JPS6384636A - Catalyst for purifying exhaust gas - Google Patents
Catalyst for purifying exhaust gasInfo
- Publication number
- JPS6384636A JPS6384636A JP61226283A JP22628386A JPS6384636A JP S6384636 A JPS6384636 A JP S6384636A JP 61226283 A JP61226283 A JP 61226283A JP 22628386 A JP22628386 A JP 22628386A JP S6384636 A JPS6384636 A JP S6384636A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- praseodymium
- alumina
- carrier
- rhodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 63
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 60
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 33
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000010948 rhodium Substances 0.000 claims abstract description 26
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 26
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 25
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 20
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract description 36
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract description 36
- 239000000843 powder Substances 0.000 abstract description 20
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052878 cordierite Inorganic materials 0.000 abstract description 7
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 abstract description 7
- 239000002002 slurry Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 abstract description 4
- 150000003057 platinum Chemical class 0.000 abstract description 4
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 239000011247 coating layer Substances 0.000 abstract description 3
- 150000003283 rhodium Chemical class 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 238000010304 firing Methods 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000000746 purification Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 239000010970 precious metal Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 229960001759 cerium oxalate Drugs 0.000 description 1
- ZMZNLKYXLARXFY-UHFFFAOYSA-H cerium(3+);oxalate Chemical compound [Ce+3].[Ce+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O ZMZNLKYXLARXFY-UHFFFAOYSA-H 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- -1 praseodymium Chemical compound 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
自動車等の内燃機関から排出される排ガス中の有害成分
である炭化水素(HC)、−酸化炭素(CO)、窒素酸
化物(NOx)を効率よく浄化する排ガス浄化用触媒に
関する。[Detailed Description of the Invention] (Industrial Application Field) Hydrocarbons (HC), -carbon oxides (CO), and nitrogen oxides (NOx), which are harmful components in exhaust gas emitted from internal combustion engines such as automobiles, are This invention relates to an efficient exhaust gas purification catalyst.
(従来の技術) 従来、内燃機関から排出される排ガス中のHC,G。(Conventional technology) Conventionally, HC and G in exhaust gas emitted from internal combustion engines.
及びNOxを浄化する排ガス浄化用触媒は種々提案され
ており、なかでもセリウムを活性アルミナに適当量添加
すると耐熱性が著しく向上することから、例えば特開昭
52−116779号公報、特開昭54=159391
号公報に開示されているように、あらかじめセリウムを
含存させた活性アルミナ粉末をモノリス担体基材の表面
に付着させた後に、白金、ロジウム、パラジウム等の単
独又は組合せてなる触媒金属を担持させた触媒が提案さ
れている。Various exhaust gas purifying catalysts for purifying NOx and NOx have been proposed, and among them, heat resistance is significantly improved when an appropriate amount of cerium is added to activated alumina. =159391
As disclosed in the publication, activated alumina powder containing cerium in advance is attached to the surface of a monolithic carrier base material, and then a catalytic metal such as platinum, rhodium, palladium, etc. alone or in combination is supported. catalysts have been proposed.
(発明が解決しようとする問題点)
しかしながら、このような従来の排ガス浄化用触媒にあ
っては、活性アルミナに担持されたセリウムが熱による
結晶成長を起し、セリウム酸化物(セリア)の安定な結
晶構造をとり、酸素吸脱着能即ち酸素(0□)ストレー
ジ能を低下させる。またセリアと共存することで高活性
を発揮している白金、ロジウム等がセリアの結晶成長に
ともないセリアとの相互作用を失なう結果、触媒成分で
ある貴金属のシンタリングが進み、活性を低下させると
いう問題点があった。(Problems to be Solved by the Invention) However, in such conventional exhaust gas purification catalysts, cerium supported on activated alumina causes crystal growth due to heat, resulting in the stability of cerium oxide (ceria). It takes on a crystal structure and reduces the oxygen adsorption/desorption ability, that is, the oxygen (0□) storage ability. In addition, platinum, rhodium, etc., which exhibit high activity when coexisting with ceria, lose their interaction with ceria as ceria crystals grow, resulting in sintering of the precious metals that are catalyst components, resulting in a decrease in activity. There was a problem with letting it work.
(問題点を解決するための手段)
発明者はセリアにプラセオジウムを添加することでセリ
アの熱による結晶成長が抑制され、セリアの不定比性が
維持安定化されることを確かめ、プラセオジウム、セリ
ウム、活性アルミナを含むアルミナコート層とすること
で、アルミナコート層自体の耐熱性、0□ストレージ能
を高く保持することが可能となり、触媒活性の低下を防
止し得ることを知見し、この発明を達成するに至った。(Means for solving the problem) The inventor confirmed that by adding praseodymium to ceria, the crystal growth of ceria due to heat is suppressed, and the non-stoichiometry of ceria is maintained and stabilized. This invention was achieved based on the discovery that by using an alumina coat layer containing activated alumina, it is possible to maintain high heat resistance and 0□ storage capacity of the alumina coat layer itself, and prevent a decrease in catalyst activity. I ended up doing it.
