JPS638373B2 - - Google Patents

Info

Publication number
JPS638373B2
JPS638373B2 JP55001433A JP143380A JPS638373B2 JP S638373 B2 JPS638373 B2 JP S638373B2 JP 55001433 A JP55001433 A JP 55001433A JP 143380 A JP143380 A JP 143380A JP S638373 B2 JPS638373 B2 JP S638373B2
Authority
JP
Japan
Prior art keywords
fuel
combustor
introduction means
chamber
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55001433A
Other languages
Japanese (ja)
Other versions
JPS55112933A (en
Inventor
Aran Joojensen Robaato
Aasaa Fuaareru Rogaa
Uiriamu Geruhoorudo Buruusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS55112933A publication Critical patent/JPS55112933A/en
Publication of JPS638373B2 publication Critical patent/JPS638373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/32Control of fuel supply characterised by throttling of fuel
    • F02C9/34Joint control of separate flows to main and auxiliary burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/31Fuel schedule for stage combustors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

【発明の詳細な説明】 近年、ガスタービン製造者は汚染物質の排出に
ますます多くの関心をもつようになつてきてい
る。特に関心をもたれているのは酸化窒素
(NOx)の排出である。なぜなら、このような酸
化物は最も空気を汚染するからである。
DETAILED DESCRIPTION OF THE INVENTION In recent years, gas turbine manufacturers have become increasingly concerned with pollutant emissions. Of particular interest is nitrogen oxide (NOx) emissions. This is because such oxides pollute the air the most.

周知のように、NOxの発生は火炎温度の上昇
および停留時間の増加と共に増加する。従つて、
理論的には、火炎温度および(または)反応ガス
が最高温度に溜まる時間を減らすことによつて
NOxの排出量を減らすことが可能である。しか
し、これを実行することは、今日のガスタービン
燃焼器の乱流拡散火炎特性の故に困難である。こ
のような燃焼器における燃焼は、全反応域等価比
にかかわらず1に近い燃料対空気等価比で蒸発燃
料液滴を囲む薄い層内で発生する。これは最高火
炎温度を生ずる状態であるから、比較的多量の
NOxが発生する。その結果、従来の単段単一燃
料ノズル噴霧式燃焼器は、公称反応域等価比がい
かなる希薄値となろうとも新たに設定された排出
基準に合わないおそれがある。
As is well known, NOx generation increases with increasing flame temperature and residence time. Therefore,
Theoretically, by reducing the flame temperature and/or the time the reactant gases remain at maximum temperature.
It is possible to reduce NOx emissions. However, this is difficult to accomplish due to the turbulent diffusion flame characteristics of today's gas turbine combustors. Combustion in such combustors occurs in a thin layer surrounding the vaporized fuel droplets with a fuel-to-air equivalent ratio close to unity regardless of the total reaction zone equivalent ratio. This is the condition that produces the highest flame temperature, so a relatively large amount of
NOx is generated. As a result, conventional single-stage, single-fuel nozzle atomizing combustors may not meet newly established emissions standards at any lean nominal reaction zone equivalent ratio.

従来の燃焼器が少量のNOxを排出する要件に
合うように、かなりの量の水または蒸気の噴射に
よつてNOxの発生量を減らし得るということが
知られている。しかし、このような噴射も多くの
欠点をもつ。例えば、装置の複雑さの増大、所要
の水処理による運転費の増加、他の性能因子の悪
化等である。
It is known that in order to meet the requirement that conventional combustors emit small amounts of NOx, the amount of NOx produced can be reduced by injection of significant amounts of water or steam. However, such injection also has many drawbacks. For example, increased equipment complexity, increased operating costs due to required water treatment, and deterioration of other performance factors.

外部において希薄等価比で燃料の気化と空気と
の混合をあらかじめ行うことによつて均質希薄反
応域を得る様々な試みは適用性に限りがある。こ
れらの設計は、代表的な場合、再生サイクル(高
い燃焼器入口温度)用の、かつまた比較的低い圧
力(10気圧未満)のきれいで非常に揮発しやすい
燃料、例えば、ガソリン、ジエツト燃料等に対し
て用いられてきた。複雑さの増加のほか、この方
策の重大な欠点として自己点火と逆火の危険があ
る。10気圧では、留出燃料の完全蒸発に要する停
留時間と自己点火に要する停留時間とはほぼ等し
い。例えば、ASMEプレプリント77−GT−69を
参照されたい。
Various attempts to obtain a homogeneous lean reaction zone by pre-vaporizing the fuel and mixing it with air in a lean equivalent ratio externally have limited applicability. These designs are typically used for regeneration cycles (high combustor inlet temperatures) and also for clean, highly volatile fuels at relatively low pressures (less than 10 atmospheres), such as gasoline, jet fuel, etc. has been used for. Besides the increased complexity, a significant drawback of this approach is the risk of self-ignition and backfire. At 10 atmospheres, the residence time required for complete evaporation of distillate fuel is approximately equal to the residence time required for self-ignition. See, eg, ASME Preprint 77-GT-69.

