JPS6384103A - 渦電流型交流強磁場発生装置 - Google Patents

渦電流型交流強磁場発生装置

Info

Publication number
JPS6384103A
JPS6384103A JP61228459A JP22845986A JPS6384103A JP S6384103 A JPS6384103 A JP S6384103A JP 61228459 A JP61228459 A JP 61228459A JP 22845986 A JP22845986 A JP 22845986A JP S6384103 A JPS6384103 A JP S6384103A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
eddy current
magnetic flux
field generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61228459A
Other languages
English (en)
Other versions
JPH0320887B2 (ja
Inventor
Kazuo Bessho
一夫 別所
Sotofumi Yamada
外史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP61228459A priority Critical patent/JPS6384103A/ja
Publication of JPS6384103A publication Critical patent/JPS6384103A/ja
Publication of JPH0320887B2 publication Critical patent/JPH0320887B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気物性等の磁気工学研究、パワーマグネテ
ィックス、核融合等に用いる交流強磁場発生装置、特に
導電体に生ずる渦電流により電磁石の磁束を収束して連
続的に交流強路場を発生させ得るようにしたものである
(従来の技術) 一般に、この種強磁場発生装置については、強磁場中に
おける物体の特性の調査研究、新素材の開発並びに核融
合の実験等に利用するために、大規模の研究設備を用い
て強磁場発生装置自体の研究開発が強力に進められてい
る。
しかして、従来のこの種強磁場発生装置を分類すると、
クネール法、爆縮法等の破壊型パルス強磁場発生装置、
多層コイル方式、MIT方式等の非破壊型パルス強磁場
発生装置、超電導方式、ハイブリッド方式等の連続型強
磁場発生装置に分けられる。
すなわち、コンデンサからコイルに大電流を流して発生
させた磁束を、クネール法では、その電磁力によりアル
ミ管を圧縮して内部の磁束を濃縮し、爆縮法では、火薬
の爆発により磁束を′a縮し、いずれも約100万分の
1秒間約300T (テラガウス)のパルス強磁場を破
壊的に発生させ、また、多層コイル方式(大阪大学方式
)およびMIT方式では、いずれも特殊形状のコイルに
大電流を流してパルス幅100 μs(マイクロ秒)で
それぞれ最大100Tおよび40Tのパルス強磁場を非
破壊的に発生させ、さらに、超電導方式では、超電導コ
イルに大電流を流して理論的には17Tの強磁場を連続
的に発生させている。
(発明が解決しようとする問題点) しかしながら、上述した従来の強磁場発生装置は、いず
れも、極めて強い磁場は得られるが、強磁場発生時間が
例えば数μsなど極めて短時間であったり、極低温装置
や巨大な電源設備を必要としたりするうえに、パルス磁
場もしくは直流磁場しか発生させ得す、交流強磁場を発
生させ得るものがない、という問題点があった。
すなわち、クネール法や爆縮法などの破壊型パルス強磁
場発生装置では、得られる強磁場の最高値はかなり高い
がそのm’tm時間が掻めて短く、コイルや試料が磁場
発生の都度破壊されるという問題点があり、多重コイル
方式やMIT方式などの非破壊型パルス強磁場発生装置
では、パルス幅が比較的長く、非破壊型ではあるが、強
磁場の持続時間が短く磁場強度が一定しないという問題
点があり、さらに、超電導コイル方式強磁場発生装置で
は、一定強磁場を連続して発生させ得るが、大規模の装
置を必要とするに拘らず、177以上の強磁場が得られ
ない、という問題点があった。
本発明の目的は、上述した従来の問題点を解決し、室温
における常電導状態において容易に交流強磁場が連続的
に得られるようにした交流強磁場発生装置、特に、導電
体に生ずる渦電流の作用による磁束収束を利用した渦電
流型交流強磁場発生装置を提供することにある。
(問題点を解決するための手段) 本発明渦電流型交流強磁場発生装置は、電磁石を構成す
るコイルが形成する交流磁場内に導電体を配置したとき
に、その導電体内に生ずる渦電流の作用により発生する
反磁場により電磁石の交流磁場を打消して、導電体に設
けた空隙内にその交流磁場を収束し、磁束密度を極度に
増大させて集中的に交流強磁場を発生させる、という動
作原理に従い、コイルによる交流磁場内に配置する導電
体の構成配置を最高効率の交流強磁場発生が行なわれる
ように設定したものである。
すなわち、本発明渦電流型交流強磁場発生装置は、電磁
石を構成するコイルと、そのコイルの中心軸に沿った貫
通孔および当該中心軸を通る平面に沿って当該貫通孔か
ら外周面に達するスリットを有する導電材単一ブロック
とを備え、前記コイルに通電したときに前記導電材単一
ブロック内に前記中心軸にほぼ直交する方向の渦電流が