即ち、この発明はプラセオジウム、セリウム、活性アル
ミナを含むアルミナコート層中に、白金、ロジウムの少
なくとも一種を担持してなる排ガス浄化用触媒に関する
ものである。That is, the present invention relates to an exhaust gas purifying catalyst comprising at least one of platinum and rhodium supported in an alumina coat layer containing praseodymium, cerium, and activated alumina.
次にこの発明の触媒の製造方法を説明する。先ず活性ア
ルミナ担体に、プラセオジウムを含むセウムの硝酸塩水
溶液を、浸漬法等で所定量を含浸し、乾燥後、空気中6
00〜650℃で1.5〜2時間焼成してプラセオジウ
ム及びセリアを担持した活性アルミナを得る。次に、プ
ラセオジウムを包含するセリウムの炭酸塩または蓚酸塩
を空気気流中で焼成して得たプラセオジウムを担持する
セリア粉末と、上記活性アルミナとを、硝酸酸性ベーマ
イトアルミナゾルと混合粉砕して得られるスラリーを、
コーディエライト質一体型担体基材表面に塗布する。乾
燥終了後、空気雰囲気中650℃〜850℃で焼成して
触媒担体を得る。得られた触媒担体に、白金塩、ロジウ
ム塩水溶液を用い、浸漬法等で、白金、ロジウムの少な
くとも一種を担持させ、乾燥後、燃焼ガス気流中で、5
50°C〜750°Cで、0.5時間〜2時間焼成する
。なお、焼成は、昇温、徐冷パターンを用いることが望
ましい。Next, a method for producing the catalyst of the present invention will be explained. First, an activated alumina carrier is impregnated with a predetermined amount of an aqueous solution of ceum nitrate containing praseodymium by a dipping method, and after drying, it is soaked in air for 6 hours.
The activated alumina carrying praseodymium and ceria is obtained by firing at 00 to 650°C for 1.5 to 2 hours. Next, a slurry obtained by mixing and pulverizing the above-mentioned activated alumina and the ceria powder supporting praseodymium obtained by calcining a cerium carbonate or oxalate containing praseodymium in an air stream is obtained. of,
Apply to the surface of the cordierite monolithic carrier base material. After completion of drying, the catalyst carrier is obtained by firing at 650°C to 850°C in an air atmosphere. At least one of platinum and rhodium is supported on the obtained catalyst carrier by a dipping method using an aqueous solution of platinum salt and rhodium salt, and after drying, it is heated in a combustion gas stream for 5
Bake at 50°C to 750°C for 0.5 to 2 hours. Note that it is desirable to use a temperature raising and slow cooling pattern for firing.
(作 用)
一般にδ−アルミナ構造又はγ−アルミナ構造を有する
活性アルミナは、触媒用担体として知られるが、高温度
下では、不活性で安定なα−アルミナに転移してしまい
、触媒用担体としては不都合になる。しかし活性アルミ
ナに適当量のセリウムを添加すると、著しく耐熱性が向
上し、かつプラセオジウムの存在下では、よりその効果
が増すことが確認されたが、あまり少量ではその効果が
弱く、また、あまり多量では活性アルミナ自身の持つ高
比表面積を低下させることになり、貴金属の分散性の面
から考えて、不都合となる。この発明では対活性アルミ
ナ比3〜5重量%の、プラセオジウムを含むセリウムを
含浸担持させることで、比表面積の低下を最小限にして
、耐熱性を向上させている。酸化セリウムは通常はとん
ど全てが、4価のセリウムの酸化物であり、一般にCe
O。(Function) Activated alumina, which generally has a δ-alumina structure or a γ-alumina structure, is known as a catalyst carrier, but at high temperatures it transforms into inactive and stable α-alumina, making it a catalyst carrier. This would be inconvenient. However, it was confirmed that adding an appropriate amount of cerium to activated alumina significantly improves heat resistance, and that the effect increases even more in the presence of praseodymium. This will reduce the high specific surface area of the activated alumina itself, which is disadvantageous from the standpoint of noble metal dispersibility. In this invention, by impregnating and supporting cerium containing praseodymium at a ratio of 3 to 5% by weight to activated alumina, the reduction in specific surface area is minimized and heat resistance is improved. Cerium oxide is usually almost entirely an oxide of tetravalent cerium, and generally Ce
O.
で表わされる。CeO□はそれ自体0□ストレージ効果
を持ち触媒のさらされる雰囲気に対し、応答雰囲気を拡
げる効果を持っているが、これはCeO□−8(0〈x
≦0.5)の、いわゆる不定比酸化物状態でのみ、有効
に発揮できる特性であることが解っているが、セリアは
、高温下で、結晶成長が進み、安定な4価状態になる。It is expressed as CeO□ itself has a 0□ storage effect and has the effect of expanding the response atmosphere to the atmosphere to which the catalyst is exposed.
