JPS6384072A - Manufacture of semiconductor pressure sensor - Google Patents

Manufacture of semiconductor pressure sensor

Info

Publication number
JPS6384072A
JPS6384072A JP22855886A JP22855886A JPS6384072A JP S6384072 A JPS6384072 A JP S6384072A JP 22855886 A JP22855886 A JP 22855886A JP 22855886 A JP22855886 A JP 22855886A JP S6384072 A JPS6384072 A JP S6384072A
Authority
JP
Japan
Prior art keywords
silicon
etching
single crystal
thickness
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22855886A
Other languages
Japanese (ja)
Inventor
Hiroshi Motoyama
本山 浩
Nobuo Nagata
永田 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP22855886A priority Critical patent/JPS6384072A/en
Publication of JPS6384072A publication Critical patent/JPS6384072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To reduce the dispersion of the thickness of an silicon substrate by forming an N-type silicon single crystal and a piezoresistor onto the silicon substrate and etching the whole in a solution hating the composition of HF: HNO3:CH3COOH=1:3:8. CONSTITUTION:An n-type silicon single crystal layer 2 is laminated on an silicon wafer 1 having low resistance through epitaxial growth, and piezoresistors 3 are shaped into the silicon single crystal layer 2 through a planar technique. An aluminum wiring 4 and an silicon oxide film 5 are formed so that the resistors 3 are constituted to a Wheatstone bridge circuit by the aluminum wiring 4. Silicon nitride 6 is shaped onto the rear of the silicon wafer 1, the surface is coated with piezo-wax 7 for protection, and a hole 8 is formed through etching, using silicon nitride as a mask in a solution having the composition ratio of HF:HNO3:CH3COOH=1:3:8.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は単結晶シリコンの一部を精度よく薄板化する方
法に関するもので、半導体圧力センサのダイヤフラム形
成に利用されるものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for accurately thinning a part of single crystal silicon, and is used for forming a diaphragm of a semiconductor pressure sensor. It is.

(従来の技術) 単結晶シリコンを薄板化するためには、第3図に示すよ
うにN型シリコン基板表面の一部にP型不純物を拡散さ
せることによりピエゾ抵抗3を形成し、ホイートストン
ブリッジ回路を構成後、シリコン基板1の裏面9よりエ
ツチングし薄板化することによりダイヤフラムを形成し
ている。
(Prior art) In order to make single crystal silicon thinner, as shown in FIG. 3, a piezoresistor 3 is formed by diffusing P-type impurities into a part of the surface of an N-type silicon substrate, and a Wheatstone bridge circuit is formed. After forming the silicon substrate 1, a diaphragm is formed by etching the back surface 9 of the silicon substrate 1 to make it thin.

(発明が解決しようとする問題点) ダイヤフラムの板厚はセンサの出力感度の2乗に反比例
する相関があり、板厚のコントロールは非常に重要であ
る。
(Problems to be Solved by the Invention) The thickness of the diaphragm is inversely proportional to the square of the output sensitivity of the sensor, and control of the thickness is very important.

しかし従来のダイヤフラムの形成には高温アルカリ溶液
によるエツチングをおこなって形成しており板厚の制御
はエツチング時間の管理で実施しているために、 (1)高温アルカリ溶液を使用するため、エツチング速
度が安定しなく、このために厚さのコントロールが難し
く、 (2)湿式エツチングであるため、本質的にエツチング
速度がシリコン基板面内でバラツキ、従ってダイヤプラ
ムの板厚の面内バラツキがおこり易い、 という問題点がある。
However, conventional diaphragms are formed by etching with a high-temperature alkaline solution, and the plate thickness is controlled by managing the etching time. (2) Since it is a wet etching method, the etching speed essentially varies within the plane of the silicon substrate, and therefore the thickness of the diaphragm tends to vary within the plane. , there is a problem.

本発明は精度良く、安定的にダイヤフラムを形成するこ
とを技術的課題とするものである。
The technical object of the present invention is to form a diaphragm stably with high precision.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 前記技術的課題を解決するための手段は、ピエゾ抵抗を
抵抗率の低いシリコン基板上にエピタキシャル成長させ
たn型シリコン単結晶中に形成し、低抵抗シリコン基板
をフッ化水素酸(HF):硝酸(HNCh ):酢酸(
CH3C00H)=1 :3:8の比率で混合した溶液
モエッチングしてダイヤフラムを形成するものである。
(Means for Solving the Problem) A means for solving the above technical problem is to form a piezoresistor in an n-type silicon single crystal epitaxially grown on a low-resistivity silicon substrate, and Hydrofluoric acid (HF): Nitric acid (HNCh): Acetic acid (
A diaphragm is formed by etching a solution mixed at a ratio of CH3C00H)=1:3:8.

