差Sx−Sx0が零とな
るようにX軸モータ61を駆動する。
Each arc voltage output from the switches 51L and 51R is integrated over an angle φ 1 by integrators 55L and 55R. The n setters 56L and 56R are set with the number of times n of these integrals are processed, and the integrator 55
L, 55R are respective switching logic circuits 52L, 5
Using n outputted through 2R, waveform integration is performed for n arc rotations, and the output S L
and S R are output to the memories 57L, 57R.
The memories 57L and 57R repeatedly store and hold the signals S L and S R input from the integrators 55L and 55R every n times, and output the signals S L and S R to the differential amplifier 58. The differential amplifier 58 calculates the difference between these signals Sx=S L
S _ _ The shaft motor 61 is driven.

一方Y軸方向のならい制御も第11図に示すよ
うに電圧検出器50L,50Rで検出したアーク
電圧EL,ERをX軸方向ならい制御と同様にスイ
ツチ71L,71Tを介して積分器75L,75
Tに入力し、一定角度φ2間だけn回分積分し記
憶器に各積分値Sl,Stを保持する。このSl,St
加算器78で加算しSY=Sl+Stを求め、この加算
値SYとあらかじめ基準値設定器80に設定された
基準値SY0とを差動増幅器79で比較し、この差
SY−SY0が零となるようにY軸モータ81を駆動
し、Y軸方向高さを制御する。
On the other hand, as shown in FIG. 11, Y-axis direction tracing control also uses arc voltages E L and E R detected by voltage detectors 50L and 50R to be transferred to an integrator 75L via switches 71L and 71T, similar to the X-axis direction tracing control. ,75
T, the integral values S l and S t are integrated n times over a constant angle φ 2 and each integral value S l and S t is stored in a memory. These S l and S t are added in an adder 78 to obtain S Y = S l + S t , and this added value S Y and the reference value S Y0 set in advance in the reference value setter 80 are added in a differential amplifier 79. Compare this difference
The Y-axis motor 81 is driven so that S Y −S Y0 becomes zero, and the height in the Y-axis direction is controlled.

なお、上記実施例では第1図に示すように、な
らい軸のY軸方向が各電極の回転軸線方向と一致
する場合について説明したが、第12図に示すよ
うに、ならい軸が下板7に平行なX軸と、このX
軸に直交するY軸からなる場合、あるいは下板7
に平行なX軸と回転軸線方向のY軸からなる場合
であつても、上記実施例と同様に開先ならい制御
を行なうことができる。
In the above embodiment, as shown in FIG. 1, the Y-axis direction of the profiling axis coincides with the rotational axis direction of each electrode, but as shown in FIG. The X axis parallel to
If it consists of a Y axis orthogonal to the axis, or the lower plate 7
Even in the case of an X-axis parallel to the axis of rotation and a Y-axis in the direction of the rotation axis, groove tracing control can be performed in the same manner as in the above embodiment.

また、上記実施例の制御回路についてはアーク
電圧波形を検出する場合について説明したが、第
6図b、第7図bに示す溶接電流波形を検出して
も上記実施例と同様に開先ならい制御を行なうこ
とができる。
Furthermore, although the control circuit of the above embodiment has been described for the case where the arc voltage waveform is detected, even when the welding current waveforms shown in FIGS. can be controlled.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように回転する先行電
極と後行電極のアーク電圧波形又は溶接電流波形
を検出し、検出した波形に基づいて開先ならい制
御を行なうようにしたから、直接開先を検出する
検出器を不要とし、かつ高精度で大脚長のビード
を形成することができる。
As explained above, this invention detects the arc voltage waveform or welding current waveform of the rotating leading electrode and trailing electrode, and performs groove tracing control based on the detected waveforms, so the groove can be directly detected. This eliminates the need for a detector and enables the formation of beads with long legs with high precision.