NOxの少量排出を実現させる問題は、それが
他の燃焼設計基準に合う必要がある時さらに複雑
さを増す。このような基準は、例えば、良好点火
性、良好交差点火性、全負荷範囲にわたる安定
性、高いターンダウン比、(ターンダウン比とは、
爆発前の最大燃料流量と消炎前の最小燃料流量と
の比。ターンダウン比が高いことは燃焼を停止せ
ずに、燃料流量を少ない量まで調節できるので望
ましいことであり、望ましくない局部的熱応力の
発生を軽減できる。)長寿命、安全運転能力等の
基準である。
The problem of achieving low NOx emissions becomes even more complex when it must meet other combustion design criteria. Such criteria include, for example, good ignition properties, good cross-ignition properties, stability over the entire load range, high turndown ratios,
The ratio of the maximum fuel flow rate before explosion to the minimum fuel flow rate before extinguishment. A high turndown ratio is desirable because it allows the fuel flow rate to be adjusted to a lower amount without terminating combustion, thereby reducing the generation of undesirable localized thermal stresses. ) Standards for long life, safe driving ability, etc.

燃料の窒素と空気の窒素から酸化窒素を発生さ
せる要因のうちのあるものは既に知られており、
これらの要因に対して様々な燃焼器作用を適合さ
せることに努力が払われてきた。例えば、米国特
許第3958416号、第3958413号および第3946553号
を参照されたい。しかし、従来用いられた方法は
定量ガスタービン用の燃焼器には適用し得ない
か、あるいは以下に述べる理由によつて不適当で
あつた。
Some of the factors that generate nitrogen oxide from fuel nitrogen and air nitrogen are already known;
Efforts have been made to adapt various combustor operations to these factors. See, eg, US Pat. Nos. 3,958,416, 3,958,413 and 3,946,553. However, the methods used in the past have been either inapplicable to combustors for quantitative gas turbines or have been unsuitable for the reasons described below.

本発明の目的は、様々なガス状および留出燃料
を用いて、汚染物排出を許容可能レベルにまで減
らす火炎温度で全ガスタービンサイクルにわたつ
て働くガスタービン用の新規な2段複式燃焼装置
を提供することである。本発明の上記および他の
目的は以下の詳述から当業者には良く理解されよ
う。
The object of the present invention is to provide a novel two-stage dual combustion device for gas turbines using various gaseous and distillate fuels and working over the entire gas turbine cycle with flame temperatures that reduce pollutant emissions to acceptable levels. The goal is to provide the following. These and other objects of the invention will be well understood by those skilled in the art from the following detailed description.

本発明は定量ガスタービン用燃焼器、例えば、
複数の燃焼器からなる燃焼装置と、NOx排出量
を減らすように各燃焼器を働かせる方法とに関す
る。さらに詳述すると、本発明の燃焼器はネツク
部を介して連結された2個の燃焼室と、各室用の
別々の燃料導入手段と、各燃料導入手段の燃料流
量を他の燃料導入手段に対して調整する手段とを
有する。吹消しが生ずる場合に備えて、燃焼器群
には、交差点火管によつて隣合う燃焼器それぞれ
の第1室を連結するとともに隣合う燃焼器それぞ
れの第2室を連結することによつて高負荷点火系
が設けられている。燃焼器の使用に際しては、ま
ず燃料を第1室だけに導入し、そこで燃料を燃焼
させる。その後、燃料流は第1室内の燃焼が終わ
るまで第2室内に移送され、その後混合の目的で
燃料は再び第1室内に分配され、この再分配は所
望のNOxの減量が達成されるまで行われる。
The present invention relates to a combustor for a quantitative gas turbine, e.g.
A combustion apparatus comprising a plurality of combustors and a method for operating each combustor to reduce NOx emissions. More specifically, the combustor of the present invention has two combustion chambers connected through a neck, separate fuel introduction means for each chamber, and a fuel flow rate of each fuel introduction means to be connected to another fuel introduction means. and means for adjusting. In preparation for the occurrence of blowout, the combustor group is constructed by connecting the first chambers of each adjacent combustor and the second chambers of each adjacent combustor by a crossing fire tube. A high-load ignition system is provided. When the combustor is used, fuel is first introduced into only the first chamber and is combusted there. The fuel flow is then transferred into the second chamber until the combustion in the first chamber is completed, after which the fuel is distributed again into the first chamber for mixing purposes, and this redistribution is continued until the desired NOx reduction is achieved. be exposed.

第1図と第2図を参照するに、本発明の燃焼器
1は概して、第1燃焼域2と、それに連結された
ネツクまたはスロート域3と、この区域3に連結
された第2燃焼域4から成る。
1 and 2, the combustor 1 of the present invention generally comprises a first combustion zone 2, a neck or throat zone 3 connected thereto, and a second combustion zone connected to this zone 3. Consists of 4.

第1燃焼域2は単一の、好ましくは軸対称の燃
料ノズル5を利用した従来の希薄燃焼器設計のも
のでよい。第2燃焼域4は複数の燃料ノズル6か
ら燃料を供給される。第1図と第2図では、燃焼
器周囲に対称的に配置された4個の半径方向ノズ
ルが示されているが、所望に応じて任意の数のノ
ズルを使用し得る。ガスタービン圧縮機(図示せ
ず)からの空気は高圧、通例、約10〜30気圧で燃
焼器内に導入される。例えば、その空気は1個以
上の空気入口7を通つて導入される。第1燃焼域
2に配設された入口7は、広い使用範囲にわたつ
て安定した燃焼をもたらす環流をひき起こすよう
に配設されるのが好ましい。また、適当な熱交換
流体で区域4内の燃焼生成物を急冷する手段が設
けられる。例えば、冷却用空気は複数の開口8を
通つて区域4に導入され得る。使用される熱交換
流体の量は、流体温度を所望のガスタービン点火
温度まで下げるように燃焼生成物を冷却するのに
十分な量である。
The first combustion zone 2 may be of a conventional lean combustor design utilizing a single, preferably axisymmetric fuel nozzle 5. The second combustion zone 4 is supplied with fuel from a plurality of fuel nozzles 6 . Although FIGS. 1 and 2 show four radial nozzles arranged symmetrically around the combustor, any number of nozzles may be used as desired. Air from a gas turbine compressor (not shown) is introduced into the combustor at high pressure, typically about 10 to 30 atmospheres. For example, the air is introduced through one or more air inlets 7. The inlet 7 arranged in the first combustion zone 2 is preferably arranged in such a way as to cause a reflux which results in stable combustion over a wide range of use. Also provided are means for quenching the combustion products in zone 4 with a suitable heat exchange fluid. For example, cooling air may be introduced into zone 4 through a plurality of openings 8 . The amount of heat exchange fluid used is sufficient to cool the combustion products to reduce the fluid temperature to the desired gas turbine ignition temperature.

区域2,3,4の好適断面形状は円形である
が、任意の形状を採用し得る。構造材料は金属ま
たはセラミツクでよい。各区域は水冷、閉系冷
却、蒸気膜冷却、通常の空気膜冷却等の様々な冷
却技術によつて表面冷却され得る。例示のみの目
的で述べると、空気膜冷却のために区域壁に沿つ
てルーパを複数の環状列をなすように図式的に相
隔てて配設した有用な構成がデイベリウス
(Dibelius)とシーフアー(Schiefer)の米国特
許第3777484号に記載されており、また有用なス
ロツト冷却構造がコリガン(Corrigan)とプレ
モンズ(Plemmons)の米国特許第3728039号に
記載されている。
The preferred cross-sectional shape of zones 2, 3, and 4 is circular, but any shape may be adopted. The structural material may be metal or ceramic. Each zone may be surface cooled by various cooling techniques such as water cooling, closed system cooling, steam film cooling, conventional air film cooling, etc. By way of example only, a useful arrangement of schematically spaced loopers in multiple annular rows along a zone wall for air film cooling is shown by the Dibelius and Schiefer. ), and a useful slot cooling structure is described in Corrigan and Plemmons, US Pat. No. 3,728,039.

ネツクまたはスロート3が第1燃焼域2と第2
燃焼域4との間で空気力学的分離体または隔離体
として作用することは理解されよう。この機能を
適切に果たすために、ネツク3は第1域2と第2
域4に対して適度に小さい直径を有する必要があ
る。一般に、ネツク域3の直径に対する第1燃焼
域2の直径と第2燃焼域4の直径のいずれか小さ
い方の比として、少なくとも1.2対1、好ましく
は少なくとも約1.5対1を用いる。第1燃焼域2
とネツク3間の円滑な遷移を容易にするために、
区域2の最下流部2aは均等に減少する直径、す
なわち、円すい形断面を有する。ネツク3の長手
方向の長さは重要ではなく、ネツク3の分離機能
と絞り機能を果たす距離であればいかなる距離で
も採用し得る。一般に、第1燃焼域2の長手方向
の長さはネツク3のそれの少なくとも約3倍好ま
しくは少なくとも約5倍である。第2燃焼域4の
全体的な形状は第1域2のそれと同様である。た
だし、もちろん、円すい形遷移部分はネツク3と
合う区域4の最上流部分4aにある。
The neck or throat 3 connects the first combustion zone 2 and the second
It will be appreciated that it acts as an aerodynamic separator or separator with the combustion zone 4. In order to properly perform this function, network 3 is connected to the first area 2 and the second area.
It is necessary to have a suitably small diameter relative to zone 4. Generally, the ratio of the diameter of the first combustion zone 2 and the diameter of the second combustion zone 4, whichever is smaller, to the diameter of the neck zone 3 is at least 1.2:1, preferably at least about 1.5:1. 1st combustion zone 2
To facilitate a smooth transition between
The most downstream part 2a of the zone 2 has an evenly decreasing diameter, ie a conical cross section. The longitudinal length of the net 3 is not critical; any distance may be used as long as it fulfills the separating and restricting functions of the net 3. Generally, the longitudinal length of first combustion zone 2 is at least about three times that of neck 3, preferably at least about five times. The overall shape of the second combustion zone 4 is similar to that of the first zone 2. However, of course, the conical transition part is in the most upstream part 4a of the area 4 which meets the net 3.