生するようにして前記コイルと前記導電材単一ブロック
とを組合わせ配置したことを特徴とするものである。
(作 用) 本発明によれば、比較的簡単な構成の装置により、比較
的強力な一定の交流強磁場を連続して安定に発生させる
ことができ、例えば、物性定数測定用、新素材開発用、
あるいは、バイオマグネティックス用などの交流強磁場
発生に適用するに好適である。
(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
電磁石をなすコイルが形成する磁場内に導電体を配置し
たときにその一導電体内に生ずる渦電流の作用により発
生する反磁場によって電磁石の磁場を打消すことにより
導電体に設けた空隙内にその磁場を収束して磁束密度を
極度に増大させる、という本発明による強磁場発生の原
理に従い、本発明者らは、最初に第1図に模式的に示す
構成の装置を提案した。図示の装置は、対称軸を互いに
直交させて近接配置した2組の同形導電体円板対1a。
1bおよび2a、2bがなす微小ホールHを直流電磁石
3の両磁極間に位置させて各円板を同一方向に高速回転
させ、各導電体円板内に生ずる渦電流により反磁場を形
成させると、電磁石3の磁場が打消されるのでその磁束
は導電体円板1a、1b、2a、2bを貫通し得ず、電
磁石3により形成された磁束はすべて微小ホールHを通
過するように収束されるので、微小ホールH内の磁束密
度が著しく増大し、直流強磁場が発生するようにしたも
のであり、電磁石3のコイルに数百アンペア程度の電流
を流して20〜307程度の強磁場を数秒間発生させる
ことができた。
しかしながら、この当初提案した装置は、磁束収束時に
強大な機械的応力が加わる導電体回転円板を多数設ける
構成に著しい難点があったので、導電体板を静止状態に
して交流磁場内に保持することにより、相対的に上述と
同等の作用によって交流強磁場を発生させるために、第
2図+81. fblに模式的に示す構成の装置を提案
した。図示の装置は、1対の長方形導電体板4a、4b
を近接配置して形成したスリットSが電磁石を構成する
空心コイル対5a、5bの中心に位置するようにしてそ
の導電体板対4a、 4bをコイル対5a、5bの中間
に挟み、コイル5a、5bを交流励磁して交流磁場を発
生させたときに、各導電体板4a、4bに生ずる交流渦
電流により反磁場を形成して電磁石の交流磁場を遮断し
、電磁石によって発生した交流磁束をスリットS内に収
束して磁束密度を増大させ、スリットS内に交流強磁場
を発生させるようにしたものである。
第2図示の構成において導電体板4a、4bに銅板を用
い、各コイル5a、5bの巻回数を約300ターンとし
て80V一定の交流電圧を直列に印加したときに、コイ
ル5a、5bの間隔10mで銅板を介挿しない状態にお
ける均一分布の磁束密度0.018Tが幅51mのスリ
ットS内に上述のようにして収束した場合に磁束密度0
.12Tまで増大し、約6.7の収束比が得られたが、
かかる構成の実験装置において、交流電源周波数、銅板
の厚さ、銅板対の個数、コイル間隔およびスリット幅を
それぞれ変化させたときにおける上述した磁束遮断効果
による交流強磁場発生作用の変化を測定した結果を、ス
リット幅・コイル幅比β対収束比α乃至磁束密度Tの特
性曲線の変化により表わして第3図乃至第7図にそれぞ
れ示す。
しかして、導電体内渦電流の磁束遮断効果による交流強
磁場発生作用は、第3図から判るように、駆動電源周波
数を6082から180Hzに上げたことによって著し
く増大しており、また、第4図から判るように、導電体
板の厚さを増大させるのに従って増大させることができ
、また、第5図から判るように、2組の導電体板対がな
すスリットSを直角に組合わせて第1図示と同様の微小
ホールを構成することにより格段に増大させることがで
き、また、第6図から判るように、電磁石をなすコイル
対の間隔を広げて導電体板をコイル端面から離すことに
より、均一分布磁束の収束率を上げて増大させることが
でき、さらに、第7図から判るように、導電体板対のス
リット幅を狭くすることにより、均一分布磁束の収束率
を上げて格段に増大させることができる。
本発明者らが従来提案した第2図示の概略構成により導
体板対を電磁石の交流磁場内に介挿して均一分布磁束を
収束する渦電流型交流強磁場発生装置の実用化構成の例
を第8図に示す。図示の実用化構成は、コイル対5a、
5bに鉄心6を組合わせて、電磁石の効率を増大させる
とともに、その鉄心6の磁極間に設置する厚さ2cmと
した銅板対4a。
4bには磁束収束時に10tonを超えるマクスウェル
応力が加わることが予想されるので、特に堅牢に構成し
たフレーム7により強固に保持しである。
かかる構成により実用化した渦電流型交流強磁場発生装
置において、磁極間隔を451mとし、銅板対4a、4
bのなすスリット幅をlNとして60Hz 、 330
0Vの商用交流電源により駆動したときに、磁束密度7
.47S磁束収束比3.9の交流強磁場が得られた。
なお、上述の構成では銅板対の発熱の問題があるので、
交流強磁場連続発生の時間は約1秒に留まったが、銅板
対を水冷等により冷却すれば、長時間の連続発生も可能
になるものと予想される。
しかして、上述のように4電体板対がなすスリットに電
磁石の均一分布磁束を収束して高い磁束密度が得られる
ようにした従来提案の渦電流型交流強磁場発生装置につ
いて、本発明者らは、装置各部の構成条件を変化させて
得られた導電体内渦電流の磁束遮断効果による交流強磁
場発生作用の変化の第3図乃至第7図に示した測定結果