≦0.5), which is a so-called non-stoichiometric oxide state, is known to be effective. However, at high temperatures, ceria undergoes crystal growth and becomes a stable tetravalent state.
またセリウムは、例えばランタン等に比ベイオン半径が
小さいため、他の金属を、その結晶格子の中に取り込み
、不定比性を持った複合酸化物を作ることが少ないとさ
れていた。この発明はこの点に着目し、検討を行なった
結果、少量のプラセオジウム(Pr)の存在下で、セリ
アはその結晶成長が抑制され、いわゆる不定比性を維持
することを見い出した。第1図はCeO□およびCeO
□にプラセオジウムを酸化物として全希土類酸化物中に
1.5重量%、4.6重量%、9.2重量%添加した場
合のそれぞれにつき各処理温度に3時間保持した際のC
eO,の格子定数(人)の測定結果を示す図で、曲線l
は高純度CeO□、曲線2はCeO□+ 1.5重量%
Pr、曲線3はCeO2+4.6重量%Pr、曲線4は
CeO2+ 9.2重量%Prの測定結果を示す。格子
定数は大きくなるとこのため格子酸素の移動がスムーズ
になり、0□ストレージ能が増大すると考えられる。セ
リウムに包含されるプラセオジウムの量は、本発明者に
よる排ガス浄化性能実験の結果酸化物として全希土類酸
化物の1.5重量%以上とするのが好ましいことがわか
った。また、プラセオジウムの量を9.2重量%より多
くしても排ガス浄化性能はほとんど変わらないにもかか
わらず、コストが高くつくため、プラセオジウムの量の
上限は酸化物として全希土類酸化物の9.2重量%以下
とするのが好ましい。この結果、自動車排ガス気等、高
温下でも、セリアの結晶上に分散担持された触媒成分を
有効に活用できることから、貴金属量の低減を図れると
いう効果がある。Furthermore, since cerium has a smaller specific veion radius than, for example, lanthanum, it was thought that it was unlikely that other metals would be incorporated into its crystal lattice to form non-stoichiometric composite oxides. The present invention focused on this point, and as a result of studies, it was discovered that in the presence of a small amount of praseodymium (Pr), ceria's crystal growth is suppressed and the so-called non-stoichiometric property is maintained. Figure 1 shows CeO□ and CeO
C when 1.5% by weight, 4.6% by weight, and 9.2% by weight of praseodymium was added to the total rare earth oxide as an oxide in □ and held at each treatment temperature for 3 hours.
A diagram showing the measurement results of the lattice constant (person) of eO, where the curve l
is high purity CeO□, curve 2 is CeO□ + 1.5% by weight
Curve 3 shows the measurement results for CeO2+ 4.6% by weight Pr, and curve 4 shows the measurement results for CeO2+ 9.2% Pr. It is thought that as the lattice constant increases, the movement of lattice oxygen becomes smoother, and the 0□ storage capacity increases. The amount of praseodymium included in cerium was found to be preferably 1.5% by weight or more of the total rare earth oxide as an oxide as a result of an exhaust gas purification performance experiment conducted by the present inventor. Furthermore, even if the amount of praseodymium is increased to more than 9.2% by weight, the exhaust gas purification performance will hardly change, but the cost will be high. The content is preferably 2% by weight or less. As a result, the catalyst component dispersed and supported on the ceria crystals can be effectively utilized even under high temperature conditions such as in automobile exhaust gas, which has the effect of reducing the amount of precious metals.
この発明は、イオン状態で、セリウムとプラセオジウム
を共存させ、しかる後に、酸化物にすることで、セリア
の不定比性を維持させている。In this invention, cerium and praseodymium are made to coexist in an ionic state, and then converted into an oxide, thereby maintaining the non-stoichiometric property of ceria.