またアーク自体の位置により開先ならい制御を
行なうから、リアルタイムでアークの位置を修正
できる効果を有する。
In addition, since groove tracing control is performed based on the position of the arc itself, it is possible to correct the position of the arc in real time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る溶接装置を示
す概略構成図、第2図a,bは上記実施例により
形成されるビードの説明図を示し、aは正面図、
bは側方から見た斜視図、第3図は上記実施例の
先行電極先端部を示す側面図、第4図は第3図に
示した先行電極の回転軸線方向から見たワイヤ配
置図、第5図a,bは溶接電源の特性を示し、a
は定電圧特性図、bは定電流特性図、第6図aは
先行電極のアーク電圧波形図、bは先行電極の溶
接電流波形図、第7図aは後行電極のアーク電圧
波形図、bは後行電極の溶接電流波形図、第8図
はX軸方向ならい制御の説明図、第9図はY軸方
向ならい制御の説明図、第10図はX軸方向なら
い制御回路のブロツク図、第11図はY軸方向な
らい制御回路のブロツク図、第12図は他の実施
例を示す概略構成図、第13図は高速回転アーク
隅肉溶接の概要を示す斜視図である。 2…回転モータ、7…下板、8…立板、9…開
先のルート、10L…先行電極、10T…後行電
極、12…X軸ならい機構、13…Y軸ならい機
構。
FIG. 1 is a schematic configuration diagram showing a welding apparatus according to an embodiment of the present invention, FIGS. 2a and 2b are explanatory diagrams of a bead formed by the above embodiment, and a is a front view;
b is a perspective view seen from the side, FIG. 3 is a side view showing the tip of the preceding electrode of the above embodiment, FIG. 4 is a wire arrangement diagram seen from the rotational axis direction of the preceding electrode shown in FIG. 3, Figure 5 a and b show the characteristics of the welding power source, a
is a constant voltage characteristic diagram, b is a constant current characteristic diagram, FIG. 6 a is an arc voltage waveform diagram of the leading electrode, b is a welding current waveform diagram of the leading electrode, FIG. 7 a is an arc voltage waveform diagram of the trailing electrode, b is a welding current waveform diagram of the trailing electrode, Fig. 8 is an explanatory diagram of the X-axis direction profiling control, Fig. 9 is an explanatory diagram of the Y-axis direction profiling control, and Fig. 10 is a block diagram of the X-axis direction profiling control circuit. , FIG. 11 is a block diagram of a Y-axis direction profiling control circuit, FIG. 12 is a schematic configuration diagram showing another embodiment, and FIG. 13 is a perspective view showing an outline of high-speed rotating arc fillet welding. 2... Rotating motor, 7... Lower plate, 8... Vertical plate, 9... Bevel root, 10L... Leading electrode, 10T... Trailing electrode, 12... X-axis tracing mechanism, 13... Y-axis tracing mechanism.

Claims (1)