を総合して包括的に考察することにより、上述した従来
提案装置の性能向上の方向を明らかにし、つぎに述べる
ような新たな構成の渦電流型交流強磁場発生装置を開発
した。
上述した新開発装置の基本的構成の例を第9図(al、
 (b)に模式的に示す。図示の構成は、第5図示の測
定結果に基づき、2対の導電体対による構成を一体化す
ることにより、構成を簡単化して磁束収束時に加わる巨
大な機械的応力に耐える支持を容易にするとともに性能
を向上させ得るようにしたものであり、単一構成の導電
体板8の中心部に第1図示の従来提案装置におけると同
様の微小ホールHを設けて均一分布磁束の収束を図ると
ともに、その微小ホール■]から外縁に達するスリット
Sを設けて渦電流による熱損失の増大を抑止し、かかる
構成の導電体対8を電磁石をなす空心コイル対5a 、
 5bの間隙に、微小ホールHの位置がコイル軸と一致
するようにして介挿保持する。
かかる構成においてコイル対5a、5bに交流電圧を印
加したときに発生する交流磁場内に導電体板8を配置す
ると、導電体板8内に交流渦電流が発生して反磁場を形
成し、その反磁場によりコイル対5a、5bの交流磁場
が部分的に打消されて交流磁束の導電体板通過が妨げら
れ、コイル対5a、5bによる均一分布磁束が実効的に
主として微小ホールI(内に収束され、その結果、微小
ホールH内の磁束密度が格段に増大するので、渦電流発
生に基づく磁束遮断効果により交流強磁場を容易に連続
して安定に発生させることができる。
上述した交流強磁場発生における微小ホール■]の内径
dの変化に対する磁束収束比αの変化特性の例を第10
図に模式的に示し、また、7コイル対5a+5bによる
均一分布磁束がホールH内に収束される状態を表わした
磁束分布の態様の例を第11図に示し、さらに、磁束収
束前[a)と磁束収束時(b)とにおける交流磁束波形
を比較して第12図に示す。
これらの図から判るように、コイル対5a、5bによる
均一分布磁束を良好な磁束比をもって微小ホールH内に
収束するには、微小ホールHの内径dを小さくすること
も必要であるが、渦電流が発生している導電体板8によ
り遮断される磁束のうち、微小ホールI]に向わずに外
周方向に漏洩する磁束を少なくして、微小ホールHによ
る磁束収束比を増大させる必要がある。
かかる磁束収束比の増大を図った基本的構成の例を第1
3図(a)の平面図および第13図(blのA−A側断
面図に示す。図示の構成は、第4図に示した従来の特性
測定結果を参照して磁束収束比の増大を図ったものであ
り、電磁石をなすコイル10の軸方向の寸法をコイル1
0の高さより長大にした導電体ブロック9の中心部に軸
方向の微小ホール11およびスリン)Sを第9図示の構
成におけると同様に形成し、かかる構成の導電体ブロッ
ク9をコイル10の内側空間を満たすようにしてコイル
10内に同軸に配置し、コイル10の内側空間に発生し
た磁束が外部に漏洩することな(効率よく微小ホールH
内に収束されるように構成しである。しかして、この導
電体ブロック9は、第14図ta+に示すような円柱状
、第14図(blに示すような四角柱状、あるいは、適
切な形状の多角柱状に構成することができる。また、コ
イル9の交流磁場内に配置する導電体ブロック9が第9
図示の構成における導電体板8よりコイル軸方向に長大
であるだけ、渦電流発生による熱損失も増大が見込まれ
るので、ブロック9内に渦電流の発生を妨げないように
して通水するなど、適切な冷却手段を施して交流強磁場
発生の″mm待時間増大させ、連続発生の容易化を図る
必要がある。
なお、第9図および第13図に示した基本的構成による
渦電流型交流強磁場発生装置も、第2図示の従来提案構
成によると同様に、第8図示のように構成して実用化す
ることができる。
(発明の効果) 以上の説明から明らかなように、本発明によれば、電磁
石の交流磁場内に配置した導電体内に発生する渦電流に
よる反磁場により交流磁束を遮断して導電体内の微小ホ
ールに電磁石の磁束を収束させ、極めて簡単な構成の装
置により静的に交流強磁場を連続して発生させることが
可能となり、強磁場を利用する各種先端技術の開発促進
に著しく貢献することができる。
【図面の簡単な説明】
第1図は従来提案の渦電流型直流強磁場発生装置の構成
を模式的に示す平面図、 第2図(a)および(blは従来提案の渦電流型交流強
磁場発生装置の構成を模式的にそれぞれ示す平面図およ
び側面図、 第3図乃至第7図は同じくその交流強磁場発生装置の各
部構成条件の変化による特性の変化の態様をそれぞれ示
す特性曲線図、 第8図(a)および(b)は同じくその交流強磁場発生
装置の実用化構成の例をそれぞれ示す平面図および側面
図、 第9図(a)および(blは本発明による渦電流型交流
強磁場発生装置の基本的構成の例をそれぞれ示す側断面
図および平面図、 第10図は同じくその交流強磁場発生装置の磁束収束特
性の例を示す特性曲線図、 第11図は同じくその交流強磁場発生装置の磁束収束の
態様の例を示す側断面図、 第12図は同じくその交流強磁場発生装置における磁束
収束前と磁束収束時とにおける交流磁束波形を比較して
示す信号波形図、 第13図(a)および(blは同じくその交流強磁場発
生装置の基本的構成の他の例をそれぞれ示す平面図およ
び側断面図、 第14図(al、 (b)は同じくその交流強磁場発生
装置の基本的構成のさらに他の例をそれぞれ示す斜視図
である。 la、lb、2a、2b ・・・回転導電体板3・・・
直流電磁石 4a、 4b、 8・・・導電体板 5a15b、10・・・コイル 6・・・鉄心 7・・・フレーム 9・・・導電体ブロック