(作用) 前記組成比を持つエツチング液は第4図に示すように、
シリコンの抵抗率によりエツチング速度が変化し、比較
的高い抵抗のシリコンはエツチングされない。従ってエ
ツチングは低抵抗シリコン基板のみ進行し、エピタキシ
ャル成長で積層したn型シリコン単結晶が現われると自
動的に停止するため、ダイヤフラムの板厚はn型シリコ
ン単結晶の厚さとなる。エピタキシャル成長は膜厚の制
御性がよく±1μm程度の精度で積層可能であることか
ら、ダイヤフラムの手反厚のコントロールは良好となる
(Function) As shown in FIG. 4, the etching solution having the above composition ratio has the following properties:
The etching rate varies depending on the resistivity of the silicon, and silicon with relatively high resistance will not be etched. Therefore, etching proceeds only on the low-resistance silicon substrate and automatically stops when the n-type silicon single crystal layered by epitaxial growth appears, so that the thickness of the diaphragm becomes equal to the thickness of the n-type silicon single crystal. Since epitaxial growth has good controllability of film thickness and can be stacked with an accuracy of about ±1 μm, the thickness of the diaphragm can be well controlled.

エツチングは室温で良く、水分蒸発による濃度変化も僅
かであり、又エツチング速度が面内でばらついても、n
型シリコン単結晶で停止するのでダイアフラムの板厚の
面内バラツキも良くなるものである。
Etching can be performed at room temperature, there is only a slight change in concentration due to water evaporation, and even if the etching rate varies within the plane, n
Since it stops at the type silicon single crystal, in-plane variations in the thickness of the diaphragm are also improved.

(実施例) 第1図に於いて抵抗率0.01Ω−(至)以下のシリコ
ンウェハ1にエピタキシャル成長によりN型抵抗率1Ω
−cm以上のシリコン単結晶層2を積層し、プレーナ技
術によりシリコン単結晶層2中にピエゾ抵抗怠を形成後
アルミ配線4によりホイートストンブリッジ回路を構成
するもので、5はシリコン酸化膜、6は窒化ケイ素であ
る。
(Example) In Fig. 1, an N-type resistivity of 1Ω is formed by epitaxial growth on a silicon wafer 1 with a resistivity of 0.01Ω-(to) or less.
- cm or more of silicon single crystal layers 2 are laminated, a piezoresistive layer is formed in the silicon single crystal layer 2 by planar technology, and then a Wheatstone bridge circuit is constructed with aluminum wiring 4, where 5 is a silicon oxide film and 6 is a silicon oxide film. It is silicon nitride.

次に第2図に示すようにエツチング液から表面を保護す
るためにアビニジワックス7を表面にコーティングし、
HF : HNOs  : CH3Co 0H=1:3
:8の組成比の溶液中でS i 3 Naをマスクとし
て8に示すようにエツチングし、ダイヤフラムを形成す
るものである。
Next, as shown in Figure 2, the surface is coated with avinidiwax 7 to protect it from the etching solution.
HF: HNOs: CH3Co 0H=1:3
A diaphragm is formed by etching in a solution having a composition ratio of 1:8 using S i 3 Na as a mask as shown in 8.

エピタキシャル成長により積層したシリコン単結晶の厚
さは圧力センサーの使用圧力範囲より決定され数μm〜
数十μm程度の厚さで選ばれる。
The thickness of the silicon single crystal layered by epitaxial growth is determined by the working pressure range of the pressure sensor, and ranges from several μm to
It is selected with a thickness of approximately several tens of micrometers.

抵抗率0.005Ω−(2)、板厚200μmのシリコ
ンウェハ1を上記組成比の溶液中で75分エツチングし
たところ、ウェハ全面にわたり均一な板厚のダイヤフラ
ムを形成できた。
When a silicon wafer 1 having a resistivity of 0.005 Ω-(2) and a thickness of 200 μm was etched in a solution having the above composition ratio for 75 minutes, a diaphragm having a uniform thickness could be formed over the entire surface of the wafer.

〔発明の効果〕〔Effect of the invention〕

本発明は次の効果を有する。即ち、従来技術の問題点を
解消するため、エツチング容器上部に冷却器を設はエツ
チング液からの水分の蒸発を防止したり、シリコン基板
を回転させながらエツチングを行い面内のエツチング速
度を均一にすることが行われている(胚倉電線技報66
号P24、昭和58年9月発行)。しかしこの方法はシ
リコン基板に存在する板厚のバラツキがそのままエツチ
ング後のダイヤフラム板厚のバラツキに現われるが、本
発明は板厚がエピタキシャル成長で積層したシリコン単
結晶層で決まるものであるからシリコン基板の板厚のバ
ラツキを考慮する必要がないという効果を有する。
The present invention has the following effects. In other words, in order to solve the problems of the conventional technology, a cooler is installed on the top of the etching container to prevent moisture from evaporating from the etching solution, and etching is performed while rotating the silicon substrate to make the etching rate uniform within the surface. (Gerukura Electric Wire Technical Report 66)
No. P24, published September 1982). However, in this method, variations in the thickness of the silicon substrate directly appear in variations in the thickness of the diaphragm after etching, but in the present invention, the thickness is determined by the silicon single crystal layers laminated by epitaxial growth, so the thickness of the silicon substrate is This has the effect that there is no need to consider variations in plate thickness.

