JPS638416B2 - - Google Patents

Info

Publication number
JPS638416B2
JPS638416B2 JP54049584A JP4958479A JPS638416B2 JP S638416 B2 JPS638416 B2 JP S638416B2 JP 54049584 A JP54049584 A JP 54049584A JP 4958479 A JP4958479 A JP 4958479A JP S638416 B2 JPS638416 B2 JP S638416B2
Authority
JP
Japan
Prior art keywords
measured
moisture
frequency dielectric
dry
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54049584A
Other languages
Japanese (ja)
Other versions
JPS55141654A (en
Inventor
Akitoshi Yamada
Koshiro Saito
Motohiko Arai
Yoshio Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujisash Co Ltd
Original Assignee
Fujisash Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisash Co Ltd filed Critical Fujisash Co Ltd
Priority to JP4958479A priority Critical patent/JPS55141654A/en
Publication of JPS55141654A publication Critical patent/JPS55141654A/en
Publication of JPS638416B2 publication Critical patent/JPS638416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • G01N5/045Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder for determining moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】 本発明は水分を含む汚泥等の水分測定方法とそ
の装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring water content in sludge and the like containing water.

水分測定方法としては、絶乾法、Kafl
Fischer法、ガス圧法、電気的方法、関係湿度測
定法、水素原子検出法、赤外線吸収法等があり、
各種の水分計が開発段階にある。一般には絶乾法
(重量法)に依る水分測定方法が採用されている。
すなわち、物質中の水分測定に際し、乾燥炉、あ
るいは、赤外線を用いて乾燥し物質中に含まれる
水分を完全に蒸発、除去し、絶乾状態とする事に
依り、乾燥前後の物質の重量減少割合から水分を
測定しているが、、乾燥炉、あるいは赤外線に依
る乾燥方法ではニクロム線等の発熱体により、乾
燥炉内部の雰囲気温度を高め、その輻射熱を利用
して、加熱乾燥する方法、あるいは赤外線ランプ
から放射される熱線により、加熱乾燥する方法で
あり、いずれも被測定物は、外部から内部へと
徐々に加熱乾燥される。その為熱効率が非常に悪
く高含水率の被測定物から水分を完全に蒸発、除
去し絶乾状態とするには乾燥炉による乾燥の場合
4〜5時間、赤外線を用いた場合でも1時間以上
の乾燥時間を要し、水分測定に際しては長時間の
測定時間を要している。即ち絶乾法による水分測
定は正確な反面、長時間を要するという欠点があ
る。したがつて例えば汚泥等の乾燥においては、
汚泥等の連続混練し固化する技術が開発されてい
ても適時に汚泥の水分含有量を把握することがで
きないため汚泥の固化剤を技術的、経済的に最適
化して供給することが困難な問題となつている。
以上の問題点に対して実願昭52−105828号(実開
昭54−33183号)の考案は被測定物の加熱に高周
波を用いている。処が該考案では被測定物が絶乾
状態となるまでは尚かなりの時間を要するもので
あり、測定に要する時間もそれだけかゝる欠点が
ある。
Moisture measurement methods include absolute dry method, Kafl
Fischer method, gas pressure method, electrical method, relative humidity measurement method, hydrogen atom detection method, infrared absorption method, etc.
Various moisture meters are in the development stage. Generally, a moisture measurement method based on the absolute dry method (gravimetric method) is adopted.
In other words, when measuring the moisture in a substance, the weight of the substance before and after drying is reduced by completely evaporating and removing the moisture contained in the substance by drying it using a drying oven or infrared rays, leaving it in an absolutely dry state. Moisture is measured from the percentage, but in drying methods that use a drying oven or infrared rays, the atmospheric temperature inside the drying oven is raised with a heating element such as a nichrome wire, and the radiant heat is used to heat and dry. Alternatively, there is a method of heating and drying using heat rays emitted from an infrared lamp, and in both cases, the object to be measured is gradually heated and dried from the outside to the inside. As a result, thermal efficiency is very poor, and it takes 4 to 5 hours to completely evaporate and remove water from a high-moisture-containing object to be completely dry, and it takes more than 1 hour even when using infrared rays. It takes a long time to dry, and it takes a long time to measure the moisture content. That is, although moisture measurement using the bone-dry method is accurate, it has the drawback of requiring a long time. Therefore, for example, when drying sludge, etc.,
Even if technology for continuously kneading and solidifying sludge, etc. has been developed, it is not possible to determine the moisture content of sludge in a timely manner, making it difficult to optimize and supply sludge solidifying agents technically and economically. It is becoming.
To solve the above problems, the idea of Utility Model Application No. 52-105828 (Utility Model Application No. 54-33183) uses high frequency waves to heat the object to be measured. However, this invention still requires a considerable amount of time until the object to be measured becomes completely dry, and the disadvantage is that the time required for measurement is also that long.

又、特開昭51−136490号公報に示される発明は
被測定物をマイクロ波で加熱し、定間隔の時点で
被測定物の重量を測定し、重量変化零の時点で加
熱を停止できる機能を附しているが、やはりかな
りの時間を要するものであり、測定に要する時間
も同様に多くかかる欠点がある。
Furthermore, the invention disclosed in Japanese Patent Application Laid-Open No. 51-136490 has a function of heating an object to be measured using microwaves, measuring the weight of the object at regular intervals, and stopping heating when the weight change is zero. However, it still takes a considerable amount of time, and it also has the disadvantage that it also takes a lot of time to measure.

本発明は測定がきわめて短時間で行われ得る絶
乾法による水分測定方法とその装置を提供するこ
とを目的とするものである。
An object of the present invention is to provide a method and apparatus for measuring moisture using an absolute dry method, which allows measurement to be carried out in an extremely short period of time.