Claims (1)

  1. 【特許請求の範囲】 1、電磁石を構成するコイルと、そのコイルの中心軸に
    沿った貫通孔および当該中心軸を通る平面に沿って当該
    貫通孔から外周面に達するスリットを有する導電材単一
    ブロックとを備え、前記コイルに通電したときに前記導
    電材単一ブロック内に前記中心軸にほぼ直交する方向の
    渦電流が生するようにして前記コイルと前記導電材単一
    ブロックとを組合わせ配置したことを特徴とする渦電流
    型交流強磁場発生装置。 2、前記導電材単一ブロックを平板状に構成するととも
    に、前記コイルを前記中心軸と直交する方向に沿って2
    ブロックに分割し、当該2ブロックのコイルの間に挟持
    するようにして当該平板状導電材単一ブロックを組合わ
    せ配置したことを特徴とする特許請求の範囲第1項記載
    の渦電流型交流強磁場発生装置。 3、前記導電材単一ブロックを円柱状または角柱状に構
    成し、当該導電材単一ブロックを囲繞するようにして前
    記コイルを組合わせ配置したことを特徴とする特許請求
    の範囲第1項記載の渦電流型交流強磁場発生装置。
JP61228459A 1986-09-29 1986-09-29 渦電流型交流強磁場発生装置 Granted JPS6384103A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61228459A JPS6384103A (ja) 1986-09-29 1986-09-29 渦電流型交流強磁場発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228459A JPS6384103A (ja) 1986-09-29 1986-09-29 渦電流型交流強磁場発生装置