また高温アルカリ溶液を用いてシリコン単結晶をエツチ
ングすると結晶面によってエツチング速度が異なるため
ダイヤフラムのコーナーがテーパー状となるのに対して
本発明ではエツチング速度は結晶面に関係なく一定であ
るためにコーナーが曲面となりダイヤフラムの強度が従
来のものより向上するものである。
Furthermore, when a silicon single crystal is etched using a high-temperature alkaline solution, the etching rate differs depending on the crystal plane, resulting in a tapered corner of the diaphragm, whereas in the present invention, the etching rate is constant regardless of the crystal plane, so the corner The diaphragm has a curved surface, which improves the strength of the diaphragm compared to conventional diaphragms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧力センサーの要部の拡大断面図でシリコンウ
ェハのエツチング前の状況を示し、第2図は第1図のも
のをエツチングした後の状況を示す。第3図は従来例の
説明図で、第4図はシリコン抵抗率とエツチング速度の
グラフである。 1・・・低抵抗シリコン基板、2・・・シリコン単結晶
FIG. 1 is an enlarged cross-sectional view of the main part of the pressure sensor, showing the state before the silicon wafer is etched, and FIG. 2 shows the state after etching the silicon wafer. FIG. 3 is an explanatory diagram of a conventional example, and FIG. 4 is a graph of silicon resistivity and etching rate. 1...Low resistance silicon substrate, 2...Silicon single crystal

Claims (1)

【特許請求の範囲】[Claims] 低抵抗シリコン基板上にエピタキシャル成長によりn型
シリコン単結晶を積層し、その表面にピエゾ抵抗を形成
後シリコン基板をHF:HNO_3:CH_3COOH
=1:3:8の組成をもつ溶液中でエッチングし、ダイ
ヤフラムを形成する半導体圧力センサーの製造方法。
N-type silicon single crystals are laminated by epitaxial growth on a low-resistance silicon substrate, and after forming a piezoresistor on the surface, the silicon substrate is HF:HNO_3:CH_3COOH.
A method for manufacturing a semiconductor pressure sensor in which a diaphragm is formed by etching in a solution having a composition of 1:3:8.
JP22855886A 1986-09-26 1986-09-26 Manufacture of semiconductor pressure sensor Pending JPS6384072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22855886A JPS6384072A (en) 1986-09-26 1986-09-26 Manufacture of semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22855886A JPS6384072A (en) 1986-09-26 1986-09-26 Manufacture of semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS6384072A true JPS6384072A (en) 1988-04-14

Family

ID=16878255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22855886A Pending JPS6384072A (en) 1986-09-26 1986-09-26 Manufacture of semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS6384072A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897439A (en) * 1994-09-14 1996-04-12 Delco Electron Corp One-chip accumulation sensor
WO2000009440A1 (en) * 1998-08-11 2000-02-24 Infineon Technologies Ag Micromechanical sensor and corresponding production method
CN109696185A (en) * 2018-12-30 2019-04-30 吉林大学 A kind of bionical micro cantilever structure, its manufacturing method and piezoresistance sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897439A (en) * 1994-09-14 1996-04-12 Delco Electron Corp One-chip accumulation sensor
WO2000009440A1 (en) * 1998-08-11 2000-02-24 Infineon Technologies Ag Micromechanical sensor and corresponding production method
US6389902B2 (en) 1998-08-11 2002-05-21 Infineon Technologies Ag Micromechanical sensor and method for its production
CN109696185A (en) * 2018-12-30 2019-04-30 吉林大学 A kind of bionical micro cantilever structure, its manufacturing method and piezoresistance sensor

Similar Documents

Publication Publication Date Title
US5178016A (en) Silicon pressure sensor chip with a shear element on a sculptured diaphragm
JPS6384072A (en) Manufacture of semiconductor pressure sensor
JPS63250865A (en) Pressure detecting element and manufacture thereof
JPS59169184A (en) Manufacture of pressure sensor
JPH0554709B2 (en)
JPS6142968A (en) Pressure-electricity converter and manufacture thereof
JPH0779167B2 (en) Integrated semiconductor pressure sensor
JPS6097676A (en) Semiconductor pressure sensor and manufacture thereof
JPS6080281A (en) Semiconductor pressure sensor and manufacture thereof
JPS5913377A (en) Formation of pressure receiving diaphragm of semiconductor pressure converting element
JPS62266876A (en) Semiconductor pressure sensor
JP2905902B2 (en) Semiconductor pressure gauge and method of manufacturing the same
JPS59172778A (en) Manufacture of pressure sensor
JPS6097677A (en) Semiconductor pressure sensor
JPH01183165A (en) Semiconductor pressure sensor
JPS6037177A (en) Semiconductor pressure sensor
JPH0249472A (en) Semiconductor strain detector
JPH03284871A (en) Semiconductor device and manufacture thereof
JPS633468A (en) Semiconductor pressure sensor
JPH02137273A (en) Manufacture of silicon diaphragm
JPH05304304A (en) Semiconductor pressure sensor and manufacture thereof
JPS6315422A (en) Manufacture of semiconductor device
JPS6281773A (en) Manufacture of semiconductor pressure sensor
JPS61119080A (en) Manufacture of semiconductor pressure sensor
JPS6286771A (en) Manufacture of silicon diaphragm