JPH0141439B2 - - Google Patents

Info

Publication number
JPH0141439B2
JPH0141439B2 JP4139084A JP4139084A JPH0141439B2 JP H0141439 B2 JPH0141439 B2 JP H0141439B2 JP 4139084 A JP4139084 A JP 4139084A JP 4139084 A JP4139084 A JP 4139084A JP H0141439 B2 JPH0141439 B2 JP H0141439B2
Authority
JP
Japan
Prior art keywords
waveform
period
oscillation
cycle
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4139084A
Other languages
Japanese (ja)
Other versions
JPS60187473A (en
Inventor
Juji Sugitani
Masao Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP4139084A priority Critical patent/JPS60187473A/en
Publication of JPS60187473A publication Critical patent/JPS60187473A/en
Publication of JPH0141439B2 publication Critical patent/JPH0141439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、エレクトロガス溶接を行う場合にお
いて、消耗電極に対し回転と同時に母材の板厚方
向の揺動を与えながら立向溶接を行う揺動を伴う
回転アーク立向溶接方法に関し、とくにその電極
位置の倣い方法に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a vibration welding method in which vertical welding is performed while simultaneously giving rotation to a consumable electrode and vibration in the plate thickness direction of the base material when performing electrogas welding. The present invention relates to a rotating arc vertical welding method that involves motion, and particularly to a method of tracing the electrode position.

〔従来技術〕[Prior art]

従来のエレクトロガス溶接では開先はV形で最
小ギヤツプ10mm、開先角度20°程度で、アークは
開先断面積の重心近くを狙つて作業者が常時調整
し、揺動なしの施工法が多く採用されている。こ
の方法では消耗電極(ワイヤ)と溶着金属間にア
ークが発生し高温の溶融池で母材を溶融するの
で、適用板厚範囲は12〜30mm程度で、厚板ではア
ークと開先壁面との距離が離れるのでアーク発生
位置が開先中央から少しでもずれると溶込不足な
どの溶接欠陥が発生しやすい。そこで、アークが
常に開先中央の正しい位置に調整され、30mm超の
厚板でも溶込不足などの溶接欠陥の発生し難い溶
接方法が待望されているが未だ見当たらない。
In conventional electrogas welding, the groove is V-shaped, with a minimum gap of 10 mm and a groove angle of about 20 degrees, and the arc is constantly adjusted by the operator to aim near the center of gravity of the groove cross-sectional area, making it possible to perform the work without swinging. It is widely adopted. In this method, an arc is generated between the consumable electrode (wire) and the weld metal, and the base metal is melted in a high-temperature molten pool, so the applicable plate thickness range is about 12 to 30 mm, and for thick plates, the arc and the groove wall are Because of the distance, if the arc generation position deviates even slightly from the center of the groove, welding defects such as insufficient penetration are likely to occur. Therefore, there is a long-awaited welding method in which the arc is always adjusted to the correct position at the center of the groove, and which is less likely to cause welding defects such as insufficient penetration even on plates thicker than 30 mm, but none has been found yet.

消耗電極に対し一定の半径及び速度の回転を与
えながらアーク溶接を行う回転アーク溶接方法そ
れ自体については、例えば特開昭55−133871号公
報、特開昭57−91877号公報などで公知である。
A rotating arc welding method in which arc welding is performed while rotating a consumable electrode at a constant radius and speed is known, for example, in JP-A-55-133871 and JP-A-57-91877. .

いま、このような従来の回転アーク溶接方法を
エレクトロガス溶接に適用する場合、母材の板厚
がある程度以上厚いときにはさらに板厚方向に電
極を揺動させる必要がある。この場合、電極ノズ
ルの位置を正しく調整しないと良好な溶込や表裏
ビードが得られないばかりか、はなはだしい場合
には電極ノズルの銅当金や開先壁などへの接触を
招くことになる。
Now, when such a conventional rotating arc welding method is applied to electrogas welding, when the thickness of the base material is thicker than a certain level, it is necessary to further swing the electrode in the thickness direction. In this case, if the position of the electrode nozzle is not adjusted correctly, not only will it not be possible to obtain good penetration and bead on the front and back sides, but in extreme cases, the electrode nozzle will come into contact with the copper butt, the groove wall, etc.

〔発明の目的〕[Purpose of the invention]

本発明は、従来技術の回転アーク溶接方法と板
厚方向の揺動方式を併せて採用してアークが開先
壁面に接近するので厚板でも上述の溶込不足など
が発生し難い方法と溶接中の高精度な開先倣い方
法に関するものである。したがつて、本発明の目
的は、消耗電極に対して回転と同時に母材板厚方
向の揺動を与えながらエレクトロガス溶接を行う
場合において、電極ノズルの位置が開先内で適正
な位置となるように自動的に調整して溶接するこ
とにより、上述のごとき溶込や表裏ビード形状不
良の発生を防止する揺動を伴う回転アーク立向溶
接方法を提供することにある。
The present invention employs a conventional rotating arc welding method and a swinging method in the plate thickness direction, so that the arc approaches the groove wall surface, so the above-mentioned insufficient penetration is unlikely to occur even in thick plates. This paper relates to a highly accurate groove tracing method. Therefore, an object of the present invention is to ensure that the position of the electrode nozzle is at an appropriate position within the groove when electrogas welding is performed while simultaneously giving rotation to the consumable electrode and swinging in the thickness direction of the base material. It is an object of the present invention to provide a rotating arc vertical welding method with oscillation that prevents the occurrence of penetration and defective bead shapes on the front and back sides as described above by automatically adjusting and welding so that the welding angle is the same.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本願の第1の発
明による揺動を伴う回転アーク溶接方法は、電極
に対し回転と同時に母材板厚方向の揺動を与えな
がらエレクトロガス溶接を行う場合において、上
記電極のアーク電流又はアーク電圧の波形を検出
し、該波形を上記回転の1周期ごとについて板厚
方向に前後半周期ごとに2等分し、その前半周期
ごとの波形を揺動中心より揺動前半周期の期間積
分して求めた値SFと、後半周期ごとの波形を揺動
中心より揺動後半周期の期間積分して求めた値SB
とを比較して、その差値があらかじめ設定した基
準値と等しくなるように上記揺動中心の位置を板
厚方向に修正しながら溶接を行うことを特徴とす
るものであり、さらに第2の発明は、第1の発明
による板厚方向の揺動中心倣いに加えて開先幅方
向の位置制御を加えたもので、上記のごとく検出
された波形を上記回転の1周期ごとについて開先
幅方向にも左右半周期ごとに2等分し、その左半
周期ごとの波形の平均値と、右半周期ごとの波形
の平均値とを比較して、その差値が零になるよう
に位置制御することを特徴とするものである。
In order to achieve the above object, the rotating arc welding method with oscillation according to the first invention of the present application is provided when electrogas welding is performed while giving an oscillation in the thickness direction of the base material plate at the same time as rotation to the electrode. , detect the waveform of the arc current or arc voltage of the electrode, divide the waveform into two equal parts in the plate thickness direction for each cycle of the rotation, and divide the waveform of each half cycle from the center of oscillation. A value S F obtained by integrating the period of the first half of the swing cycle, and a value S B obtained by integrating the waveform of each second half cycle from the center of the swing over the period of the second half of the swing cycle.
The method is characterized in that welding is performed while correcting the position of the center of oscillation in the plate thickness direction so that the difference value becomes equal to a preset reference value. The invention adds position control in the groove width direction in addition to the swing center scanning in the plate thickness direction according to the first invention, and the waveform detected as described above is applied to the groove width for each cycle of the rotation. Divide the left and right half cycles into two in the direction, compare the average value of the waveform for each left half cycle with the average value of the waveform for each right half cycle, and position it so that the difference value is zero. It is characterized by control.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明方法を実施するための自動立向
溶接装置の概略側面図で、第2図はその平面図で
ある。また、第2図においては、消耗電極の任意
の揺動位置における回転軌跡が併せて示されてい
る。これらの図において1は開先、2及び3は母
材、4及び5は固定銅当金及び摺動銅当金、6は
消耗電極で、電極ノズル7の中心Aからの所定の
回転半径をもつ偏心位置に自動送給されるように
なつている。8はこの電極ノズル7を回転可能に
垂直に支持する回転装置で、通常の歯車機構より
なる。電極ノズル7の回転位置は、その上部に設
けられた回転位置検出器9により検出され、回転
の前後左右の4点でパルスを発信するようになつ
ている。10は回転装置8の本体に揺動腕11を
介して連結された揺動装置で、揺動腕11の基端
を母材板厚方向に所定の周期及び振幅でW軸モー
タ14によつて揺動させる作用を行う。12は揺
動装置10を先端に支持し、基端は開先幅方向に
摺動可能なX軸スライダ13に支持されている。
15はX軸スライダ13の駆動用のX軸モータで
ある。これらの機構によつて電極ノズル7の中心
位置Aのずれを板厚方向および開先幅方向に修正
することができる。なお16はこの溶接装置全体
を鉛直方向に移動させる台車に相当する。
FIG. 1 is a schematic side view of an automatic vertical welding apparatus for carrying out the method of the present invention, and FIG. 2 is a plan view thereof. Further, FIG. 2 also shows the rotation locus of the consumable electrode at an arbitrary swing position. In these figures, 1 is a groove, 2 and 3 are base materials, 4 and 5 are fixed copper butts and sliding copper butts, and 6 is a consumable electrode, which has a predetermined rotation radius from the center A of the electrode nozzle 7. It is designed to be automatically fed to an eccentric position. Reference numeral 8 denotes a rotating device that vertically supports this electrode nozzle 7 in a rotatable manner, and is composed of a normal gear mechanism. The rotational position of the electrode nozzle 7 is detected by a rotational position detector 9 provided at the top thereof, and pulses are emitted at four points on the front, back, left, and right of rotation. Reference numeral 10 denotes a swinging device connected to the main body of the rotating device 8 via a swinging arm 11, and the base end of the swinging arm 11 is moved in the thickness direction of the base material at a predetermined period and amplitude by a W-axis motor 14. Performs a rocking action. Reference numeral 12 supports the swinging device 10 at its tip, and its base end is supported by an X-axis slider 13 that is slidable in the width direction of the groove.
15 is an X-axis motor for driving the X-axis slider 13. By these mechanisms, the deviation of the center position A of the electrode nozzle 7 can be corrected in the plate thickness direction and the groove width direction. Note that 16 corresponds to a cart that moves the entire welding device in the vertical direction.