【特許請求の範囲】 1 同一開先ならい移動機構の下部に前後して配
置するとともに溶接線をはさんで一定間隔で取付
けた先行電極と後行電極の各電極ノズルを、回転
速度範囲はアークの回転による溶融池の固有振動
数をNo(Hz)とすると、下限をNo(Hz)、上限を
120(Hz)の範囲とし、各電極ノズルのワイヤ先端
の回転直径は1mmから6mmの範囲としながら回転
することによりアークを高速回転して行なう隅肉
溶接において、 (イ) 上記回転する先行電極及び後行電極のアーク
電圧波形又は溶接電流波形を検出し、 (ロ) 上記先行電極の電圧波形又は溶接電流波形を
溶接進行方向前方点Cfを基準に下板側へ180゜以
下の一定の角度φ1に分割し、 (ハ) 上記後行電極の電圧波形又は溶接電流波形を
溶接進行方向前方点Cfを基準に立板側へ180゜以
下の一定の角度φ1に分割し、 (ニ) 下板側に分割した先行電極の電圧波形又は溶
接電流波形と上記一定の角度φ1で作る面積
SL及び立板側に分割した後行電極の電圧波形
又は溶接電流波形と上記一定の角度φ1で作る
面積SRを演算し、 (ホ) 上記面積の差SL−SRを演算し、この差があ
らかじめ定められた基準値と等しくなるように
先行電極と後行電極の位置を溶接線と直角方向
に修正し、 (ヘ) 上記先行電極と後行電極の電圧波形又は溶接
電流波形を溶接進行方向前方点Cfを中心に180゜
以下の一定の角度φ2に分割し、 (ト) 先行電極と後行電極の各電圧波形又は溶接電
流波形と上記一定の角度φ2で作る面積Sl,St
を演算し、 (チ) 上記面積の和Sl+Stを演算し、この和があら
かじめ定められた基準値と等しくなるように先
行電極と後行電極の高さを修正する ことを特徴とする2電極隅肉溶接の開先ならい制
御方法。
[Claims] 1. Electrode nozzles of a leading electrode and a trailing electrode, which are arranged one behind the other at the bottom of the same groove tracing movement mechanism and are attached at regular intervals across the welding line, have rotational speed ranges within an arc. If the natural frequency of the molten pool due to the rotation of is No (Hz), then the lower limit is No (Hz) and the upper limit is No (Hz).
120 (Hz) range, and the rotating diameter of the wire tip of each electrode nozzle is in the range of 1 mm to 6 mm. In fillet welding, which is performed by rotating the arc at high speed, (a) the above-mentioned rotating leading electrode and Detect the arc voltage waveform or welding current waveform of the trailing electrode, and (b) move the voltage waveform or welding current waveform of the preceding electrode toward the lower plate at a constant angle φ1 of 180° or less with respect to the forward point Cf in the welding direction. (c) Divide the voltage waveform or welding current waveform of the trailing electrode mentioned above into a constant angle φ1 of 180° or less toward the vertical plate side from the forward point Cf in the welding direction, and (d) Lower plate side. The area created by the voltage waveform or welding current waveform of the preceding electrode divided into and the above constant angle φ1
Calculate the area SR created by the voltage waveform or welding current waveform of the trailing electrode divided into SL and the standing plate side and the above constant angle φ1, (e) Calculate the difference SL - SR between the above areas, and this difference is Correct the positions of the leading electrode and trailing electrode in a direction perpendicular to the welding line so that they are equal to the predetermined reference value; Divide into constant angles φ2 of 180° or less with point Cf as the center, (g) Area Sl, St created by each voltage waveform or welding current waveform of the leading electrode and trailing electrode and the above constant angle φ2.
(h) A two-electrode corner characterized in that the sum of the areas Sl+St is calculated, and the heights of the leading electrode and the trailing electrode are corrected so that this sum is equal to a predetermined reference value. Groove profile control method for meat welding.
JP17394786A 1986-07-25 1986-07-25 Groove profile control method for two-electrode fillet welding Granted JPS6333178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17394786A JPS6333178A (en) 1986-07-25 1986-07-25 Groove profile control method for two-electrode fillet welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17394786A JPS6333178A (en) 1986-07-25 1986-07-25 Groove profile control method for two-electrode fillet welding

Publications (2)

Publication Number Publication Date
JPS6333178A JPS6333178A (en) 1988-02-12
JPH0461753B2 true JPH0461753B2 (en) 1992-10-01

Family

ID=15970017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17394786A Granted JPS6333178A (en) 1986-07-25 1986-07-25 Groove profile control method for two-electrode fillet welding

Country Status (1)

Country Link
JP (1) JPS6333178A (en)

Also Published As

Publication number Publication date
JPS6333178A (en) 1988-02-12

Similar Documents

Publication Publication Date Title
JPH0671661B2 (en) High-speed rotating arc fillet welding groove profile control method
JPH0461753B2 (en)
JPS61249667A (en) Automatic fillet welding method with high speed rotating arc
JPS6123067B2 (en)
JPS6224870A (en) Rotary arc fillet welding method
JPH0671662B2 (en) Torch angle control method
JPH0671667B2 (en) Welding line tracking control method for welding torch
JPH0370581B2 (en)
JPS6224867A (en) Rotary arc fillet welding method using double electrodes
JPH0426945B2 (en)
JPS6380971A (en) Detection method for root gap
JP3115206B2 (en) Arc sensor device
JPH0433549B2 (en)
JPH0420709B2 (en)
JP2953286B2 (en) Rotary electrode TIG welding method for thin plates
JPH0426946B2 (en)
JPH0324302B2 (en)
JPH07204853A (en) Arc sensor
JPH0420708B2 (en)
JPH0370582B2 (en)
JPS6224869A (en) Rotary arc filler welding method using double electrodes
JPH0420710B2 (en)
JPH0426943B2 (en)
JPH0671665B2 (en) How to detect temporary beads
JPH08215850A (en) Vertical welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees