JPS638424A - Friction material - Google Patents

Friction material

Info

Publication number
JPS638424A
JPS638424A JP15168086A JP15168086A JPS638424A JP S638424 A JPS638424 A JP S638424A JP 15168086 A JP15168086 A JP 15168086A JP 15168086 A JP15168086 A JP 15168086A JP S638424 A JPS638424 A JP S638424A
Authority
JP
Japan
Prior art keywords
sulfur
flame
fibers
fiber
friction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15168086A
Other languages
Japanese (ja)
Other versions
JPH0355497B2 (en
Inventor
Takeo Matsunase
武雄 松名瀬
Takashi Takada
高田 貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP15168086A priority Critical patent/JPS638424A/en
Priority to DE19873783423 priority patent/DE3783423T2/en
Priority to EP87902710A priority patent/EP0263884B1/en
Priority to PCT/JP1987/000219 priority patent/WO1987006276A1/en
Publication of JPS638424A publication Critical patent/JPS638424A/en
Priority to US07/412,563 priority patent/US5502090A/en
Publication of JPH0355497B2 publication Critical patent/JPH0355497B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • D06M11/57Sulfates or thiosulfates of elements of Groups 3 or 13 of the Periodic Table, e.g. alums
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Braking Arrangements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To produce a novel friction material having high strength and excellent abrasion resistance and heat resistance and suitable as vehicle brake, etc., in good working environment without using asbestos, by using a base material produced by adding a specific amount of sulfur to an acrylic flame-resistant fiber. CONSTITUTION:A sulfur-containing acrylic flame-resistant fiber having a sulfur- content of >=3(wt)%, preferably >=5% is used as a base material for the objective friction material. The base material is preferably produced e.g. by dissolving a copolymer of acrylonitrile and itaconic acid in a solvent such s dimethyl sulfoxide, spinning the dope and heating the obtained acrylic fiber in sulfur dioxide gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、摩擦材、たとえば車両等のブレーキに使用さ
れる摩擦材に係り、さらに詳しくは高強度で、耐摩耗性
および耐熱性に優れたアクリル系耐炎化繊維を基材とす
る摩擦材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a friction material, for example, a friction material used in the brakes of vehicles, etc., and more specifically to a friction material that has high strength, excellent wear resistance, and heat resistance. The present invention relates to a friction material based on flame-resistant acrylic fiber.

(従来の技術) 従来、摩擦材には石綿を基材とし、この石綿に結合剤と
滑材などの摩擦特性を向上させる各種材料を配合し、所
定の形状に賦型したものが使用されてきた。
(Prior art) Conventionally, friction materials have been used that have asbestos as a base material, which is mixed with various materials that improve frictional properties such as a binder and a lubricant, and then shaped into a predetermined shape. Ta.

しかしながら、この石綿を基材とする摩擦材は、配合組
成物の分散混合工程や仕上げ工程などで粉塵化し、多量
の石綿を含有する粉塵が工場内に飛散するために、製造
に従事する従業者の健康を著しく害するという環境衛生
上の大きな問題があった。特にこの石綿がモルモットの
動物実験によって肺癌を誘発することが実証された現在
、欧米諸国においては法的にその使用が制限されるに至
り、国内においても石綿の使用は従業者が強く忌避する
ところとなってきた。
However, this asbestos-based friction material turns into dust during the dispersion mixing process and finishing process of the compounded composition, and a large amount of asbestos-containing dust is scattered within the factory, making it difficult for employees engaged in manufacturing. There was a major environmental health problem that seriously harmed people's health. In particular, now that asbestos has been proven to induce lung cancer in animal experiments on guinea pigs, its use has come to be legally restricted in Western countries, and even in Japan, employees are strongly discouraged from using asbestos. It has become.

そこでこの石綿に代替する材料として、各種の繊維、た
とえば炭素繊維、スチール繊維、ガラス繊維、アラミド
繊維(″ケブラー″)、フェノール繊維および耐炎化繊
維などが提案され、これらの代替繊維の中で比重が小さ
く、柔軟で、難燃性に優れ、かつ炭素繊維に比較して製
造コストが安価なアクリル系繊維をプレカーサとして得
られるアクリル系耐炎化繊維が注目されている。そして
、特公昭59−4456号公報には、アクリル系繊維を
空気中で酸化して得られる耐炎化繊維を基材としたブレ
ーキライニングが提案されている。
Therefore, various fibers such as carbon fiber, steel fiber, glass fiber, aramid fiber (Kevlar), phenol fiber, and flame-resistant fiber have been proposed as materials to replace asbestos. Acrylic flame-resistant fibers, which are obtained by using acrylic fibers as a precursor, are attracting attention because they are small in size, flexible, have excellent flame retardancy, and are cheaper to manufacture than carbon fibers. Japanese Patent Publication No. 59-4456 proposes a brake lining made of flame-resistant fibers obtained by oxidizing acrylic fibers in the air.