次に、本発明の方法を上記溶接装置の動作とと
もに説明する。第1図、第2図に示すように、開
先1内に電極ノズル7を鉛直に挿入し、回転装置
8により電極ノズル7を回転させながら揺動装置
10によつて開先1の形状に適合した位置O(第
1図参照)を中心として母材板厚方向に揺動させ
る。消耗電極6はこの電極ノズル7に対して所定
の回転半径をもつ偏心位置に自動送給されるの
で、電極6に対し一定の回転と同時に母材板厚方
向の揺動を与えながら開先1のエレクトロガス溶
接を行うことができる。
Next, the method of the present invention will be explained together with the operation of the welding apparatus. As shown in FIGS. 1 and 2, the electrode nozzle 7 is vertically inserted into the groove 1, and while the electrode nozzle 7 is rotated by the rotating device 8, it is shaped into the groove 1 by the swinging device 10. It is swung in the thickness direction of the base material around a suitable position O (see Fig. 1). Since the consumable electrode 6 is automatically fed to an eccentric position with a predetermined rotation radius with respect to the electrode nozzle 7, the electrode 6 is rotated at a constant rate and at the same time is given swinging motion in the thickness direction of the base material. Electrogas welding can be performed.

而して、この場合において揺動中心位置Oは、
開先1の形状に適合させて所定の位置にあらかじ
め設定されている。しかし、溶接の進行に伴い何
らかの原因によつてその揺動中心位置がずれたと
きにはそのずれを母材板厚方向に修正しつつ倣わ
せる必要がある。すなわち、例えば揺動中心位置
Oは一般に板厚の中心に設定され、その揺動中心
位置Oがが第2図において左側(F側)へずれる
と右端部(B側)の溶込不足を生じ、裏面ビード
形状の不良をまねくし、逆に右側(B側)へずれ
ると左端部(F側)の溶込不足を生じ、表面ビー
ド形状の不良をまねくことになる。また、揺動中
心位置Oが板厚中心線上より上側(R側)へずれ
ると下側(L側)の開先壁の溶込不足を生じ、逆
に下側(L側)へずれると上側(R側)の開先壁
の溶込不足を生じ、いずれも表裏ビード形状が不
良となるおそれがある。
In this case, the swing center position O is
It is set in advance at a predetermined position to match the shape of the groove 1. However, as welding progresses, if the center of oscillation shifts for some reason, it is necessary to correct the shift in the thickness direction of the base material and make it follow. That is, for example, the swing center position O is generally set at the center of the plate thickness, and if the swing center position O shifts to the left side (F side) in Fig. 2, insufficient penetration at the right end (B side) will occur. , this will lead to a defective back bead shape, and conversely, if it shifts to the right side (B side), there will be insufficient penetration at the left end (F side), leading to a defective front bead shape. Additionally, if the swing center position O shifts upward (R side) from the plate thickness center line, insufficient penetration of the groove wall on the lower side (L side) will occur, and conversely, if it shifts downward (L side), the upper This may result in insufficient penetration of the groove wall on the R side, resulting in poor bead shapes on both the front and back sides.

そこで、まず、本発明の揺動中心位置の倣い制
御は次のようにして行うものである。すなわち、
電極ノズル7の揺動中、回転アークのアーク電流
またはアーク電圧を検出し、その波形を、第2図
において、電極6の回転の1周期ごとに、開先幅
方向の中心線aに対して前半周期と後半周期に2
等分し、回転の前半周期ごとの波形を揺動中心位
置Oより揺動前半周期の期間積分して面積SFを求
め、一方、回転の後半周期ごとの波形を揺動中心
位置Oより揺動前半周期の期間積分して面積SB
求める。そして、積分値SFとSBが等しくなるよう
に揺動中心位置Oを母材板厚方向の正しい位置に
修正するものである。
First, the following control of the swing center position of the present invention is performed as follows. That is,
While the electrode nozzle 7 is oscillating, the arc current or arc voltage of the rotating arc is detected, and its waveform is plotted against the center line a in the groove width direction for each period of rotation of the electrode 6 in FIG. 2 in the first half cycle and the second half cycle
The area S F is obtained by integrating the waveform for each first half period of the rotation over the period of the first half period of the rotation from the center position O of the rotation. Find the area S B by integrating over the period of the first half of the dynamic period. Then, the swing center position O is corrected to the correct position in the thickness direction of the base material so that the integral values S F and S B become equal.

いま、揺動中心位置Oの母材板厚方向の位置ず
れがなく正確な倣いが行われている場合には、揺
動の左側反転位置におけるアーク回転位置Cf点と
銅当金4間の距離及び揺動の右側反転位置におけ
るアーク回転位置Cr点と銅当金5間の距離は等し
いので、その両点における検出波形はほぼ同形と
なり、回転の前半周期の積分値SFと後半周期の積
分値SBもほぼ同じになる。しかし、揺動中心位置
Oが左側へずれた場合は、電極6は左側反転位置
では左側の銅当金4へより接近し、右側反転位置
では右側の銅当金5からさらに離れることにな
り、上記2つの距離の間に差が生じる。例えば、
アーク電流波形を検出する場合については、検出
された電流波形が揺動の左端(F側)ではアーク
回転位置Cf点で溶接電流値が増大し、積分値SF
上記の正常な場合に比べて増大する。一方、揺動
の右端(B側)ではアーク回転位置Cr点で溶接電
流値が減少し、積分値SBは上記の正常な場合に比
べて減少する。つまり、SF>SBとなる。
Now, if accurate copying is being performed without any deviation in the position of the swing center position O in the thickness direction of the base material, the position between the arc rotation position C f and the copper dowel 4 at the left side reversal position of the swing is correct. Since the distance and the distance between the arc rotation position C r point at the right-side reversal position of the oscillation and the copper pad 5 are equal, the detected waveforms at both points are almost the same, and the integral value S F of the first half period of rotation and the second half period are the same. The integral value S B is also almost the same. However, if the swing center position O shifts to the left, the electrode 6 will move closer to the left copper butt 4 in the left inverted position, and will move further away from the right copper butt 5 in the right inverted position. A difference occurs between the above two distances. for example,
When detecting the arc current waveform, when the detected current waveform is at the left end of the swing (F side), the welding current value increases at the arc rotation position C f point, and the integral value S F is equal to the above normal case. increase compared to On the other hand, at the right end (B side) of the swing, the welding current value decreases at the arc rotation position C r point, and the integral value S B decreases compared to the above normal case. In other words, S F > S B.

したがつて、SF−SB=0になるように揺動中心
位置を移動制御するものである。このとき、積分
値SF,SBは最大値でもN個の平均値でも良い。ま
た、揺動中心位置が上記と反対に右側へずれた場
合でも同様に位置の修正ができる。さらにアーク
電流波形の代りにアーク電圧波形を用いても同様
に倣い制御ができる。
Therefore, the swing center position is controlled to move so that S F −S B =0. At this time, the integral values S F and S B may be the maximum value or the average value of N values. Further, even if the swing center position shifts to the right side, contrary to the above, the position can be corrected in the same way. Further, similar control can be performed by using an arc voltage waveform instead of an arc current waveform.

この倣い制御方法を次に第3図の実施例に従つ
て説明する。第3図は母材板厚方向のずれを修正
する揺動倣いのための制御ブロツク図である。同
図において17は電極6のアーク電流又はアーク
電圧の波形の検出器、18は検出された出力波形
から脈流成分をとりだすための基準値発生器、1
9はこれらの検出波形と基準値の差動増幅器、2
0は差動増幅器19の出力波形を電極6の回転の
1周期ごとについて母材板厚方向の前半部(F
側)と後半部(B側)に2等分するための切換ス
イツチで、上記電極ノズル7の回転位置を回転位
置検出器9によつて検出し、その回転位置信号に
よつてF側とB側に交互に切換えられる。21は
F側積分器で、電極6の回転の前半周期ごとの波
形を揺動中心位置より揺動前半周期の期間、積分
する。この積分値SFは次の差動増幅器23に入力
される。22はB側積分器で、電極6の回転の後
半周期ごとの波形を揺動中心位置より揺動後半周
期の期間、積分する。この積分値SBは上記と同様
に差動増幅器23に入力され、ここでSFとSBを比
較する。F側積分器21及びB側積分器22それ
ぞれの前記動作期間は揺動中心と左右端位置でパ
ルスを発生するタイミングパルス発生器24によ
つて定められる。25は差動増幅器で、この差動
増幅器25によつて上記積分値SF,SBの差動増幅
出力と、開先形状に適合する揺動中心位置を示す
あらかじめ設定された基準値26とを比較する。
27は、差動増幅器25の差動出力がゼロとなる
ように揺動中心位置を制御しつつ、W軸モータ1
4を駆動する駆動制御器である。
This tracing control method will next be explained according to the embodiment shown in FIG. FIG. 3 is a control block diagram for oscillating tracing to correct deviations in the thickness direction of the base material. In the figure, 17 is a detector for the arc current or arc voltage waveform of the electrode 6, 18 is a reference value generator for extracting the pulsating flow component from the detected output waveform, and 1
9 is a differential amplifier for these detected waveforms and the reference value; 2
0 is the output waveform of the differential amplifier 19 in the first half (F
The rotational position of the electrode nozzle 7 is detected by the rotational position detector 9, and the rotational position signal is used to divide the electrode nozzle into two halves, the F side and the B side. Switched alternately to the side. Reference numeral 21 denotes an F-side integrator that integrates the waveform of each first half cycle of the rotation of the electrode 6 from the swing center position for the period of the first half cycle of the swing. This integral value SF is input to the next differential amplifier 23. Reference numeral 22 denotes a B-side integrator which integrates the waveform for each second half cycle of the rotation of the electrode 6 from the swing center position over the period of the second half cycle of the swing. This integral value S B is input to the differential amplifier 23 in the same manner as described above, where S F and S B are compared. The operation period of each of the F-side integrator 21 and the B-side integrator 22 is determined by a timing pulse generator 24 that generates pulses at the swing center and the left and right end positions. Reference numeral 25 denotes a differential amplifier, which outputs a differential amplification output of the integral values S F and S B , and a preset reference value 26 indicating the swing center position suitable for the groove shape. Compare.
27 controls the swing center position so that the differential output of the differential amplifier 25 becomes zero, and the W-axis motor 1
This is a drive controller that drives 4.

したがつて、第3図の制御回路を用いれば電極
ノズル7の揺動中心位置がずれたときには、上記
のようにして求めた積分値SFとSBの差値があらか
じめ設定された基準値26と異なつてくるので、
両者が等しくなるようにW軸ドライバ27を介し
てW軸モータ14を駆動し、母材板厚方向に電極
ノズル7の揺動中心位置の修正を行うのである。
この動作は揺動半周期ごとに行なわれるので正確
な揺動倣いを行うことができる。
Therefore, if the control circuit shown in FIG. 3 is used, when the center of swing of the electrode nozzle 7 shifts, the difference between the integral values S F and S B obtained as described above will be used as the preset reference value. Since it is different from 26,
The W-axis motor 14 is driven via the W-axis driver 27 so that both are equal, and the swing center position of the electrode nozzle 7 is corrected in the thickness direction of the base material.
Since this operation is performed every half period of the swing, accurate swing tracing can be performed.

次に、本発明の開先幅方向の倣い制御について
も上述の揺動中心位置倣い制御と同様に考えるこ
とができる。すなわち、第2図において、揺動軸
が開先1の中心線と一致している場合には、アー
ク回転位置CRとR側の開先壁面間の距離及びア
ーク回転位置CLとL側の開先壁面間の距離は等
しい。
Next, the tracing control in the groove width direction of the present invention can be considered in the same manner as the above-described swing center position tracing control. In other words, in Fig. 2, if the swing axis coincides with the center line of groove 1, the distance between the arc rotation position C R and the groove wall on the R side, and the distance between the arc rotation position C L and the L side The distance between the groove walls is equal.

したがつて、上記のように検出された波形を、
電極6の回転の1周期ごとに、板厚方向の中心線
bに対して右半周期と左半周期に2等分し、右半
周期ごとの積分値SRと左半周期ごとの積分値SL
求め、両積分値あるいは平均値を比較すれば両値
はほぼ等しくなる。しかし、揺動軸が例えば上側
(R側)へずれた場合には、上記2つの距離が異
なつてくるため、CR点では溶接電流値が増大し、
CLでは逆に減少する。したがつて、SR>SLとな
る。そこで、SR−SL=0となるように揺動軸の位
置の修正を行うのである。また、揺動軸が下側
(L側)へずれた場合も同様に行うことができる。
上記の母材板厚方向の揺動倣いと共に、開先幅方
向のずれを修正するには、第4図に示すように、
第3図の制御ブロツク図に開先幅方向の制御ブツ
ク図を結合したものとすることによつて、行うこ
とができる。この場合において電極ノズル7は開
先幅方向には揺動しないので、検出されたアーク
電流又はアーク電圧の波形を回転の1周期ごとに
ついて開先幅方向に左半周期部(L側)と右半周
期部(R側)に2等分し、その左半周期ごとの平
均値28と右半周期ごとの平均値29を差動増幅
器30にかけ、両者の差値が零になるようにX軸
ドライバ31を介してX軸モータ15を駆動すれ
ばよい。これによつて、電極ノズル7の中心位置
のずれは母材板厚のみならず開先幅方向にも修正
されるので、より正確な倣い溶接を実現できる。
なお第4図において第3図と同一符号は同一のも
のを示し、説明は省略する。
Therefore, the waveform detected as above is
Each period of rotation of the electrode 6 is divided into two equal parts, a right half period and a left half period, with respect to the center line b in the plate thickness direction, and the integral value S R of each right half period and the integral value of each left half period are calculated. If S L is determined and both integral values or average values are compared, the two values will be approximately equal. However, if the swing axis shifts upward (to the R side), the two distances will become different, and the welding current value will increase at point C.
On the contrary, it decreases in CL . Therefore, S R > S L. Therefore, the position of the swing axis is corrected so that S R −S L =0. Furthermore, the same procedure can be performed when the swing axis is shifted downward (L side).
In addition to the above-mentioned swing copying in the thickness direction of the base material, in order to correct the deviation in the groove width direction, as shown in Fig. 4,
This can be done by combining the control block diagram of FIG. 3 with a control book diagram for the groove width direction. In this case, since the electrode nozzle 7 does not swing in the groove width direction, the waveform of the detected arc current or arc voltage is divided into the left half period part (L side) and the right half period part (L side) in the groove width direction for each rotation period. Divide into half periods (R side), apply the average value 28 for each left half period and the average value 29 for each right half period to the differential amplifier 30, and adjust the X axis so that the difference value between the two becomes zero. The X-axis motor 15 may be driven via the driver 31. Thereby, the deviation in the center position of the electrode nozzle 7 is corrected not only in the base material plate thickness but also in the groove width direction, so that more accurate profile welding can be realized.
Note that in FIG. 4, the same reference numerals as in FIG. 3 indicate the same components, and a description thereof will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、消耗電極に対
し回転と同時に母材板厚方向の揺動を与えながら
エレクトロガス溶接を行う場合において、その電
極ノズルの揺動中心位置のずれを揺動半周期ごと
に修正し、開先形状に適合した位置で揺動倣いを
行わせることができるので、溶接欠陥のない良好
な立向溶接を行うことができる。また、電極ノズ
ルの中心を板厚方向の倣いと共に開先幅方向にも
倣わせる場合には一層良好に立向溶接を行うこと
ができる。
As described above, according to the present invention, when electrogas welding is performed while rotating and simultaneously giving a swinging motion to the consumable electrode in the thickness direction of the base material, the shift in the swinging center position of the electrode nozzle can be corrected. Since it is possible to perform oscillation tracing at a position that is corrected every half period and is adapted to the groove shape, it is possible to perform good vertical welding without welding defects. Moreover, when the center of the electrode nozzle is traced not only in the plate thickness direction but also in the groove width direction, vertical welding can be performed more favorably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための自動立向
溶接装置の概略正面図、第2図は同平面図、第3
図は本願の第1の発明に使用する制御ブツク図、
第4図は同じく第2の発明に使用する制御ブツク
図である。 1:開先、2,3:母材、4,5:銅当金、
6:電極、7:電極ノズル、8:回転装置、9:
回転位置検出器、10:揺動装置(W軸)、1
1:揺動腕、12:アーム、13:X軸スライ
ダ、14:W軸モータ、15:X軸モータ、1
6:台車、17:アーク電流又はアーク電圧波形
検出器、18:基準値発生器、19:差動増幅
器、20:切換スイツチ、21:F側積分器、2
2:B側積分器、23:差動増幅器、24:タイ
ミングパルス発生器、25:差動増幅器、26:
基準値発生器、27:W軸駆動制御器、28:L
側平均値、29:R側平均値、30:差動増幅
器、31:X軸ドライバ。
Fig. 1 is a schematic front view of an automatic vertical welding apparatus for carrying out the method of the present invention, Fig. 2 is a plan view of the same, and Fig.
The figure is a diagram of a control book used in the first invention of the present application.
FIG. 4 is a control book diagram similarly used in the second invention. 1: Bevel, 2, 3: Base material, 4, 5: Copper dowel,
6: Electrode, 7: Electrode nozzle, 8: Rotating device, 9:
Rotational position detector, 10: Swing device (W axis), 1
1: Swing arm, 12: Arm, 13: X-axis slider, 14: W-axis motor, 15: X-axis motor, 1
6: Trolley, 17: Arc current or arc voltage waveform detector, 18: Reference value generator, 19: Differential amplifier, 20: Changeover switch, 21: F side integrator, 2
2: B-side integrator, 23: Differential amplifier, 24: Timing pulse generator, 25: Differential amplifier, 26:
Reference value generator, 27: W-axis drive controller, 28: L
side average value, 29: R side average value, 30: differential amplifier, 31: X-axis driver.