Publications (2)

Publication Number Publication Date
JPS6384103A true JPS6384103A (ja) 1988-04-14
JPH0320887B2 JPH0320887B2 (ja) 1991-03-20

Family

ID=16876819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228459A Granted JPS6384103A (ja) 1986-09-29 1986-09-29 渦電流型交流強磁場発生装置

Country Status (1)

Country Link
JP (1) JPS6384103A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855703A (en) * 1987-03-19 1989-08-08 Kanazawa University Multilayered-eddy-current type strong magnetic field generator
US4857874A (en) * 1987-07-30 1989-08-15 Kanazawa University Multilayered-eddy-current-type strong magnetic field generator
US4879539A (en) * 1988-03-07 1989-11-07 Kanazawa University Laminated coil for an eddy-current type strong AC magnetic field generator
US6819855B2 (en) 2000-08-07 2004-11-16 Fujikura Ltd. Clip removing tool and clip removing method
CN110289148A (zh) * 2019-07-12 2019-09-27 兰州科近泰基新技术有限责任公司 一种铁氧体铁芯的电磁铁及其制造方法
KR20220005788A (ko) * 2020-07-07 2022-01-14 연세대학교 산학협력단 중앙홀 및 미세슬릿이 구비된 에너지집중장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855703A (en) * 1987-03-19 1989-08-08 Kanazawa University Multilayered-eddy-current type strong magnetic field generator
US4857874A (en) * 1987-07-30 1989-08-15 Kanazawa University Multilayered-eddy-current-type strong magnetic field generator
US4879539A (en) * 1988-03-07 1989-11-07 Kanazawa University Laminated coil for an eddy-current type strong AC magnetic field generator
US6819855B2 (en) 2000-08-07 2004-11-16 Fujikura Ltd. Clip removing tool and clip removing method
CN110289148A (zh) * 2019-07-12 2019-09-27 兰州科近泰基新技术有限责任公司 一种铁氧体铁芯的电磁铁及其制造方法
CN110289148B (zh) * 2019-07-12 2021-06-22 兰州科近泰基新技术有限责任公司 一种铁氧体铁芯的电磁铁及其制造方法
KR20220005788A (ko) * 2020-07-07 2022-01-14 연세대학교 산학협력단 중앙홀 및 미세슬릿이 구비된 에너지집중장치

Also Published As

Publication number Publication date
JPH0320887B2 (ja) 1991-03-20

Similar Documents

Publication Publication Date Title
Yamada et al. Study of driven magnetic reconnection in a laboratory plasma
Agarwal Eddy-current losses in solid and laminated iron
JP3181620B2 (ja) 加熱金属要素用の電磁装置
US4933657A (en) Eddy current type multilayered coil for generating intense AC magnetic field
JPH0378592B2 (ja)
JPS6384103A (ja) 渦電流型交流強磁場発生装置
US4855703A (en) Multilayered-eddy-current type strong magnetic field generator
US4857874A (en) Multilayered-eddy-current-type strong magnetic field generator
CN100434928C (zh) 一种可用于磁共振设备的磁场发生系统
US4879539A (en) Laminated coil for an eddy-current type strong AC magnetic field generator
JP4613289B2 (ja) 磁場発生方法および磁場発生装置
Caunes et al. Pulsed field magnetization of multiple bulks used as field pole of a high-temperature superconducting rotating machine
Bessho et al. AC high magnetic field generator based on the Eddy-current effect
Motokawa et al. Cu-Ag alloy Bitter type magnet for repeating pulsed field
Bessho et al. High speed rotating disc type generator for high magnetic field
Bessho et al. Characteristics of a multilayer eddy‐current‐type ac magnetic coil with a cooling system
Ohnuma et al. Radiation characteristics of ion waves in a weakly magnetized plasma
Enokizono et al. Laminated eddy-current type solenoid coil for alternating high magnetic field
JPH0260108A (ja) 強磁場発生装置
CN112259321B (zh) 一种电磁单元、阵列及应用
JPH01104252A (ja) 磁気共鳴撮像装置
Bessho et al. Asymmetrical eddy currents and concentration effect of magnetic flux in a high-speed rotation disc
Fitzpatrick et al. The present status of magneto-optic eddy current imaging technology
Nagata et al. Experimental Studies of Plasmoid Reconnection for Closed Flux Current Generated by Coaxial Helicity Injection on HIST
JPS62108153A (ja) 電磁超音波トランスデユ−サ

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term