しかし、アクリル系繊維を高温の空気中で加熱、酸化す
ることによって製造される耐炎化繊維は、繊維内部に比
較して繊維の表皮部の酸化の程度が極めて大きい不均一
な酸化構造を有しているために、機械的強度、特に引張
強度が小さく、靭性(タフネス)が低く、耐摩耗性およ
び耐熱性が悪く、たとえば150’C以上の高温下で長
時間使用すると、その強度を失い、摩擦材などに使用し
た場合に耐久性が十分ではないという実用性能上の問題
があった。
However, flame-resistant fibers produced by heating and oxidizing acrylic fibers in high-temperature air have a non-uniform oxidation structure in which the degree of oxidation on the surface of the fibers is extremely large compared to the inside of the fibers. Because of this, its mechanical strength, especially tensile strength, is low, its toughness is low, and its wear resistance and heat resistance are poor. For example, when used for a long time at high temperatures of 150'C or higher, it loses its strength. When used as a friction material, etc., there was a problem in practical performance that the durability was insufficient.

特公昭47−36461号公報によると、アクリル系繊
維をプレカーサとして二酸化硫黄含有雰囲気中で加熱す
ることによってプレカーサよりも強力の大きい硫黄含有
耐炎化繊維が得られることが記載されている。本発明者
らはこの硫黄含有雰囲気中でのアクリル系繊維の耐炎化
によって得られる耐炎化繊維の特性および摩擦材への適
用について鋭意、検討を進めて本発明を為すに至ったも
のである。
According to Japanese Patent Publication No. 47-36461, it is described that by using acrylic fiber as a precursor and heating it in an atmosphere containing sulfur dioxide, a sulfur-containing flame-resistant fiber that is stronger than the precursor can be obtained. The present inventors have diligently studied the characteristics of flame-resistant fibers obtained by flame-resistant acrylic fibers in a sulfur-containing atmosphere and their application to friction materials, and have now accomplished the present invention.

(発明の解決しようとする問題点) 本発明の目的は、高温における耐摩耗性および耐熱性に
優れ、ビビ割れを生じ難い新規摩擦材を提供するにおり
、他の目的は前記環境衛生上人きな問題のおる石綿に代
替し得る摩擦材を提供するにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a new friction material that has excellent wear resistance and heat resistance at high temperatures and is less likely to cause chattering cracks. The purpose of the present invention is to provide a friction material that can replace asbestos, which has serious problems.

(問題点を解決するための手段) このような本発明の目的は、前記特許請求の範囲に記載
したように、 硫黄含有量が少なくとも3重量%である硫黄含有アクリ
ル系耐炎化繊維を基材とする摩擦材によって達成するこ
とができる。
(Means for Solving the Problems) The object of the present invention is to provide a base material made of sulfur-containing acrylic flame-resistant fiber having a sulfur content of at least 3% by weight, as described in the claims. This can be achieved by using a friction material.

本発明において、硫黄含有アクリル系耐炎化繊維は従来
の炭素繊維製造の中間体として得られる空気等の酸化性
雰囲気中で加熱することによって得られる酸化繊維とは
異なり、硫黄含有雰囲気中で加熱することによって得ら
れる硫黄含有環化構造および硫黄架橋結合などを有し、
このような構造および結合の導入によって耐炎性や芸域
的強度のみならず、耐熱性並びに靭性(タフネス)を顕
著に改良、向上せしめた耐炎化繊維である。
In the present invention, sulfur-containing acrylic flame-resistant fibers are produced by heating in a sulfur-containing atmosphere, unlike oxidized fibers obtained by heating in an oxidizing atmosphere such as air, which is obtained as an intermediate in conventional carbon fiber production. It has a sulfur-containing cyclized structure and sulfur crosslinks obtained by
By introducing such structures and bonds, it is a flame-resistant fiber that has significantly improved not only flame resistance and mechanical strength, but also heat resistance and toughness.