Claims (1)

【特許請求の範囲】 1 消耗電極に対し回転と同時に母材板厚方向の
揺動を与えながらエレクトロガス溶接を行う場合
において、 アーク電流又はアーク電圧の波形を検出し、該
波形を上記回転の1周期ごとについて板厚方向に
前後半周期毎に2等分し、その前半周期ごとの波
形を揺動中心より揺動前半周期の期間積分して求
めた値SFと、上記回転の後半周期ごとの波形を揺
動中心より揺動後半周期の期間積分して求めた値
SBとを比較して、その差値があらかじめ設定した
基準値と等しくなるように上記揺動中心の位置を
板厚方向に修正しながら溶接を行うことを特徴と
する揺動を伴う回転アーク立向溶接方法。 2 消耗電極に対し回転と同時に母材板厚方向の
揺動を与えながらエレクトロガス溶接を行う場合
において、 アーク電流又はアーク電圧の波形を検出し、該
波形を上記回転の1周期ごとについて板厚方向に
前後半周期毎に2等分し、その前半周期ごとの波
形を揺動中心より揺動前半周期の期間積分して求
めた値SFと、上記回転の後半周期ごとの波形を揺
動中心より後半周期の期間積分して求めた値SB
を比較して、その差値があらかじめ設定した基準
値と等しくなるように上記揺動中心の位置を板厚
方向に修正し、さらに上記のように検出された波
形を上記回転の1周期ごとについて開先幅方向に
左右半周期ごとに2等分し、その左半周期ごとの
波形の平均値と、右半周期ごとの波形の平均値と
を比較して、その差値が零になるように上記揺動
中心の位置を開先幅方向に修正しながら溶接を行
うことを特徴とする揺動を伴う回転アーク立向溶
接方法。
[Claims] 1. When electrogas welding is performed while rotating the consumable electrode and simultaneously giving it a swing in the thickness direction of the base material, detecting the waveform of the arc current or arc voltage, and converting the waveform to the waveform of the rotation The value S F obtained by dividing each cycle into two equal parts in the thickness direction into the front and half cycles, and integrating the waveform of each half cycle from the center of oscillation over the period of the first half of the oscillation cycle, and the second half cycle of the rotation mentioned above. The value obtained by integrating the waveform for each period from the center of the oscillation over the period of the second half of the oscillation cycle.
A rotating arc with oscillation characterized by performing welding while correcting the position of the oscillation center in the plate thickness direction so that the difference between S and B becomes equal to a preset reference value. Vertical welding method. 2. When electrogas welding is performed while rotating the consumable electrode and simultaneously giving it vibration in the thickness direction of the base material, the waveform of the arc current or arc voltage is detected, and the waveform is used to determine the thickness of the plate for each cycle of the rotation. The waveform of each half cycle is divided into two equal parts in the direction, and the waveform of each half cycle is integrated from the center of oscillation over the period of the first half cycle of oscillation, and the value S F is obtained. Compare the value S B obtained by integrating the period of the second half of the cycle from the center, correct the position of the above-mentioned rocking center in the plate thickness direction so that the difference value becomes equal to the preset reference value, and then Divide the detected waveform into two halves for each left and right half period in the groove width direction for each period of the rotation, and calculate the average value of the waveform for each left half period and the average value of the waveform for each right half period. A rotating arc vertical welding method involving oscillation, characterized in that welding is performed while correcting the position of the oscillation center in the groove width direction so that the difference value becomes zero.
JP4139084A 1984-03-06 1984-03-06 Vertical welding method with rotating arc accompanying oscillation Granted JPS60187473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4139084A JPS60187473A (en) 1984-03-06 1984-03-06 Vertical welding method with rotating arc accompanying oscillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4139084A JPS60187473A (en) 1984-03-06 1984-03-06 Vertical welding method with rotating arc accompanying oscillation

Publications (2)

Publication Number Publication Date
JPS60187473A JPS60187473A (en) 1985-09-24
JPH0141439B2 true JPH0141439B2 (en) 1989-09-05

Family

ID=12607045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4139084A Granted JPS60187473A (en) 1984-03-06 1984-03-06 Vertical welding method with rotating arc accompanying oscillation

Country Status (1)

Country Link
JP (1) JPS60187473A (en)

Also Published As

Publication number Publication date
JPS60187473A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
US4441011A (en) Rotary arc-welding method
JPS6329627B2 (en)
US4704513A (en) Groove tracing control method for high-speed rotating arc fillet welding
JPH0258031B2 (en)
JPS5832578A (en) Arc welding method
JPH0141439B2 (en)
EP0367850B1 (en) Apparatus for automatically fillet-welding object to be welded comprising rectangular bottom plate and four side plates tack-welded substantially vertically to said bottom plate
JP2745951B2 (en) Back bead control method in single side welding
JPS60191668A (en) Arc welding robot
JPH0459992B2 (en)
JP2795429B2 (en) Oscillate welding method
JP2969694B2 (en) Welding line profiling control method
JPH0249831B2 (en)
JP3183038B2 (en) Groove profiling method and groove profiling control device in electrode rotating non-consumable electrode arc welding
JPH09164481A (en) Method for controlling attitude of welding torch on inclining face and device therefor
JP3152063B2 (en) Groove profiling method and groove profiling control device in electrode rotating non-consumable electrode arc welding
JP3115206B2 (en) Arc sensor device
JPH0426941B2 (en)
JPH0671667B2 (en) Welding line tracking control method for welding torch
JPH01148465A (en) High-speed rotating arc pulse fillet welding method
JPS60174270A (en) Rotating arc welding method
JPH0191964A (en) High-speed rotating arc welding method
JPS6224870A (en) Rotary arc fillet welding method
JPH0420708B2 (en)
JPS60111777A (en) Arc welding method