本発明は予め水分含有量の異なる被測定物とし
ての対象群の各々について絶乾状態に到るまで高
周波誘電加熱乾燥を行いつつ被測定物重量を連続
あるいは間欠連続で経過時間の計測と併せて自動
計量を行なうことにより被測定物としての対象群
の各々の時間経過に対する水分減少量の変化の関
係及び当初水分含有量を記録し、次に同加熱を行
ない被測定物が絶乾状態となる以前に時間変化に
対する水分減少量の変化を知ることにより前記被
測定物としての対象群についての時間変化に対す
る水分減少量の変化関係と比較し被測定物の水分
含有量を測定する高周波誘電乾燥水分測定法であ
る。
The present invention involves performing high-frequency dielectric heating drying on each object group as objects to be measured having different moisture contents in advance until they reach an absolutely dry state, and measuring the weight of the objects to be measured continuously or intermittently and measuring the elapsed time. By performing automatic weighing, the relationship between the change in moisture loss over time and the initial moisture content of each target group as the object to be measured is recorded, and then the same heating is performed to bring the object to be measured into an absolutely dry state. High-frequency dielectric dry moisture that measures the moisture content of the object to be measured by previously knowing the change in the amount of moisture loss over time and comparing it with the change relationship of the amount of moisture loss over time for the target group as the object to be measured. It is a measurement method.

本発明を行う装置は上述の本発明を実行するた
め自動で水分を含む物の乾燥、測定、記録を行う
ことを可能ならしめる装置であつて、実施の態様
として高周波誘電加熱用電極の下方に回転テーブ
ルを備え回転テーブルの定位置停止装置と回転テ
ーブル装着した昇降装置と、計量装置とからな
り、計量装置の出力を変調増幅演算処理を行う制
御装置並びに表示装置、及び高周波誘電乾燥炉の
制御装置を備えたものである。
The device for carrying out the present invention is a device that makes it possible to automatically dry, measure, and record water-containing materials in order to carry out the above-mentioned present invention, and as an embodiment, a device under the high-frequency dielectric heating electrode is used. It is equipped with a rotary table and consists of a device for stopping the rotary table at a fixed position, a lifting device attached to the rotary table, and a weighing device, and a control device and display device that performs modulation, amplification, and calculation processing on the output of the weighing device, and control of a high-frequency dielectric drying furnace. It is equipped with a device.

本発明による水分測定方法についてのべる。汚
泥等の水分を測定するには乾燥状態を比較して時
間間隔をおいて前後において被測定物の重量差を
計量してその重量差が一般には零になる点を求め
て絶乾状態となし、乾燥前の被測定物重量と比較
して水分を求めることが行われている。
The moisture measuring method according to the present invention will be described. To measure the water content of sludge, etc., compare the dry state, measure the difference in weight of the object before and after at time intervals, and find the point where the weight difference generally becomes zero, which is considered to be an absolutely dry state. , moisture content is determined by comparing the weight of the object to be measured before drying.

乾燥前被測定物重量をWo、乾燥後被測定物重
量をWnとすると水分は Wo−Wn/Wo×100%あるいはWo−Wn/Wn×100% で表現される。
If the weight of the measured object before drying is Wo and the weight of the measured object after drying is Wn, the moisture content is expressed as Wo-Wn/Wo x 100% or Wo-Wn/Wn x 100%.

本発明において被測定物を高周波誘電乾燥を行
うと被測定物は内部発熱により急速に乾燥状態に
近ずく。その時間T1における被測定物の重量を
W1とし、時間T1より経過した後の時間をT2とし
てその時間T2における被測定物の重量をW2とす
ると、その経過時間に対する被測定物中の水分の
減少の割合即ち水分減少率は △W/△T=W2−W1/T2−T1 で表わされる。絶乾状態に近ずく状態は急速に被
測定物が発熱して急速に水分が追出され次第に時
間に対する水分の蒸発量の割合が減少するが、時
間間隔が全体としては短い。従つて被測定物の計
量を行う時間間隔△Tは短くする必要があり、あ
るいは連続に測定して微分値dW/dTとしてとら
える必要がある。したがつて高周波誘電乾燥を行
うに際して高周波誘電乾燥炉内にて被測定物の重
量を連続あるいは短かい間隔をおいて間欠連続計
量することとなる。高周波誘電加熱炉内にて被測
定物が計量された計量値は記録又は表示される必
要がある。そのために被測定物の計量装置は重量
を電気信号に変えるものであり高周波誘電乾燥炉
の外部にて演算処理して記録表示されることとな
る。
In the present invention, when the object to be measured is subjected to high-frequency dielectric drying, the object to be measured rapidly approaches a dry state due to internal heat generation. The weight of the object to be measured at that time T 1 is
If W 1 is the time after time T 1 has elapsed, and T 2 is the time after which time T 1 has elapsed, and W 2 is the weight of the object to be measured at that time T 2 , then the rate of decrease in moisture in the object to be measured with respect to the elapsed time, that is, the decrease in water content. The ratio is expressed as △W/△T=W 2 -W 1 /T 2 -T 1 . In a state approaching an absolutely dry state, the object to be measured rapidly generates heat and moisture is expelled rapidly, and the ratio of the amount of moisture evaporation to time gradually decreases, but the time interval is short overall. Therefore, it is necessary to shorten the time interval ΔT for measuring the object to be measured, or it is necessary to measure it continuously and take it as a differential value dW/dT. Therefore, when performing high-frequency dielectric drying, the weight of the object to be measured must be measured continuously or intermittently at short intervals in a high-frequency dielectric drying furnace. The measured value of the object to be measured in the high frequency dielectric heating furnace needs to be recorded or displayed. For this purpose, the measuring device for the object to be measured converts the weight into an electrical signal, which is processed and recorded and displayed outside the high-frequency dielectric drying oven.

本発明による水分測定において横軸に時間を竪
軸に被測定物中の水分の重量をとりその水分変化
を曲線で表わしたとき、その曲線は被測定物の性
状に応じた特性を示すこととなる。逆に本発明に
おいて被測定物の性状が予め判明しているときは
時間間隔に対する水分の変化の微分値の変化の割
合d2W/dT2を求めることにより絶乾状態を待た
ないで被測定物の水分含有量を知ることができる
こととなる。
In moisture measurement according to the present invention, when the horizontal axis is the weight of moisture in the object to be measured and time is the vertical axis, and the change in moisture content is expressed as a curve, the curve shows characteristics depending on the properties of the object to be measured. Become. On the other hand, in the present invention, when the properties of the object to be measured are known in advance, the rate of change in the differential value of the change in moisture with respect to the time interval d 2 W/dT 2 can be calculated so that the object to be measured can be measured without waiting for an absolutely dry state. This allows you to know the moisture content of objects.

高周波誘電乾燥炉中を真空あるいは減圧して蒸
気圧を下げるようにすると被測定物の乾燥はより
急速に行われ得る。
If the high-frequency dielectric drying furnace is vacuumed or depressurized to lower the vapor pressure, the object to be measured can be dried more rapidly.

次に本発明による水分測定の一実験例について
のべると、使用された本発明の高周波誘電乾燥炉
は工業用割当周波数2450MHz、実効出力600W、
400W、200W三種切換のものであつてこれをもつ
て下水汚泥を乾燥測定し、従来の赤外線あるいは
電熱による乾燥炉と比較するに絶乾状態に到るま
での時間は1/10〜1/30に短縮され、測定値を統計
処理した処によつてみても測定精度は従来の方法
と差異が認められない。
Next, referring to an experimental example of moisture measurement according to the present invention, the high frequency dielectric drying furnace of the present invention used had an industrially assigned frequency of 2450MHz, an effective output of 600W,
It is a 400W and 200W three-type switching device, and when drying sewage sludge is measured, the time to reach an absolutely dry state is 1/10 to 1/30 compared to conventional infrared or electric heating drying ovens. Even when the measured values were statistically processed, there was no difference in measurement accuracy compared to the conventional method.

次に被測定物の試料重量を変化させてその乾燥
特性をみるに広い範囲にわたつて絶乾状態になる
までの時間がほぼ等しい即ち高周波乾燥炉の出力
を600Wとして被測定物の試料重量を5g、10g、
30g、50gと変化させた場合その絶乾状態に到る
までの時間の差は試料重量5gと50gにおいて最
大約20%であり、従つて試料重量は標準的採取量
の幅が大きく、適度に容器に納めるだけでよい。
Next, by changing the sample weight of the object to be measured and looking at its drying characteristics, the time it takes to reach an absolutely dry state over a wide range is almost the same. 5g, 10g,
When changing the sample weight to 30g and 50g, the difference in time until it reaches an absolutely dry state is about 20% at most between the sample weights of 5g and 50g. Just put it in a container.

同条件下で同重量の被測定物試料の形状を直径
16φ、50φ、60φの3種の円筒形に変化させた被
測定物の絶乾状態に到るまでの時間を測定すると
全く同一であり、前者と後二者では乾燥特性がわ
ずかに異なることが看取される。
Under the same conditions, the shape of the sample to be measured with the same weight is determined by the diameter.
When we measured the time it took to reach an absolutely dry state for three types of cylindrical objects: 16φ, 50φ, and 60φ, we found that they were exactly the same, and the drying characteristics of the former and latter two were slightly different. be taken care of.

以下本発明の実施例を図面に従つて説明する。
第1図は本発明の測定装置を備えた高周波誘電乾
燥炉の略断面図である。1は高周波の電波を放射
する電極アンテナであつてマグネトロン等の高周
波発生装置10より導かれている。その下方に撹
拌羽根2がアンテナ1を附勢時回転するように装
着されている。アンテナ1の下方には回転テーブ
ル3が上下動並びに回転割出可能に設けられてい
る。即ち電動機4の軸と回転は伝達し、軸方向移
動自在に例えばスプラインにより回転テーブル3
は取付けられており、三個所以上で回転テーブル
3が安定して支持されるように上端にローラ5を
枢着したリフト6が炉体7に固定した案内8に上
下方向滑動可能に係合している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a high frequency dielectric drying oven equipped with a measuring device of the present invention. Reference numeral 1 denotes an electrode antenna that emits high-frequency radio waves, which are guided by a high-frequency generator 10 such as a magnetron. A stirring blade 2 is mounted below the antenna 1 so as to rotate when the antenna 1 is energized. A rotary table 3 is provided below the antenna 1 so as to be movable up and down as well as rotatably indexable. That is, the axis and rotation of the electric motor 4 are transmitted, and the rotary table 3 is moved freely in the axial direction by, for example, a spline.
is attached, and a lift 6 with rollers 5 pivotally attached to the upper end engages with a guide 8 fixed to the furnace body 7 so as to be able to slide vertically so that the rotary table 3 is stably supported at three or more locations. ing.

リフト6は互に横架材9により結合され、横架
材9はリフトシリンダ11のロツド端に固定され
ている。ローラ5の軸心は回転テーブル3の半径
方向を向いている。
The lifts 6 are connected to each other by a cross member 9, which is fixed to the rod end of a lift cylinder 11. The axis of the roller 5 faces in the radial direction of the rotary table 3.

電動機4は回転割出し可能なパルスモータ、ス
テツピングモータ等であるか、あるいは電動機4
が連続回転のみ可能な回転機である場合は回転テ
ーブル3にドツグを設け該ドツクと係合するマイ
クロスイツチを固設する。一般にはドツグを回転
テーブル3の停止数だけ回転テーブル3の円周分
割した位置に取付けるが、ドツグは1個としてマ
イクロスイツチを円周等分割して複数個設けても
よい(何れも図示せず)。回転テーブル3にはそ
の割出数に応じて円周を等分割して孔12があけ
られ、孔12には容器13が孔12に出入り自在
に嵌入している。容器13は上部にフランジを有
しフランジ下は孔12にわずかにすきまを残して
嵌入する円筒でありその下方は該円筒より小なる
円筒となつている。回転テーブル3が下降位置で
容器13と回転テーブル3との接触が絶たれる位
置に計量装置14の受皿15が位置し受皿15の
下方は連結杆16により検出部17に結合されて
いる。計量装置14は検出部17が連結杆16を
介して容器13の内容物を計量するものでその計
量値は電気信号に変換され出力されるようになつ
ている。
The electric motor 4 is a rotationally indexable pulse motor, a stepping motor, etc., or the electric motor 4 is
If the rotary table 3 is a rotary machine that can only rotate continuously, a dog is provided on the rotary table 3 and a micro switch that engages with the dog is fixedly installed. In general, dogs are installed at positions divided into the circumference of the rotary table 3 by the number of stops on the rotary table 3, but one dog may be provided, and a plurality of microswitches may be provided by equally dividing the circumference (none of these are shown). ). Holes 12 are formed in the rotary table 3 by equally dividing the circumference according to the number of indexes, and a container 13 is fitted into the hole 12 so as to be able to move in and out of the hole 12. The container 13 has a flange on the upper part, and the part below the flange is a cylinder that fits into the hole 12 leaving a slight gap, and the part below the flange is a smaller cylinder. A saucer 15 of the weighing device 14 is located at a position where the rotary table 3 is in the lowered position and contact between the container 13 and the rotary table 3 is broken, and the lower portion of the saucer 15 is connected to the detection section 17 by a connecting rod 16. In the measuring device 14, a detecting section 17 measures the contents of the container 13 via a connecting rod 16, and the measured value is converted into an electric signal and output.

以上の各装置、部品は開閉可能な扉(図示せ
ず)を備えた密閉した炉体7に納められていて炉
体7は中間を隔壁18により仕切られている。該
扉は開放時に容器13の着脱可能な程度の開口を
必要とする。炉体7はその扉と共に高周波の電波
が人体に有害な作用を及ぼさない構造となつてい
る。もつともこれらが遠隔操作を行うものである
ときには炉体7はその点に関しては必要としな
い。又図示しないが炉体7内を真空あるいは減圧
する真空ポンプを備えるときはより効果的に測定
時間を短縮することが可能となる。
Each of the above devices and parts is housed in a sealed furnace body 7 equipped with an openable/closable door (not shown), and the furnace body 7 is partitioned in the middle by a partition wall 18. The door requires an opening large enough to allow the container 13 to be attached and detached when opened. The furnace body 7 and its door are constructed so that high-frequency radio waves do not have a harmful effect on the human body. Of course, if these are to be operated remotely, the furnace body 7 is not necessary in that respect. Although not shown, when a vacuum pump for evacuating or depressurizing the inside of the furnace body 7 is provided, the measurement time can be more effectively shortened.

第2図は第1図における高周波誘電乾燥炉の制
御回路を示すブロツク線図である。検出部17よ
り送られた電気信号は変調増幅回路19にて変調
増幅され記憶演算装置21に送られクロツクパル
スと共に記憶され、時間変化に対する計量値の変
化の微分値が計算されその時間における水分の減
少量と減少割合が判明するようになつている。2
2は記録表示装置でデジタルリードアウト及び印
字装置等である。記憶演算装置21は又はその指
示により高周波制御装置23を介して高周波発生
装置10の附勢消勢を行うようになつている。機
器制御装置24は電動機4、リフトシリンダ11
の制御回路とそれらの電力回路を含み、リフトシ
リンダ11が油圧シリンダである場合は図示しな
いが油圧タンク及び電磁弁等の制御と電力供給を
行う装置である。25は電源である。
FIG. 2 is a block diagram showing a control circuit of the high frequency dielectric drying furnace shown in FIG. The electrical signal sent from the detection unit 17 is modulated and amplified by the modulation amplification circuit 19, sent to the storage/arithmetic unit 21, and stored together with the clock pulse.The differential value of the change in the measured value with respect to the time change is calculated, and the decrease in moisture during that time is calculated. The amount and rate of decline are becoming clear. 2
Reference numeral 2 denotes a recording and display device, which includes a digital readout and a printing device. The storage/arithmetic device 21 is configured to energize and deenergize the high frequency generator 10 via the high frequency control device 23 according to instructions thereof. The equipment control device 24 includes the electric motor 4 and the lift cylinder 11.
When the lift cylinder 11 is a hydraulic cylinder, it is a device that controls and supplies power to a hydraulic tank, a solenoid valve, etc. (not shown). 25 is a power source.

次に高周波誘電乾燥炉による水分測定について
のべる。
Next, we will discuss moisture measurement using a high-frequency dielectric drying oven.

被測定物は試料として採取され容器13に納め
る。測定が被測定物中の水分のみを求めるときは
容器13には被測定物の試料を例えば10gをめや
すとして大体量投入するだけでよく、被測定物の
乾燥特性を知るかあるいは被測定物の乾燥特性が
予め判明していて被測定物中の水分を速かに知り
たいときは正確に被測定物試料を秤量し容器13
にほゞ一定形に保つて納めることになる。
The object to be measured is collected as a sample and placed in a container 13. When measuring only the moisture content in the object to be measured, it is sufficient to put a sample of the object to be measured, for example, approximately 10 g, into the container 13. If the drying characteristics are known in advance and you want to quickly determine the moisture content in the object to be measured, accurately weigh the sample of the object to be measured and place it in the container 13.
It will be kept in a fairly constant shape.