本発明の摩擦材を構成する硫黄含有耐炎化繊維は、該繊
維中に含有される硫黄量が少なくとも3重量%(以下、
特に断らないときは%は重量%を示す)、好ましくは5
%以上であることが望ましい。すなわち硫黄含有■が3
%未満の場合は繊維としての耐熱性が低下するほか、摩
擦材としての耐久性および耐摩耗性の大巾な向上を期待
できないので好ましくない。
The sulfur-containing flame-resistant fibers constituting the friction material of the present invention have a sulfur content of at least 3% by weight (hereinafter referred to as
Unless otherwise specified, % indicates weight %), preferably 5
% or more is desirable. In other words, the sulfur content ■ is 3
If it is less than %, the heat resistance of the fiber will decrease, and a significant improvement in durability and abrasion resistance as a friction material cannot be expected, which is not preferable.

本発明に用いる硫黄含有量が少なくとも3%である硫黄
含有アクリル系耐炎化繊維は、以下に詳述するように、
アクリル系繊維をプレカーサとして使用し、特定の耐炎
化工程および条件を採用するこによってはじめて製造す
ることができる繊維である。
The sulfur-containing acrylic flame-resistant fiber with a sulfur content of at least 3% used in the present invention is, as detailed below,
It is a fiber that can only be produced by using acrylic fiber as a precursor and adopting specific flame-retardant processes and conditions.

そして、このアクリル系繊維は、硫黄含有雰囲気中で比
較的緩慢な反応条件下に加熱、硫化せしめ、繊維内部ま
で十分に硫黄結合が導入された内外構造差の少ない耐炎
化繊維にすることが重要でるが、このような内外構造差
の少ない、高強度の硫黄含有耐炎化繊維を製造するため
には、プレカーサのアクリル系繊維としても内外構造差
の少ない、緻密で高強度のアクリル系繊維であることが
望ましい。
It is important to heat and sulfurize this acrylic fiber under relatively slow reaction conditions in a sulfur-containing atmosphere to make it a flame-resistant fiber with sufficient sulfur bonds introduced into the interior of the fiber and little difference in structure between the inside and outside. However, in order to produce high-strength sulfur-containing flame-resistant fibers with little difference in structure between the inside and outside, it is necessary to use dense, high-strength acrylic fibers with little difference in structure between the inside and outside as precursor acrylic fibers. This is desirable.

本発明の硫黄含有アクリル系耐炎化繊維の製造に使用さ
れるプレカーサ、すなわちアクリル系繊維としては、ア
クリロニトリル(以下、ANという>AN単独または少
なくとも95モル%のANと5モル%以下の該ANに対
して共重合性を有するモノマ、たとえばアクリル酸、メ
タクリル酸、イタコン酸なとのカルボン酸およびそれら
の1氏扱アルキルエステル類、ヒドロキシメチルアクリ
レート、ヒドロキシエチルアクリレート、ヒドロキシメ
チルメタクリレートなどのカルボン酸の水醗基を含有す
るヒドロキシアルキルアクリレート、アクリルアミド、
メタクリルアミド、α−クロルアクリロニトリル、ヒド
ロキシエチルアクリル酸、アリルスルホン酸、メタクリ
ルスルホン酸などとの共重合体からなる繊維を例示する
ことができる。
The precursor used in the production of the sulfur-containing acrylic flame-resistant fiber of the present invention, that is, the acrylic fiber, is acrylonitrile (hereinafter referred to as AN), which is used alone or in combination with at least 95 mol% of AN and 5 mol% or less of the AN. Monomers that are copolymerizable with acrylic acid, methacrylic acid, itaconic acid, and their alkyl esters; water of carboxylic acids such as hydroxymethyl acrylate, hydroxyethyl acrylate, and hydroxymethyl methacrylate hydroxyalkyl acrylate containing a radical, acrylamide,
Examples include fibers made of copolymers with methacrylamide, α-chloroacrylonitrile, hydroxyethyl acrylic acid, allylsulfonic acid, methacrylsulfonic acid, and the like.

好ましくは、その極限粘度が少なくとも1.5、ざらに
好ましくは2.0〜5.0の高重合度AN系ポリマがよ
い。
Preferably, a high degree of polymerization AN-based polymer having an intrinsic viscosity of at least 1.5, more preferably 2.0 to 5.0 is preferred.

これらのAN系ポリマは、ジメチルスルホキシド(DM
SO) 、ジメチルアセタミド(DMAc>、ジメチル
ホルムアミド(DMF)などの有機溶剤、塩化カルシウ
ム、塩化亜鉛、ロダンソーダなどの無機塩濃厚水溶液、
硝酸などの無機系溶剤に溶解して、ポリマ濃度が5〜2
0%の紡糸原液とし、湿式、乾式または乾・湿式紡糸法
、好ましくは乾・湿式紡糸法によって繊度が0.5〜7
デニール(d)、好ましくは1〜5dの繊維を作成する
These AN-based polymers are dimethyl sulfoxide (DM
SO), organic solvents such as dimethylacetamide (DMAc>, dimethylformamide (DMF)), concentrated aqueous solutions of inorganic salts such as calcium chloride, zinc chloride, and rhodan soda,
When dissolved in an inorganic solvent such as nitric acid, the polymer concentration is 5 to 2.
Using a 0% spinning stock solution, the fineness is 0.5 to 7 by wet, dry or dry/wet spinning, preferably dry/wet spinning.
Fibers are made with a denier (d), preferably 1 to 5 d.

この繊度が0,5dよりも小さいと、得られる耐炎化繊
維の強力が小さく、耐摩耗性の良好な摩擦材を得ること
が困難になるし、7dよりも大きいと、繊維断面におい
て硫化が均一な硫化処理を行うことが難しくなるので好
ましくない。
If the fineness is smaller than 0.5d, the strength of the flame-resistant fibers obtained will be low, making it difficult to obtain a friction material with good wear resistance.If the fineness is larger than 7d, sulfurization will be uniform in the fiber cross section. This is not preferable because it makes it difficult to carry out proper sulfurization treatment.

特に極限粘度が2.5以上の高重合度AN系ポリマの溶
剤溶液(紡糸原液)を用いて、乾・湿式紡糸法、たとえ
ば紡糸口金面と凝固浴液面との間の距離が1〜20mm
、好ましくは3〜10mmの範囲内に設定された該紡糸
口金孔を通して、前記紡糸原液を凝固浴に導き、得られ
た凝固繊維糸条を常法により、水洗、脱溶媒、1次延伸
、乾燥・緻密化し、1qられた極めて延伸性に優れてい
るam糸条を150〜270’Cの乾熱下に1.1倍、
好ましくは1.5倍以上延伸し、全有効延伸倍率が少な
くとも10倍、好ましくは12倍以上であり、引張強度
が少なくとも10q/d以上の高強度、高弾性率で、内
外構造差の少ない緻密な繊維を製造するのがよい。
In particular, using a solvent solution (spinning stock solution) of a highly polymerized AN-based polymer with an intrinsic viscosity of 2.5 or more, dry/wet spinning methods are used, for example, when the distance between the spinneret surface and the coagulation bath liquid level is 1 to 20 mm.
The spinning dope is introduced into a coagulation bath through the spinneret hole, which is preferably set in the range of 3 to 10 mm, and the resulting coagulated fiber thread is washed with water, desolventized, primary stretched, and dried by conventional methods.・The am yarn, which has been densified and stretched by 1q and has extremely excellent drawability, is heated to 150 to 270'C by 1.1 times.
It is preferably stretched by 1.5 times or more, has a total effective stretching ratio of at least 10 times, preferably 12 times or more, has a high tensile strength of at least 10 q/d, has a high modulus of elasticity, and is dense with little difference in internal and external structures. It is better to produce fibers that are

かくして得られたアクリル系繊維プレカーサは、硫黄含
有雰囲気、たとえば二硫化炭素、硫化水素、二酸化硫黄
および硫黄ガスなどの単独または混合ガス中で加熱、硫
化されるが、好ましくは繊維断面全体が均一に硫化され
たく二重構造でない)繊維を再現性よく製造できる二酸
化硫黄を硫黄含有雰囲気として使用するのがよく、また
耐炎化温度は250〜400’Cの温度領域で加熱、硫
化するのがよい。
The acrylic fiber precursor thus obtained is heated and sulfurized in a sulfur-containing atmosphere, such as carbon disulfide, hydrogen sulfide, sulfur dioxide, and sulfur gas alone or in combination, preferably uniformly over the entire fiber cross section. It is preferable to use sulfur dioxide as the sulfur-containing atmosphere, since it can produce fibers with good reproducibility (not sulfurized and not double-structured), and it is preferable to heat and sulfurize the flameproofing temperature at a temperature range of 250 to 400'C.

この二酸化硫黄雰囲気中でのアクリル系繊維の硫化は、
空気などの通常の酸化性雰囲気にあける酸化に比較して
反応が緩慢であり、二酸化硫黄が繊維中にスムースに浸
透し、結果として硫黄原子が繊維断面全体に均一に分布
した、内外構造差のない耐炎化繊維を形成するのである
The sulfurization of acrylic fibers in this sulfur dioxide atmosphere is
Compared to oxidation in a normal oxidizing atmosphere such as air, the reaction is slow, and sulfur dioxide penetrates into the fibers smoothly.As a result, sulfur atoms are uniformly distributed throughout the fiber cross-section, resulting in a difference in internal and external structures. This results in the formation of flame-resistant fibers.

本発明において、前記硫黄含有雰囲気、特に二酸化硫黄
雰囲気中には、窒素、酸素などの他のガスを適宜混合し
た加熱雰囲気であってもよく、特に二酸化硫黄と窒素と
の混合ガスは、二酸化硫黄を効率よく繊維と反応させる
上で有効である。この耐炎化工程の加熱は、一定温度条
件下でもよいし、昇温下でもよい。たとえば、第1段加
熱を250〜290℃の温度範囲に保たれた加熱炉中で
行い、第2段加熱を290〜400℃の温度範囲内で、
かつ段階的に昇温条件に設定された加熱炉内で加熱して
繊維を硫化し、耐炎化を完結させる方法を例示すること
ができる。
In the present invention, the sulfur-containing atmosphere, particularly the sulfur dioxide atmosphere, may be a heated atmosphere in which other gases such as nitrogen and oxygen are appropriately mixed, and in particular, the mixed gas of sulfur dioxide and nitrogen is sulfur dioxide. It is effective in efficiently reacting with fibers. Heating in this flameproofing step may be performed under constant temperature conditions or under elevated temperature conditions. For example, the first stage heating is performed in a heating furnace maintained at a temperature range of 250 to 290°C, and the second stage heating is performed within a temperature range of 290 to 400°C.
An example of this method is to sulfurize the fibers by heating them in a heating furnace set to a temperature increasing condition in stages to complete flame resistance.

、  また、アクリル系繊維プレカーサは、弛緩、緊張
および定長のいずれの条件下に加熱してもよいが、引張
強度の大きい耐炎化繊維を製造する上では、できるだけ
高張力下、たとえば少なくとも0゜3 g/d以上の張
力を与えて、加熱して繊維を硫化し、耐炎化せしめるの
がよい。
In addition, the acrylic fiber precursor may be heated under any of the following conditions: relaxed, tensioned, and constant length, but in order to produce flame-resistant fibers with high tensile strength, it is preferable to heat the acrylic fiber precursor under as high a tension as possible, for example, at least 0°. It is preferable to apply a tension of 3 g/d or more and heat to sulfurize the fibers and make them flame resistant.

かくして得られる硫黄含有アクリル系繊維は、上述した
ように硫黄原子が導入されれているだけではなくて、該
硫黄原子が繊維断面全体に均一に分布した構造を有して
いるために、少なくとも3g/d、好ましくは4 Cl
/6以上という高強度および優れた耐熱性を示すので、
摩擦材として優れた性能、たとえば耐久性、耐摩耗性な
どを有する。
The sulfur-containing acrylic fiber thus obtained not only has sulfur atoms introduced therein as described above, but also has a structure in which the sulfur atoms are uniformly distributed over the entire cross section of the fiber, so that it contains at least 3 g. /d, preferably 4Cl
It exhibits high strength of /6 or more and excellent heat resistance,
It has excellent performance as a friction material, such as durability and wear resistance.

次に上記硫黄含有アクリル系耐炎化繊維(以下、単に耐
炎化繊維という)から本発明の摩擦材を作成する方法と
しては、特に限定されるものではなく、通常の方法を適
用すればよい。たとえば、該耐炎化繊維を長さ1〜10
mmにカットし、マトリックス樹脂およびその他の添加
物と共に混合した後、成形し摩擦材にすることができる
。耐炎化繊維は上記カット繊維のみならず、フィラメン
トや紡績糸などの長繊維から各種の布帛を作成し、これ
らの布帛を摩擦材の基布としてもよいし、長繊維または
短繊維不織布を作成し、この不MA 15を摩擦材の基
布としてもよい。
Next, the method for producing the friction material of the present invention from the sulfur-containing acrylic flame-resistant fiber (hereinafter simply referred to as flame-resistant fiber) is not particularly limited, and any conventional method may be used. For example, the length of the flame resistant fiber is 1 to 10
It can be cut into mm pieces, mixed with a matrix resin and other additives, and then molded into a friction material. Flame-resistant fibers include not only the cut fibers mentioned above, but also various fabrics made from long fibers such as filaments and spun yarns, and these fabrics may be used as base fabrics for friction materials, or long fibers or short fibers nonwoven fabrics may be made. , this non-MA 15 may be used as a base fabric for a friction material.