すなわち、活性アルミナへは、プラセオジウムをを含む
セリウムの硝酸塩水溶液を含浸後、乾燥焼成する。この
時の焼成条件は、空気気流中600℃〜650℃で2時
間昇温ステップを用いずに行なう。また酸化物粉末は炭
酸塩、又は蓚酸塩を用い空気気流中昇温ステップを用い
、例えば6℃/mi+の昇温速度で600℃に加熱し、
この温度で例えばば2時間焼成して得られる。得られた
プラセオジウムを含むセリウムを担持した活性アルミナ
と、プラセオジウムを包含したセリア粉末とを、硝酸酸
性ベーマイトアルミナゾルと共に、磁製ボールミルボッ
トに投入し、混合粉砕してスラリーを得る。次にコーデ
ィエライト質一体型担体に複数回に分けて所定量のコー
ディングを行ない、乾燥終了後、空気気流中、又は燃焼
ガス気流中600℃〜750℃、望ましくは650℃〜
700℃で2時間以内同温度を保持する昇温ステップを
含むパターン例えば6℃/minの昇温速度で600℃
〜750℃の範囲の所定温度に加熱し、この温度で2時
間以内の所要時間焼成し、降温するパターンで焼成して
コーティング担体を得る。次に白金塩溶液または口、
ジウム塩溶液または白金塩溶液とロジウム塩溶液の混
合溶液中に、前記コーティング担体を浸漬し、所定量の
白金、ロジウムのうちの少なくとも一種、 を担持し
、乾燥後、燃焼ガス気流中550℃〜6501 ℃で
2時間以内同温度を保持する昇温ステップを含むパター
ンで焼成して触媒とする。このように作製した触媒はコ
ート層中にある不定比性を維持したセリアの0□ストレ
ージ効果により、広い排ガス雰囲気下にあっても、安定
と7だ触媒活性を発揮し、またセリアの耐熱性が向上し
た結果、貴金属のシンタリングが抑制され、触媒として
の耐久性を向上させることができる。That is, activated alumina is impregnated with an aqueous cerium nitrate solution containing praseodymium, and then dried and fired. The firing conditions at this time are 600 DEG C. to 650 DEG C. in an air stream for 2 hours without using a temperature raising step. Further, the oxide powder is heated to 600°C at a heating rate of 6°C/mi+ using a heating step in an air stream using carbonate or oxalate,
It is obtained by firing at this temperature for, for example, 2 hours. The obtained activated alumina supporting cerium containing praseodymium and ceria powder containing praseodymium are placed in a porcelain ball millbot together with a nitric acidic boehmite alumina sol, and mixed and pulverized to obtain a slurry. Next, a predetermined amount of coating is applied to the cordierite monolithic carrier in multiple batches, and after drying, it is placed in an air stream or a combustion gas stream at 600°C to 750°C, preferably 650°C to
A pattern that includes a heating step of holding the same temperature at 700°C for less than 2 hours. For example, 600°C at a heating rate of 6°C/min.
The coated carrier is obtained by heating to a predetermined temperature in the range of ~750°C, firing at this temperature for a required time of 2 hours or less, and firing in a pattern of decreasing temperature. then platinum salt solution or mouth,
The coating carrier is immersed in a dium salt solution or a mixed solution of a platinum salt solution and a rhodium salt solution to support a predetermined amount of at least one of platinum and rhodium. The catalyst is fired at 6501° C. in a pattern including a heating step of maintaining the same temperature for up to 2 hours. The catalyst prepared in this way exhibits stability and catalytic activity even in a wide exhaust gas atmosphere due to the 0□ storage effect of ceria that maintains non-stoichiometry in the coating layer, and the heat resistance of ceria. As a result, sintering of the precious metal is suppressed, and the durability of the catalyst can be improved.
(実施例)
以下、この発明を、実施例、比較例、および試、 験
例により説明する。(Examples) The present invention will be explained below with reference to Examples, Comparative Examples, and Trial and Experimental Examples.
大上炎上
プラセオジウムを金属換算0.07重重量〜0.2重世
%含む硝酸セリウムの硝酸塩水溶液を、浸漬法を用い、
活性アルミナ担体にセリウム金属として3.0重量%担
持した。この時用いた活性アルミナはγ−またはδ−ア
ルミナ構造を持ち、B、E、T、法による比表面積が1
80m”/g以上であった。水溶液量はアルミナ粉末投
入後も十分攪拌できる量とし、10分間以上攪拌したの
ち、オープン9150℃以上で乾燥し、空気気流中60
0℃で2時間、同温度を保持する昇温ステップを含まな
いパターンで焼成し、セリウム担持アルミナ粉末を得た
。次に、プラセオジウムを金属換算で2.5重世%〜7
.0重世%含有するセリウムの蓚酸塩を、空気雰囲気中
600℃で2時間以内同温度を保持する昇温ステップを
含むパターンで焼成して、プラセオジウムを包含するセ
リア粉末を得た。ここに得られたセリア粉末は、約35
m”7gの比表面積を有し、X線回折ピークに表わされ
るセリア結晶(LLI)面から求められた結晶子径は2
50Å以下であった。A nitrate aqueous solution of cerium nitrate containing 0.07 weight to 0.2 weight percent of praseodymium on a metal basis was prepared using the immersion method.
3.0% by weight of cerium metal was supported on the activated alumina carrier. The activated alumina used at this time has a γ- or δ-alumina structure, and has a specific surface area of 1 according to the B, E, T method.
80 m"/g or more. The amount of the aqueous solution was set to be enough to stir even after the alumina powder was added, and after stirring for 10 minutes or more, it was dried at 9150°C or higher in an open air stream, and
Cerium-supported alumina powder was obtained by firing at 0° C. for 2 hours in a pattern that did not include a heating step of maintaining the same temperature. Next, praseodymium is 2.5% to 7% in terms of metal.
.. Ceria powder containing praseodymium was obtained by firing cerium oxalate containing 0 weight percent in an air atmosphere at 600° C. in a pattern including a heating step of maintaining the same temperature for less than 2 hours. The ceria powder obtained here is approximately 35
It has a specific surface area of 7g, and the crystallite diameter determined from the ceria crystal (LLI) plane represented by the X-ray diffraction peak is 2.
It was less than 50 Å.
以上得られたセリウム担持アルミナ粉末1188g、セ
リア粉末590g、および硝酸酸性アルミナゾル(ベー
マイトアルミナ10重量%懸濁液に、10重量%硝酸水
溶液を加えて得られたゾル) 2222gとを磁製ボー
ルミルに投入し、混合粉砕してスラリー液を得た。この
スラリー液を用い、アルミナ・シリカ・マグネシアを主
成分とするコーディエライト質一体型担体(1,71,
400セル)に、複数回に分けてコーティングを行ない
、乾燥した後、650℃で2時間同温度を保持する昇温
ステップを含むパターンで、空気気流中又は燃焼ガス気
流中で焼成して、コーティング担体を得た。この時のコ
ーティング看は340g/個に設定した。1,188 g of the cerium-supported alumina powder obtained above, 590 g of ceria powder, and 2,222 g of nitric acid acidic alumina sol (a sol obtained by adding a 10% by weight aqueous nitric acid solution to a 10% by weight suspension of boehmite alumina) were placed in a porcelain ball mill. The mixture was mixed and pulverized to obtain a slurry liquid. Using this slurry liquid, a cordierite monolithic carrier (1, 71,
400 cells) was coated in multiple batches, dried, and then baked in a flow of air or a flow of combustion gas in a pattern that included a heating step of holding the same temperature at 650°C for 2 hours. A carrier was obtained. The coating weight at this time was set at 340 g/piece.
得られたコーティング担体にジニトロジアンミン白金硝
酸溶液と硝酸ロジウムの混合溶液を用い、含浸法により
、白金を触媒1個当り1.91g 、ロジウムを触媒1
個当り0.191g担持したのち、乾燥し、燃焼ガス気
流中600℃で2時間以内同温度を保持する昇温ステッ
プを含むパターンで焼成し、触媒1を得た。得られた触
媒工は、アルミナコート層200g/ 1で、プラセオ
ジウムを包含するセリア68.2g / l! 、白金
1.124g/ I!、ロジウム0.112g/lを含
んでいた。Using a mixed solution of dinitrodiammine platinum nitric acid solution and rhodium nitrate on the obtained coated carrier, impregnation was carried out to give 1.91 g of platinum per catalyst and 1.91 g of rhodium per catalyst.
After supporting 0.191 g per piece, it was dried and fired in a pattern including a heating step of maintaining the same temperature at 600° C. for less than 2 hours in a combustion gas stream to obtain catalyst 1. The resulting catalyst contained 68.2 g/l of ceria containing praseodymium with 200 g/l of alumina coat layer! , platinum 1.124g/I! , containing 0.112 g/l of rhodium.
ス新Ill
実施例1において、得られたコーティング担体に、白金
を触媒1個当り0.772g、ロジウムを触媒1個当り
0.129gを担持する以外は同様にして、触媒2を得
た。得られた触媒2はアルミナコート層200g/ l
、プラセオジウムを包含するセリア68.2g /l
、白金0.454g/ It、ロジウム0.076g/
lを含んでいた。Catalyst 2 was obtained in the same manner as in Example 1, except that 0.772 g of platinum per catalyst and 0.129 g of rhodium per catalyst were supported on the obtained coated carrier. The obtained catalyst 2 has an alumina coating layer of 200 g/l.
, ceria including praseodymium 68.2 g/l
, platinum 0.454g/It, rhodium 0.076g/It
It contained l.
夫拒■ユ
実施例1において、得られたセリア担持アルミナ粉末1
308g / l、セリア粉末384g、硝酸酸性アル
ミナゾル2308gをボールミルに投入する以外同様に
してコート担体を得た。この時のアルミナコート量は3
40g/個に設定した。得られたコート担体にジニトロ
ジアンミン白金硝酸溶液を用い、白金を触媒l個当り2
.10g担持し、以下同様にして触媒3を得た。得られ
た触媒3は、アルミナコート層200g/ l 、プラ
セオジウムを包含するセリフ41.8g / !!、白
金1.236g/ lを含んでいた。Ceria-supported alumina powder 1 obtained in Example 1
A coated carrier was obtained in the same manner except that 308 g/l, 384 g of ceria powder, and 2,308 g of nitric acidic alumina sol were charged into the ball mill. The amount of alumina coating at this time is 3
The amount was set at 40g/piece. Using a dinitrodiammine platinum nitric acid solution on the obtained coated carrier, 2 platinum was added per liter of catalyst.
.. A catalyst 3 was obtained by supporting 10 g in the same manner. The obtained catalyst 3 had an alumina coat layer of 200 g/l and a serif containing praseodymium of 41.8 g/l! ! , containing 1.236 g/l of platinum.
ス五I朋土
実施例3において、ロジウムを触媒1個当り0.901
g担持した以外は同様にして触媒4を得た。In Example 3, rhodium was added at 0.901% per catalyst.
Catalyst 4 was obtained in the same manner except that g was supported.
得られた触媒4は、アルミナコート層200g/I!、
プラセオジウムを包含するセリア41.8g /β、ロ
ジウム0.530g/ lを含んでいた。The obtained catalyst 4 had an alumina coat layer of 200 g/I! ,
It contained 41.8 g/β of ceria including praseodymium and 0.530 g/l of rhodium.
1隻炭工
実施例1において、セリア担持アルミナ粉末1348g
、セリア粉末259g、硝酸酸性アルミナゾル239
3gをボールミルに投入した以外同様にしてコート担体
を得た。得られたコート担体に、白金を触媒1個当り1
.91g 、ロジウムを触媒1個当り0.191g担持
した以外は同様にして触媒5を得た。In one coal mine Example 1, ceria supported alumina powder 1348g
, ceria powder 259g, nitric acid acidic alumina sol 239g
A coated carrier was obtained in the same manner except that 3 g was put into a ball mill. Platinum was added to the obtained coated carrier at a rate of 1 per catalyst.
.. Catalyst 5 was obtained in the same manner except that 0.191 g of rhodium was supported per catalyst.
得られた触媒5はアルミナコート層200g/f、プラ
セオジウムを包含するセリフ29.5g/l、白金1.
124g/I!、ロジウム0.112g/I!を含んで
いた。The obtained catalyst 5 had an alumina coat layer of 200 g/f, a serif containing praseodymium of 29.5 g/l, and a platinum layer of 1.
124g/I! , Rhodium 0.112g/I! It contained.
実衡拠工
実施例5において、白金を触媒1個当り0.772g、
ロジウムを触媒1個当り0.129gを担持した以外は
同様にして触媒6を得た。得られた触媒6はアルミナコ
ート層200g/j!、プラセオジウムを包含するセリ
ア29.5g / l、白金0.454g/ J 、ロ
ジウム0.076g/lを含んでいた。In practical example 5, platinum was added at 0.772 g per catalyst;
Catalyst 6 was obtained in the same manner except that 0.129 g of rhodium was supported per catalyst. The obtained catalyst 6 had an alumina coat layer of 200 g/j! It contained 29.5 g/l of ceria, including praseodymium, 0.454 g/J of platinum, and 0.076 g/l of rhodium.
二較炎上
活性アルミナ粉末担体1437.0gとアルミナゾル(
ベーマイトアルミナ10重量%懸濁液に10重量%HN
O,を添加することによって得られたゾル)2563.
0gをボットミルに充填し、6時間粉砕した後、得られ
たスラリーをコーディエライトを主成分とする一体型担
体(1,71,400セル)に付着させ、650℃で2
時間焼成した。この時の付着量は340g/個に設定し
た。Comparison of flame activated alumina powder carrier 1437.0g and alumina sol (
10% by weight HN in a 10% by weight suspension of boehmite alumina
Sol obtained by adding O, 2563.
After filling 0g into a bot mill and grinding for 6 hours, the resulting slurry was attached to an integrated carrier (1,71,400 cells) mainly composed of cordierite, and heated at 650°C for 2 hours.
Baked for an hour. The amount of adhesion at this time was set at 340 g/piece.
次にこのアルミナ付着担体を、塩化白金酸と、塩化ロジ
ウムの混合水溶液に浸漬し、白金とロジウムの付着量が
白金1.91g 、ロジウム0.191gになるように
担持した後、600℃で2時間焼成し、触媒Aを得た。Next, this alumina-attached carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium deposited was 1.91 g of platinum and 0.191 g of rhodium. Catalyst A was obtained by firing for a period of time.
得られた触媒Aは、アルミナコート層200g/12、
白金L124g//!、ロジウム0.112g/eを含
んでいた。The obtained catalyst A had an alumina coat layer of 200 g/12,
Platinum L124g //! , containing 0.112 g/e of rhodium.
此1utl
セリウムをセリウム金属換算で5重量%担持させた活性
アルミナ粉末担体1437.0gとアルミナゾル256
3.Ogを用いた以外は比較例1と同様にして触媒Bを
得た。得られた触媒Bは、アルミナコート層200g/
A’、セリア11.Og / II、白金1.124g
/l、ロジウム0.112g/ lを含んでいた。This 1 utl 1437.0g of activated alumina powder carrier carrying 5% by weight of cerium in terms of cerium metal and 256g of alumina sol
3. Catalyst B was obtained in the same manner as Comparative Example 1 except that Og was used. The obtained catalyst B had an alumina coat layer of 200 g/
A', Celia 11. Og/II, platinum 1.124g
/l, and rhodium 0.112g/l.
北較斑ユ
セリウムを、セリウム金属換算で50重量%担持させた
活性アルミナ粉末担体454.3gとアルミナゾル25
63gを用いた以外は比較例1と同様にして触媒Cを得
た。得られた触媒Cは、アルミナコート量200g/
l 、セリア76.3g / e、白金1.124g/
f、ロジウム0.112g/ lを含んでいた。454.3g of activated alumina powder carrier supporting 50% by weight of cerium in terms of cerium metal and 25g of alumina sol
Catalyst C was obtained in the same manner as Comparative Example 1 except that 63 g was used. The obtained catalyst C had an alumina coating amount of 200 g/
l, ceria 76.3g/e, platinum 1.124g/
f, containing 0.112 g/l of rhodium.
ル較■土
特開昭52−116779号公報に記載された方法に従
ってシリカゲル2563g 、活性アルミナ粉末担体に
硝酸セリウム水溶液を含浸乾燥した後、空気気流中で6
00°C11,5時間焼成して、セリウムを金属換算で
3重量%担持した粒状担体1437gをボールミルに投
入し、6時間混合粉砕したのち、コーディエライト質担
体基材(1,7jl!、 400セル)にコーティング
し、乾燥した後650℃で2時間焼成した。この時の付
着量は340g/個に設定した。さらにこの担体を、塩
化白金酸と塩化ロジウムの混合水溶液に浸漬し、H2/
N 2気流中で還元した。この後の600℃で2時間
焼成して触媒りを得た。この触媒りは、アルミナコート
層200g/ff、セリア2.66g /β、白金1.
124g/ l、ロジウム0.112g/lを含んでい
た。According to the method described in Japanese Patent Application Laid-Open No. 52-116779, 2563 g of silica gel was impregnated into an activated alumina powder carrier with an aqueous cerium nitrate solution, dried, and then heated in an air stream for 60 minutes.
After firing at 00°C for 11.5 hours, 1437 g of a granular carrier supporting 3% by weight of cerium in terms of metal was placed in a ball mill, mixed and pulverized for 6 hours, and then processed into a cordierite carrier base material (1.7 jl!, 400 g). After drying, it was baked at 650°C for 2 hours. The amount of adhesion at this time was set at 340 g/piece. Furthermore, this carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and H2/
Reduced in a stream of N2. Thereafter, the mixture was calcined at 600° C. for 2 hours to obtain a catalyst. This catalyst contained an alumina coat layer of 200 g/ff, ceria 2.66 g/β, and platinum 1.
It contained 124 g/l and 0.112 g/l of rhodium.
比較1
特開昭54−159391号公報に記載された方法に従
ってアルミナゾル2563g、活性アルミナ粉末担体1
437gを、ボールミルに投入し、6時間混合粉砕した
のち、コーディエライト質担体基材(1,7L400セ
ル)にコーティングし、乾燥した後650℃で2時間焼
成した。この時のコーテイング量は340g/個に設定
した。次いでCe(NOz)+水溶液を用い、セリウム
を金属換算で28g付着させた。この後120℃で3時
間乾燥し、空気中600℃で2時間焼成した。さらにこ
の後、塩化白金酸と塩化ロジウムの混合水溶液中に浸漬
し、白金1.91g /個、ロジウム0.191g/個
になるように担持したのち、焼成して触媒Eを得た。得
られた触媒Eは、アルミナコート層200g/l、セリ
フ20.2g / 7!、ロジウム0.112g/ l
を含んでいた。Comparison 1 2563 g of alumina sol and activated alumina powder carrier 1 were prepared according to the method described in JP-A-54-159391.
437 g was put into a ball mill, mixed and pulverized for 6 hours, then coated on a cordierite carrier base material (1.7 L 400 cells), dried, and then fired at 650° C. for 2 hours. The coating amount at this time was set to 340 g/piece. Next, 28 g of cerium (metal equivalent) was deposited using Ce(NOz)+aqueous solution. Thereafter, it was dried at 120°C for 3 hours and fired in air at 600°C for 2 hours. Further, after this, the catalyst was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride to support platinum at 1.91 g/piece and rhodium at 0.191 g/piece, and then calcined to obtain catalyst E. The obtained catalyst E had an alumina coat layer of 200 g/l and a serif layer of 20.2 g/7! , rhodium 0.112g/l
It contained.
拭駿開
実施例1〜6で得た触媒1〜6および比較例1〜5で得
た触媒A−Hにつき、下記条件で実車耐久(エンジン耐
久)を行ない、10モードエミツシヨンの浄化率を測定
し、浄化率、5−ツー舊=として表1に示す。Catalysts 1 to 6 obtained in Examples 1 to 6 and catalysts A to H obtained in Comparative Examples 1 to 5 were subjected to actual vehicle durability (engine durability) under the following conditions, and the purification rate of 10 mode emission was determined. was measured and shown in Table 1 as the purification rate, 5-2-舊=.