炉体7の扉を開いて回転テーブル3の孔12に
被測定物を入れた容器13を夫々差込む。次に扉
を閉じて始動ボタンを押すとリフトシリンダ11
のロツド端は下降して、横架材9を介してリフト
6は下りローラ5に重力により追従して回転テー
ブル3は下降する。容器13は回転テーブル13
より離れて受皿15に乗り秤量されその信号は検
出部17にて電気信号に変換され、変調増幅回路
19を介して記憶演算装置21に記憶され必要に
より記録表示装置22により記録表示される。続
いて記憶演算装置21より機器制御装置24に信
号は送られ、リフトシリンダ11のロツドは上昇
して横架材9を介してリフト6は上昇し回転テー
ブル3はローラ5を介して持上げられ上昇端に達
すると検出部17の電気信号の消勢を受けて変調
増幅回路19、記憶演算装置21を介して機器制
御装置24により電動機4は回転割出しを行ない
回転テーブル3は割出される。その際ローラ5が
回転し乍ら回転テーブル3を支承する。次に容器
13が受皿15の上方に来ると回転テーブル3は
停止して下降し前記計量動作と同じ作用の後上昇
し、以下動作をくり返して各割出位置で各容器1
3は被測定物と共に計量される。
The door of the furnace body 7 is opened and the containers 13 containing the objects to be measured are inserted into the holes 12 of the rotary table 3, respectively. Next, close the door and press the start button to activate the lift cylinder 11.
The rod end of the rotary table 3 is lowered, and the lift 6 follows the downward roller 5 by gravity via the horizontal member 9, and the rotary table 3 is lowered. The container 13 is a rotary table 13
The sample is placed on the tray 15 at a further distance and weighed, and the signal is converted into an electric signal by the detection section 17, stored in the storage/arithmetic device 21 via the modulation amplification circuit 19, and recorded and displayed by the recording/display device 22 if necessary. Subsequently, a signal is sent from the storage/arithmetic device 21 to the device control device 24, the rod of the lift cylinder 11 rises, the lift 6 rises via the horizontal member 9, and the rotary table 3 is lifted via the rollers 5 and rises. When the end is reached, the electrical signal from the detection section 17 is deactivated, and the motor 4 is indexed to rotate by the equipment control device 24 via the modulation amplification circuit 19 and the storage/arithmetic device 21, and the rotary table 3 is indexed. At this time, the rollers 5 rotate while supporting the rotary table 3. Next, when the container 13 comes above the saucer 15, the rotary table 3 stops, descends, and after the same action as the above-mentioned measuring operation, rises.
3 is weighed together with the object to be measured.

以上の動作により各被測定物の当初の水分を含
んだまゝの重量が計量記憶され、必要により記録
表示される。これらの被測定物を最初に計量する
動作は、予め一定量の試料として被測定物が容器
に投入されているときは省略可能である。これが
終ると記憶演算装置21より高周波制御装置23
に信号は送られ高周波発生装置10のアンテナ1
より高周波の電波が発射される。同時に撹拌羽根
2は回転し、記憶演算装置21より機器制御装置
24を介して電動機4は附勢され連続回転し、回
転テーブル3は回転する。被測定物は高周波誘電
作用により発熱し乾燥が行われる。一定時間の
後、記憶演算装置21よりの信号により機器制御
装置24を介して電動機4は消勢され、回転テー
ブル3は割出位置にて停止し、リフトシリンダ1
1のロツドは下り回転テーブル3は下降して、容
器13は受皿15上に乗り計量され、計量値は検
出部17にて電気信号として出力され、変調増幅
回路19により変調増幅され、記憶演算装置21
に送られた信号は記憶演算され、必要により記録
表示装置22に送られた信号によりその時点の水
分の減少量、減少割合が記録表示される。該演算
終了後に機器制御装置24に信号は送られ、機器
制御装置24によりリフトシリンダ11は上方に
向つて附勢され、そのロツド端は横架材9を介し
てリフト6を上昇せしめてローラ5を介して回転
テーブル3は持上げられ、容器13は孔12に収
納され容器13と受皿15の縁は切れる。検出部
17の検出値が零なることが確認されると電動機
4は附勢され割出しを行ない回転テーブル3は割
出される。続いてリフトシリンダ11は下方に附
勢され、回転テーブル3は下降して次の容器13
は受皿15上に乗り計量され記憶演算装置21に
送られ必要により記録表示される。以下同様にし
て順次孔12に納められた容器13中の被測定物
の重量の変化が記憶され必要により記録表示され
る。回転テーブル3が一回転の割出終了後は再び
連続回転に移り更に一定時間後、回転テーブル3
に保持する容器13中の被測定物重量は順次計測
される。同様にしてこれらがくり返される。容器
13中の被測定物中の水分は始めよりしばらくし
て急速に水分が減少し始め次第に水分の減少の割
合が少くなつて行く。以上の過程において記憶演
算装置21では水分の変化率△W/△Tが計量の
都度計算され△W/△T=0あるいは△W/△T
≒0となると水分の含有量Wo−Wn/Woあるいは Wo−Wn/Wnが計算され記録表示され、同時に高周 波制御装置23に信号は送られ高周波制御装置2
3により高周波発生装置10は消勢され、アンテ
ナ1よりの高周波電波は放射されなくなる。最終
計量後は回転テーブル3は上昇して原位置に戻つ
ている。
Through the above operations, the initial weight of each object to be measured, including moisture, is measured and stored, and recorded and displayed if necessary. The operation of initially weighing the object to be measured can be omitted when a certain amount of the object to be measured is previously placed in the container as a sample. When this is finished, the high frequency control device 23 is
The signal is sent to the antenna 1 of the high frequency generator 10.
Higher frequency radio waves are emitted. At the same time, the stirring blade 2 rotates, the electric motor 4 is energized by the storage/arithmetic device 21 via the device control device 24 and continuously rotates, and the rotary table 3 rotates. The object to be measured is heated and dried by high-frequency dielectric action. After a certain period of time, the electric motor 4 is deenergized via the equipment control device 24 in response to a signal from the storage/arithmetic device 21, the rotary table 3 stops at the indexed position, and the lift cylinder 1
The rod 1 descends and the rotary table 3 descends, and the container 13 is placed on the tray 15 and weighed.The measured value is outputted as an electric signal by the detection section 17, modulated and amplified by the modulation amplification circuit 19, and stored in the storage/arithmetic device. 21
The signal sent to is stored and calculated, and if necessary, the amount and rate of decrease in moisture at that time are recorded and displayed based on the signal sent to the recording/display device 22. After the computation is completed, a signal is sent to the device control device 24, which forces the lift cylinder 11 upward, and the rod end lifts the lift 6 via the horizontal member 9 and pushes the roller 5. The rotary table 3 is lifted up through the hole 12, the container 13 is housed in the hole 12, and the edges of the container 13 and the saucer 15 are cut. When it is confirmed that the detection value of the detection unit 17 is zero, the electric motor 4 is energized and indexing is performed, and the rotary table 3 is indexed. Subsequently, the lift cylinder 11 is energized downward, and the rotary table 3 is lowered to move to the next container 13.
is placed on the saucer 15, weighed, and sent to the storage/arithmetic device 21, where it is recorded and displayed if necessary. Thereafter, changes in the weight of the objects to be measured in the container 13 placed in the hole 12 are sequentially stored in the same manner and recorded and displayed as necessary. After the rotary table 3 completes indexing for one revolution, it starts rotating continuously again, and after a certain period of time, the rotary table 3
The weight of the objects to be measured in the container 13 held in the container 13 is sequentially measured. These are repeated in the same way. The moisture in the object to be measured in the container 13 begins to rapidly decrease after a while from the beginning, and the rate of decrease in moisture gradually decreases. In the above process, the storage/arithmetic unit 21 calculates the rate of change in moisture content △W/△T each time the measurement is performed, and either △W/△T=0 or △W/△T.
When ≒0, the water content Wo-Wn/Wo or Wo-Wn/Wn is calculated and recorded and displayed, and at the same time a signal is sent to the high-frequency control device 23.
3, the high frequency generator 10 is deenergized and high frequency radio waves from the antenna 1 are no longer radiated. After the final measurement, the rotary table 3 is raised and returned to its original position.