マトリックス樹脂としては、特に限定されるものではな
いが、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂
、芳香族ポリエステル系樹脂、含硫黄耐熱性樹脂など耐
熱性や摩擦特性に優れた樹脂を使用するのがよい。
The matrix resin is not particularly limited, but it is preferable to use resins with excellent heat resistance and frictional properties, such as phenol resins, epoxy resins, polyimide resins, aromatic polyester resins, and sulfur-containing heat-resistant resins. .

添加物としては、耐熱性を有する各種繊維類、たとえば
アラミド繊維、炭素繊維、スチール繊維、ガラス繊維、
フェノール繊維、ポリイミド繊維およびアスベストを例
示することができる。また、摩擦特性の改質を目的に各
種無機および有機充填剤、たとえば黒鉛、シリカ粉、ア
ルミナ粉、硫酸バリウム、金属粉、マイカ、クレー、炭
酸カルシウム、二硫化モリブデン、パライト、カシュダ
スト、ラバーダストなどを配合することができる。
Additives include various heat-resistant fibers such as aramid fibers, carbon fibers, steel fibers, glass fibers,
Examples include phenolic fibers, polyimide fibers and asbestos. In addition, various inorganic and organic fillers such as graphite, silica powder, alumina powder, barium sulfate, metal powder, mica, clay, calcium carbonate, molybdenum disulfide, pallite, cash dust, rubber dust, etc. are used to improve friction properties. can be blended.

さらに本発明に用いる耐炎化繊維は、硫黄が含有されて
いることに基因して、マトリックス樹脂に対する接着性
に優れているために、摩擦材におけるマトリックス樹脂
の配合量を少なくすることができる。摩擦材中のマトリ
ックス樹脂は、繊維やフィラーの接着剤の役割を有する
が、通常マトリックス樹脂量が多くなるにつれて摩擦材
の耐熱性が低下し、反対に繊維やフィラーの接合力は増
大する。しかるに本発明に使用する耐炎化繊維は、マト
リックス樹脂に対する接着性に優れているので、マトリ
ック樹脂量を少なくし、摩擦材の耐熱性を大きく向上さ
せることが可能になるのである。
Furthermore, the flame-resistant fiber used in the present invention has excellent adhesion to the matrix resin due to the sulfur content, so the amount of matrix resin blended in the friction material can be reduced. The matrix resin in the friction material has the role of an adhesive for the fibers and fillers, but as the amount of matrix resin increases, the heat resistance of the friction material usually decreases, and on the contrary, the bonding force between the fibers and fillers increases. However, since the flame-resistant fiber used in the present invention has excellent adhesion to matrix resin, it is possible to reduce the amount of matrix resin and greatly improve the heat resistance of the friction material.

(発明の効果) 本発明になる少なくとも3型組%の硫黄を含有する硫黄
含有アクリル系耐炎化繊維は、耐摩耗性、耐熱性および
マトリックス樹脂に対する接着性に極めて優れた繊維で
あるから、高温、たとえば少なくとも300℃以上の温
度領域でも摩擦材としての特性を十分に発揮する。した
がって、たとえば高圧力下に短時間で回転する自動車や
各種機械のブレーキなどの回転体において、回転体の停
止時に回転体は多量の熱を発生し、高度の耐熱性が要求
されることになるが、この高速回転体に要求される高度
の耐熱性を十分に満足する摩擦材を与えるのである。
(Effects of the Invention) The sulfur-containing acrylic flame-resistant fiber containing at least 3% sulfur according to the present invention is a fiber with extremely excellent abrasion resistance, heat resistance, and adhesion to matrix resin, so it can be used at high temperatures. For example, it fully exhibits its properties as a friction material even in a temperature range of at least 300°C or higher. Therefore, for example, in rotating bodies such as the brakes of automobiles and various machines that rotate under high pressure for a short time, the rotating body generates a large amount of heat when it stops, and a high degree of heat resistance is required. This provides a friction material that fully satisfies the high degree of heat resistance required for this high-speed rotating body.

このような本発明の摩擦材は上記自動車のディスクパッ
ド、ブレーキライニング材料、クラッチなどのみならず
、一般産業用の摩擦材として極めて有用である。 以下
、実施例により本発明の効果をざらに具体的に説明する
Such a friction material of the present invention is extremely useful not only for the above-mentioned automobile disc pads, brake lining materials, clutches, etc., but also as a friction material for general industrial use. EXAMPLES Hereinafter, the effects of the present invention will be explained in detail using Examples.