王ユ/)乙慰汐J1生
触媒 一体型貴金属触媒触媒出口温度
750℃
空間速度 約7万Hr”
耐久時間 100時間
エンジン 排気tt2200cc燃料
無鉛ガソリン
耐久中入ロエミフション Go 0.4〜0.6%0
□ 0.5±0.1%
NO1001000
pp 2500ppm
co214.9±0.1%
髭■頂圭恒
排気量 2000cc車軸
表 1
(発明の効果)
以上説明してきたように、この発明の触媒によると、プ
ラセオジウムを包含することでセリアの不定比性が維持
され、しかも結晶の熱による成長が抑えられることから
、貴金属成分のシンタリングを主原因とする性能劣化が
抑えられ、又セリアの02ストレージ効果が有効に発揮
されることで貴金属成分の有効活用が図られ広い浄化域
と高耐久特性を有し且つ触媒コストの低減か図れるとい
う効果が得られる。Wang Yu/) Etsuyoshi J1 raw catalyst integrated noble metal catalyst catalyst outlet temperature
750℃ Space velocity approx. 70,000 Hr Durability time 100 hours Engine Exhaust TT2200cc Fuel
Unleaded gasoline durable intermediate loading Roemifusion Go 0.4-0.6%0
□ 0.5±0.1% NO1001000 pp 2500ppm co214.9±0.1% Displacement 2000cc axle table 1 (Effects of the invention) As explained above, according to the catalyst of this invention, By including praseodymium, the non-stoichiometry of ceria is maintained and the growth of crystals due to heat is suppressed, so performance deterioration mainly caused by sintering of precious metal components is suppressed, and the 02 storage effect of ceria is suppressed. By being effective, the precious metal components can be used effectively, and the effect of having a wide purification area, high durability, and reducing catalyst cost can be obtained.
第1図はプラセオジウム添加量とセリアの格子定数の変
化を示す曲線図である。FIG. 1 is a curve diagram showing changes in the amount of praseodymium added and the lattice constant of ceria.
Claims (1)
ルミナコート層中に、白金、ロジウムの少なくとも一種
を担持してなる排ガス浄化用触媒。1. An exhaust gas purifying catalyst comprising at least one of platinum and rhodium supported on an alumina coat layer containing praseodymium, cerium, and activated alumina.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61226283A JPS6384636A (en) | 1986-09-26 | 1986-09-26 | Catalyst for purifying exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61226283A JPS6384636A (en) | 1986-09-26 | 1986-09-26 | Catalyst for purifying exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6384636A true JPS6384636A (en) | 1988-04-15 |
Family
ID=16842783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61226283A Pending JPS6384636A (en) | 1986-09-26 | 1986-09-26 | Catalyst for purifying exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6384636A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5516740A (en) * | 1991-11-15 | 1996-05-14 | Exxon Research And Engineering Company | Catalyst comprising thin shell of catalytically active material bonded onto an inert core |
-
1986
- 1986-09-26 JP JP61226283A patent/JPS6384636A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5516740A (en) * | 1991-11-15 | 1996-05-14 | Exxon Research And Engineering Company | Catalyst comprising thin shell of catalytically active material bonded onto an inert core |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3274688B2 (en) | Catalyst composition containing separated platinum and rhodium components | |
US4157316A (en) | Polyfunctional catalysts | |
US6069111A (en) | Catalysts for the purification of exhaust gas and method of manufacturing thereof | |
JP3664182B2 (en) | High heat-resistant exhaust gas purification catalyst and production method thereof | |
JP4443685B2 (en) | Method for producing a cocatalyst for exhaust gas purification | |
KR100218204B1 (en) | Catalyst carrier having high heat resistance | |
WO2005102524A1 (en) | Metal oxide particle, production process thereof and exhaust gas purifying catalyst | |
JPH05184876A (en) | Catalyst for purifying exhaust gas | |
JPS63162043A (en) | Catalyst for cleaning exhaust gas | |
WO2005084796A1 (en) | Exhaust gas purifying catalyst, metal oxide particle and production process thereof | |
WO2005102516A1 (en) | Exhaust gas purifying catalyst and production process thereof | |
JP3297825B2 (en) | Exhaust gas purification catalyst | |
JP3251010B2 (en) | Three-way conversion catalyst containing ceria-containing zirconia support | |
JPH01139144A (en) | Catalyst for controlling exhaust emission | |
AU622867B2 (en) | Thermally stabilized catalysts containing alumina and methods of making the same | |
JPS63205141A (en) | Catalyst for purifying exhaust gas | |
JPH0811182B2 (en) | Exhaust gas purification catalyst | |
JP2578219B2 (en) | Method for producing exhaust gas purifying catalyst | |
JPH08131830A (en) | Catalyst for purification of exhaust gas | |
JPH11347410A (en) | Catalyst for cleaning of exhaust gas and its production | |
JPH06114264A (en) | Production of catalyst for purification of exhaust gas | |
JPH02265648A (en) | Exhaust gas purification catalyst | |
JPH0582258B2 (en) | ||
JP3362532B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH10216514A (en) | Catalyst for exhaust gas purification |