次に被測定物の性状は予め判明している場合は
該被測定物の乾燥の特性、即ち横軸に時間を竪軸
に水分の変化をとつた特性曲線を予め絶乾状態に
到るまでを記憶演算装置21に記憶せしめてお
き、一定量の被測定物を容器13に納めて孔12
に収納し、回転テーブル3を降下させ容器13を
受皿15上にのせる。この状態で高周波発生装置
10を附勢して被測定物の乾燥を行い、被測定物
は計量装置14により連続計量され、検出部17
より変調増幅回路19を介して記憶演算装置21
に送られ、時間経過に対する水分の変化が微分値
dW/dTとして計算され、記憶演算装置21に記
憶されたデータと比較して一定範囲の微分値
dW/dTの一致をもつて絶乾状態までの水分減少
を外延計算して水分の含有量が計算される。記録
表示装置22は印字記録装置でもよいが、オツシ
ログラフが適することになる。この場合において
は回転テーブル3は回転しない。
Next, if the properties of the object to be measured are known in advance, the drying characteristics of the object, that is, the characteristic curve with time on the horizontal axis and the change in moisture on the vertical axis, are drawn in advance until it reaches an absolutely dry state. is stored in the storage/arithmetic unit 21, a certain amount of the object to be measured is placed in the container 13, and the hole 12 is
The rotary table 3 is lowered and the container 13 is placed on the saucer 15. In this state, the high frequency generator 10 is energized to dry the object to be measured, and the object to be measured is continuously weighed by the weighing device 14.
The storage arithmetic unit 21 via the modulation amplification circuit 19
The change in moisture over time is calculated as a differential value.
A differential value within a certain range compared with the data calculated as dW/dT and stored in the storage/arithmetic unit 21
With the agreement of dW/dT, the moisture content is calculated by calculating the extension of the moisture loss to the bone dry state. The recording/displaying device 22 may be a printing/recording device, but an oscillograph is suitable. In this case, the rotary table 3 does not rotate.

以上の実施例では回転テーブル3がリフトシリ
ンダ11により上下動する如くになつているが、
これは又リフトシリンダ11をなくして回転テー
ブル3は回転割出のみを行つて計量装置14を上
下動可能に装着してもよく、計量時容器13は受
皿15により持上げられることなる。
In the above embodiment, the rotary table 3 is moved up and down by the lift cylinder 11.
Alternatively, the lift cylinder 11 may be eliminated, the rotary table 3 performs only rotational indexing, and the weighing device 14 is mounted so as to be movable up and down, so that the container 13 is lifted by the tray 15 during weighing.