なお、本発明において、摩擦特性、耐熱性は次の測定法
により測定した値である。
In the present invention, the frictional properties and heat resistance are values measured by the following measuring method.

摩擦特性: 耐炎化繊維を基材とする板状の摩擦材を鈴木式摩耗試験
機を用いて、荷重10Kg/cm2、周速度100m/
m i n、温度250℃、および350℃で摩耗した
時の摩擦係数と摩耗量を求め、現行素材のアスベストの
摩耗量を100とし、その相対値を以て表示した。
Friction properties: A plate-shaped friction material based on flame-resistant fiber was tested using a Suzuki abrasion tester at a load of 10 kg/cm2 and a circumferential speed of 100 m/cm.
The friction coefficient and amount of wear when worn at temperatures of 250° C. and 350° C. were determined, and the amount of wear of asbestos, the current material, was assumed to be 100, and the relative values were expressed.

耐熱性: 耐炎化繊維を180℃の空気中に弛緩状態で10日間加
熱した後の強力保持率(%)をもって示した。
Heat resistance: The strength retention rate (%) is shown after flame-resistant fibers are heated in air at 180° C. for 10 days in a relaxed state.

実施例1 アクリロニトリル(AN>99.7モル%とイタコン酸
0.3モル%からなる極限粘度が3.2のAN系共重合
体をジメチルスルホキシド(DMSO)に溶解し、得ら
れた紡糸原液を乾・湿式紡糸法によって紡糸し、延伸、
熱処理などの1変処理を施して、強度が11.3Ω/d
、伸度13%のアクリル系繊維を得た。このアクリル系
繊維をプレカーサとして300 ’Cの亜硫酸ガス中で
40分間加熱し、第1表に示した硫黄含有アクリル系耐
炎化繊維を)qた。
Example 1 An AN-based copolymer with an intrinsic viscosity of 3.2 consisting of acrylonitrile (AN>99.7 mol% and 0.3 mol% itaconic acid) was dissolved in dimethyl sulfoxide (DMSO), and the resulting spinning stock solution was Spun by dry/wet spinning method, stretched,
After undergoing one-change treatment such as heat treatment, the strength is 11.3Ω/d.
, an acrylic fiber with an elongation of 13% was obtained. This acrylic fiber was heated as a precursor in sulfur dioxide gas at 300'C for 40 minutes to obtain the sulfur-containing acrylic flame-resistant fiber shown in Table 1).

この耐炎化繊維を約1mmにカットし、該耐炎化繊維、
フェノール系樹脂およびCaC○3フィラーを容積比率
で57:25:18で混合し、この配合物を金型に入れ
、180’C1200Kc+/Cm2の条件下にホット
プレスして成形した後、得られた成型品の表面を研磨し
600番のサンドペーパー(水有り状態)で仕上げて水
洗、屹燥して摩擦材を作成した。
This flame-resistant fiber is cut into approximately 1 mm, and the flame-resistant fiber is
The phenolic resin and CaC○3 filler were mixed in a volume ratio of 57:25:18, this mixture was put into a mold, and the mixture was hot-pressed and molded under the conditions of 180'C1200Kc+/Cm2. The surface of the molded product was polished and finished with No. 600 sandpaper (with water), washed with water, and dried to create a friction material.

この摩擦材の摩擦係数、摩耗量などの摩擦特性を同じく
第1表に示した。
The friction characteristics of this friction material, such as the friction coefficient and amount of wear, are also shown in Table 1.

比較例1〜3 実施例1において、亜硫酸ガス中での加熱条件を250
℃、30分とした以外同様に加熱焼成して、第1表に示
す繊維特性を有する硫黄含有アクリル系耐炎化繊維を作
成した。
Comparative Examples 1 to 3 In Example 1, the heating conditions in sulfur dioxide gas were changed to 250
A sulfur-containing acrylic flame-resistant fiber having the fiber properties shown in Table 1 was prepared by heating and firing in the same manner except that the temperature was 30 minutes.

また、同じ〈実施例1のアクリル系繊維を250℃、9
0分、空気中で加熱、酸化し、第1表に示す物性を有す
る耐炎化繊維を作成した。
In addition, the same acrylic fiber of Example 1 was heated at 250°C at 9°C.
The mixture was heated and oxidized in air for 0 minutes to produce flame-resistant fibers having the physical properties shown in Table 1.

上記耐炎化繊維および市販のアスベストを用いて、実施
例1と同様にして摩擦材を作成した後、それらの摩擦係
数、摩耗量などの摩擦特性を測定した。その結果を第1
表に示した。
Friction materials were prepared in the same manner as in Example 1 using the flame-resistant fibers and commercially available asbestos, and then their friction properties such as friction coefficient and amount of wear were measured. The result is the first
Shown in the table.

第1表から、本発明の摩擦材は、摩擦材を構成する硫黄
含有アクリル系耐炎化繊維の高い引張強度と耐熱性を反
映して、アスベストや従来の耐炎化(酸化)繊維からな
る摩擦材に比較して優れた摩擦特性を有する摩擦材であ
ることが判る。
From Table 1, the friction material of the present invention is a friction material made of asbestos and conventional flame-resistant (oxidized) fibers, reflecting the high tensile strength and heat resistance of the sulfur-containing acrylic flame-resistant fibers that constitute the friction material. It can be seen that this is a friction material with superior friction properties compared to .

Claims (1)

【特許請求の範囲】[Claims] (1)硫黄含有量が少なくとも3重量%である硫黄含有
アクリル系耐炎化繊維を基材とする摩擦材。
(1) A friction material based on a sulfur-containing acrylic flame-resistant fiber having a sulfur content of at least 3% by weight.
JP15168086A 1986-04-14 1986-06-30 Friction material Granted JPS638424A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15168086A JPS638424A (en) 1986-06-30 1986-06-30 Friction material
DE19873783423 DE3783423T2 (en) 1986-04-14 1987-04-09 COMPOSITE REINFORCED WITH SULFATED ACRYLIC FIBERS.
EP87902710A EP0263884B1 (en) 1986-04-14 1987-04-09 Composite material reinforced with sulfurized acrylic fibers
PCT/JP1987/000219 WO1987006276A1 (en) 1986-04-14 1987-04-09 Sulfurized acrylic fibers with high strength and high toughness, process for their preparation, and composite material comprising them
US07/412,563 US5502090A (en) 1986-04-14 1989-09-25 High tenacity and high toughness acrylic sulfide fibers, a process for production thereof, and composite materials prepared by using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15168086A JPS638424A (en) 1986-06-30 1986-06-30 Friction material

Publications (2)

Publication Number Publication Date
JPS638424A true JPS638424A (en) 1988-01-14
JPH0355497B2 JPH0355497B2 (en) 1991-08-23

Family

ID=15523905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15168086A Granted JPS638424A (en) 1986-04-14 1986-06-30 Friction material

Country Status (1)

Country Link
JP (1) JPS638424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150391A (en) * 2008-12-25 2010-07-08 Akebono Brake Ind Co Ltd Wet friction material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150391A (en) * 2008-12-25 2010-07-08 Akebono Brake Ind Co Ltd Wet friction material

Also Published As

Publication number Publication date
JPH0355497B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
JP2012082541A (en) Method for producing carbon fiber
WO2005080448A1 (en) Solution containing flame-resistant polymer and carbon molding
JP2008163537A (en) Method for producing carbon fiber
JPS638424A (en) Friction material
JP2020509251A (en) Method for producing acrylonitrile fiber
JPS6127340B2 (en)
KR20140074136A (en) Precursor manufacturing device of carbon fiber
JPH02264075A (en) Reinforcing material for abrading material
JPH09249747A (en) Silicone rubber, silicone rubber particle, precursor for carbon fiber, and carbon fiber
US5502090A (en) High tenacity and high toughness acrylic sulfide fibers, a process for production thereof, and composite materials prepared by using it
JPS62149908A (en) Acrylic fibrilated fiber of high performance
JPH01266224A (en) Production of sulfur-containing preoxidized acrylic fiber
WO1987006276A1 (en) Sulfurized acrylic fibers with high strength and high toughness, process for their preparation, and composite material comprising them
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JPH0247311A (en) Production of carbon fiber
JPH0226923A (en) Production of fire-resistant yarn of sulfur-containing acrylic base
JPS63120116A (en) Sulfur-containing acrylic fibril-shaped flameproof fiber
JPH0618566Y2 (en) ▲ Ro ▼
JPH1036450A (en) Starting polyacrylonitrile/pitch material for production of carbonaceous material
JP2007182645A (en) Method for producing acrylic fiber
JPS599272A (en) Acrylonitrile fiber and method
JPH01306620A (en) Production of sulfur-containing acrylic inflammable fiber
JPH0454240Y2 (en)
JP2002266159A (en) Precursor fiber bundle for carbon fiber and method for producing the same