以上のとおり、この発明によれば被測定物は急
速に乾燥するのでその水分減少率△W/△Tある
いは微分値dW/dTの変化は急速にとらえられ短
時間で被測定物中の水分は測定されることになり
被測定物の連続処理工程に供給される被測定物の
水分を適時に計量して連続処理工程の制御を改善
することができる。高周波誘電乾燥であるので熱
効率は極めてよく、又被測定物の重量、形状は一
定でなくともよく又その量も或る範囲において測
定時間、測定精度に関係が極めて少いので試料と
して特に一定量を採取する必要がない。又予め性
状の判明している被測定物の水分を知るにはその
試料重量を一定にしさえすればより速かに測定が
終る。
As described above, according to the present invention, since the object to be measured dries rapidly, the change in the moisture reduction rate △W/△T or the differential value dW/dT can be detected rapidly, and the moisture in the object to be measured can be quickly absorbed. The control of the continuous processing process can be improved by timely measuring the moisture content of the object to be measured and supplied to the continuous processing process of the object. Because it is high-frequency dielectric drying, the thermal efficiency is extremely high, and the weight and shape of the object to be measured do not have to be constant, and the amount has very little influence on measurement time and measurement accuracy within a certain range, so it is especially important to use a fixed amount as a sample. There is no need to collect. Furthermore, in order to determine the moisture content of a sample whose properties are known in advance, the measurement can be completed more quickly if the weight of the sample is kept constant.

高周波誘電乾燥で被測定物自体が発熱乾燥する
ためその炉体内隔壁下を通風冷却してもよく、炉
体内に重量の検出装置を備えるのが容易である。
又二種以上の水分を含む材料を混合する場合には
回転テーブルを備えた高周波誘電乾燥炉により、
夫々の材料を各容器に納めて回転テーブルに装着
することにより同時に水分を計量することもでき
る。
Since the object to be measured itself generates heat and dries during high-frequency dielectric drying, ventilation may be cooled under the partition wall of the furnace, and it is easy to provide a weight detection device inside the furnace.
In addition, when mixing two or more types of water-containing materials, a high-frequency dielectric drying oven equipped with a rotating table is used.
It is also possible to measure the moisture content at the same time by placing each material in a container and mounting it on a rotating table.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の高周波誘電乾燥測定装置の
略断面図、第2図は第1図の制御を示すブロツク
線図である。 1……電極アンテナ、3……回転テーブル、4
……電動機、5……ローラ、6……リフト、7…
…炉体、8……案内、9……横架材、10……高
周波発生装置、11……リフトシリンダ、12…
…孔、13……容器、14……計量装置、16…
…連結杆、17……検出部、18……隔壁、19
……変調増幅回路、21……記憶演算装置、22
……記録表示装置、23……高周波制御装置、2
4……機器制御装置。
FIG. 1 is a schematic cross-sectional view of the high frequency dielectric dryness measurement apparatus of the present invention, and FIG. 2 is a block diagram showing the control shown in FIG. 1... Electrode antenna, 3... Rotating table, 4
...Electric motor, 5...Roller, 6...Lift, 7...
... Furnace body, 8 ... Guide, 9 ... Horizontal member, 10 ... High frequency generator, 11 ... Lift cylinder, 12 ...
...hole, 13...container, 14...measuring device, 16...
... Connecting rod, 17 ... Detection section, 18 ... Partition wall, 19
... Modulation amplification circuit, 21 ... Memory calculation device, 22
... Recording display device, 23 ... High frequency control device, 2
4...Equipment control device.

Claims (1)

【特許請求の範囲】 1 予め水分含有量の異なる被測定物としての対
象群の各々について絶乾状態に到るまで高周波誘
電加熱乾燥を行いつつ被測定物重量を連続あるい
は間欠連続で経過時間の計測と併せて自動計量を
行なうことにより被測定物としての対象群の各々
の時間経過に対する水分減少量の変化の関係及び
当初水分含有量を記録し、次に同加熱を行ない被
測定物が絶乾状態となる以前に時間変化に対する
水分減少量の変化を知ることにより前記被測定物
としての対象群についての時間変化に対する水分
減少量の変化関係と比較し被測定物の水分含有量
を測定する高周波誘電乾燥水分測定法。 2 被測定物の乾燥を真空あるいは減圧下におい
て行う特許請求の範囲第1項記載の高周波誘電乾
燥水分測定法。 3 計量値を電気出力に変換し、変調増幅して時
間と共に記憶させ、時間変化に対する水分減少量
の微分値を演算処理し、微分値の変化により乾燥
状態を知る回路を設けたる特許請求の範囲第1項
記載の高周波誘電乾燥水分測定法。 4 高周波発生装置及び炉体内に高周波誘電を行
う電極を備え該電極による誘電作用を受ける位置
に被測定物の容器の保持構造を備え、その下方に
係合可能に該容器の重量の計量装置を備えたる高
周波誘電乾燥水分測定装置において、計量装置に
計量値を電気出力する検出部を備え、予め被測定
物としての対象群の各々についての高周波加熱に
よる時間変化に対する水分減少量の変化を記憶さ
れており、該電気出力を変調増幅して時間変化に
対する被測定物の水分減少量の変化を含む記憶演
算をなし、この水分減少量の変化から被測定物が
絶乾状態となる以前に被測定物の当初水分含有量
の演算を行う演算装置と該演算装置の指令により
制御される高周波制御、機器制御装置と記録表示
装置を備えたる高周波誘電乾燥水分測定装置。 5 上下動及び割出回転可能な回転テーブルより
なる容器の保持構造を備えた特許請求の範囲第4
項記載の高周波誘電乾燥水分測定装置。
[Claims] 1. High-frequency dielectric heating drying is performed on each target group as objects to be measured having different moisture contents until they reach an absolutely dry state, and the weight of the objects to be measured is measured continuously or intermittently over an elapsed time. By performing automatic weighing in conjunction with measurement, the relationship between the change in moisture loss over time and the initial moisture content of each target group as the object to be measured is recorded, and then the same heating is performed to ensure that the object to be measured is completely By knowing the change in the amount of moisture loss with respect to time changes before the object becomes dry, the moisture content of the object to be measured is measured by comparing the change relationship of the amount of moisture loss with respect to time changes for the target group as the object to be measured. High frequency dielectric dry moisture measurement method. 2. The high frequency dielectric dry moisture measuring method according to claim 1, wherein the object to be measured is dried in a vacuum or under reduced pressure. 3. Claims that include a circuit that converts a measured value into an electrical output, modulates and amplifies it, stores it over time, processes the differential value of the amount of water loss with respect to time changes, and determines the dry state from the change in the differential value. The high frequency dielectric dry moisture measuring method according to item 1. 4. A high-frequency generator and an electrode for performing high-frequency dielectric inside the furnace body, a holding structure for a container of the object to be measured at a position receiving the dielectric action of the electrode, and a device for measuring the weight of the container that can be engaged with below the holding structure. The high-frequency dielectric dry moisture measuring device is equipped with a detection unit that electrically outputs a measured value to the measuring device, and stores in advance changes in the amount of moisture loss with respect to time changes due to high-frequency heating for each of the target groups as objects to be measured. The electrical output is modulated and amplified to perform memory calculations that include changes in the amount of moisture loss of the object to be measured over time, and from this change in amount of moisture loss, the object to be measured is detected before the object becomes completely dry. A high-frequency dielectric dry moisture measuring device comprising a calculation device for calculating the initial moisture content of an object, a high-frequency control controlled by instructions from the calculation device, a device control device, and a recording/display device. 5 Claim 4 comprising a container holding structure comprising a rotary table capable of vertical movement and indexing rotation.
The high frequency dielectric dry moisture measuring device described in Section 1.
JP4958479A 1979-04-21 1979-04-21 Moisture measuring method using high-frequency dielectric drying and its apparatus Granted JPS55141654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4958479A JPS55141654A (en) 1979-04-21 1979-04-21 Moisture measuring method using high-frequency dielectric drying and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4958479A JPS55141654A (en) 1979-04-21 1979-04-21 Moisture measuring method using high-frequency dielectric drying and its apparatus

Publications (2)

Publication Number Publication Date
JPS55141654A JPS55141654A (en) 1980-11-05
JPS638416B2 true JPS638416B2 (en) 1988-02-23

Family

ID=12835258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4958479A Granted JPS55141654A (en) 1979-04-21 1979-04-21 Moisture measuring method using high-frequency dielectric drying and its apparatus

Country Status (1)

Country Link
JP (1) JPS55141654A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522788A (en) * 1982-03-05 1985-06-11 Leco Corporation Proximate analyzer
JPH03100439A (en) * 1989-09-14 1991-04-25 Chubu Electric Power Co Inc Method for controlling microwave heating and drying machine
EP1876436A1 (en) * 2006-07-07 2008-01-09 Mettler-Toledo AG Measuring device for gravimetric moisture determination
PL1876431T3 (en) * 2006-07-07 2014-01-31 Mettler Toledo Ag Measuring apparatus for gravimetrical determination of moisture
CN106769749B (en) * 2016-11-11 2023-06-02 济南思克测试技术有限公司 Multi-cup automatic circulation weighing water vapor transmittance testing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180057A (en) * 1975-01-08 1976-07-13 Takeshi Kawai KANSODOHANBETSUSOCHI
JPS51136490A (en) * 1975-05-22 1976-11-25 Toshiba Corp Microwave moisture meter
JPS5433183B2 (en) * 1972-11-13 1979-10-18

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433183U (en) * 1977-08-09 1979-03-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433183B2 (en) * 1972-11-13 1979-10-18
JPS5180057A (en) * 1975-01-08 1976-07-13 Takeshi Kawai KANSODOHANBETSUSOCHI
JPS51136490A (en) * 1975-05-22 1976-11-25 Toshiba Corp Microwave moisture meter

Also Published As

Publication number Publication date
JPS55141654A (en) 1980-11-05

Similar Documents

Publication Publication Date Title
US6247246B1 (en) Microwave moisture analyzer: apparatus and method
US5064009A (en) Device for the determination of dry substance
US3813918A (en) Methods and apparatus using microwaves for material characteristics measurements
US4882851A (en) Apparatus and method for batch drying using a microwave vacuum system
JPS638416B2 (en)
JPS62503104A (en) Method and apparatus for conditioning leather, fur, etc.
US3259991A (en) Freeze drying method and apparatus
CN112903346A (en) River-dredging lake wetland soil moisture content monitoring device and method under water level fluctuation condition
CN105203441A (en) Testing device and method for measuring ceramic dry billet porosity
CN106840956A (en) Cold and hot two-chamber evaporation residue analyzer
CN103969151B (en) Evaporation residue analyzer
CN110346237A (en) A kind of device and method of microwave rapid survey material moisture
CN207882019U (en) A kind of Suction filtration device for measuring total organic carbon sample pre-treatments in rock
JP2657499B2 (en) Automatic hardness measurement method and apparatus
CA1221743A (en) Microwave, a closed vessel and methods of determining volatile material content
CN206891893U (en) Cold and hot two-chamber evaporation residue analyzer
CN208902555U (en) A kind of infrared moisture meter
CN210465194U (en) Device for quickly measuring moisture of material by microwave
JPH0353156Y2 (en)
JPS5844977B2 (en) Suibunsokuteihouhou Oyobi Sonosouchi
CN206875839U (en) A kind of electric drying oven with forced convection
CN206348454U (en) Radar life-detection instrument penetrates medium humidity controllable test platform
CN218180586U (en) Moisture tester
JP2936178B2 (en) Measurement device for moisture, volatile matter, etc.
JPH051987A (en) Measurement device for moisture or volatile component