本発明の第2好適実施例を第2図に示す。この
図では第1図内と同様の部分は同符号で示してあ
る。第2図に示す構成は次の点で第1図の構成と
異なる。第1に、スロート域3の直径は同域内の
平均空気速度を高めるために減らしてあり、この
設計は逆火を防ぐのに最も有効である。先細円す
い形部分2aの高さ(すなわち長手方向長さ)も
増してある。この実施例では、燃料ノズル6はス
ロート3から第2域4の末広円すい形部分4aに
移されており、小形燃焼室または旋回用カツプ9
内に引込められている。ここでは、2次燃料ノズ
ル6の働きはより安定しており、後述の燃料切換
中に吹消しが起こる可能性は比較的少ない。
A second preferred embodiment of the invention is shown in FIG. In this figure, parts similar to those in FIG. 1 are designated by the same reference numerals. The configuration shown in FIG. 2 differs from the configuration shown in FIG. 1 in the following points. First, the diameter of the throat region 3 is reduced to increase the average air velocity within the region, and this design is most effective in preventing flashback. The height (ie longitudinal length) of the tapered conical portion 2a is also increased. In this embodiment, the fuel nozzle 6 has been moved from the throat 3 to a diverging conical portion 4a of the second region 4, forming a small combustion chamber or swirl cup 9.
being pulled inside. Here, the operation of the secondary fuel nozzle 6 is more stable, and the possibility of blowout occurring during fuel switching, which will be described later, is relatively low.

第3図は本発明の3個の相互に連結された燃焼
器を例示する。各燃焼器1の第1燃焼域2は従来
の仕方で交差点火管10によつて隣合う燃焼器1
の第1燃焼域2に連結されている。さらに、本発
明では、各燃焼器1の第2燃焼域4は交差点火管
11を介して隣合う各燃焼器1の第2燃焼域4に
連結されている。後述のように、本燃焼器が設計
高負荷状態で働いている時は、燃焼は第2域4内
のみでなされ、第1域2では生じない。もしなん
らかの理由によりこのような高負荷状態で1個の
燃焼器に吹消しが起これば、従来の構造では交差
点火は生じ得ない。なぜなら、標準の交差点火管
10は反応域4の上流にあり、ネツク3は逆火を
防ぐように働くからである。第3図に示す実施例
では、第2組の交差点火管11が高負荷点火系と
して作用する。2組の交差点火管(すなわち、管
10,11)を設けることが好ましいが、所望に
応じて任意の高負荷再点火系を燃焼装置に組込み
得る。
FIG. 3 illustrates three interconnected combustors of the present invention. The first combustion zone 2 of each combustor 1 is connected to the adjacent combustor 1 by a crossfire tube 10 in a conventional manner.
The first combustion zone 2 is connected to the first combustion zone 2 of the combustion chamber. Furthermore, in the present invention, the second combustion zone 4 of each combustor 1 is connected to the second combustion zone 4 of each adjacent combustor 1 via a crossfire tube 11. As will be described later, when the present combustor is operating at a designed high load condition, combustion occurs only in the second zone 4 and does not occur in the first zone 2. If for some reason one combustor were to blow out under such high load conditions, a crossfire could not occur in the conventional structure. This is because the standard crossfire tube 10 is upstream of the reaction zone 4 and the network 3 serves to prevent flashback. In the embodiment shown in FIG. 3, the second set of crossfire tubes 11 acts as a high-load ignition system. Although it is preferred to provide two sets of crossfire tubes (i.e., tubes 10, 11), any high-load reignition system may be incorporated into the combustion device as desired.

本発明の燃焼器の働きを第4図にグラフで示
す。燃焼は第1燃焼域2内の炭化水素燃料と空気
の混合物の点火によつて始まる。これは、第1燃
焼域2内の燃料ノズル5の近くに配置された点火
プラグ12(点火プラグは通常第1燃焼域2のみ
にに設けられている。)によつて従来の仕方で行
われる。代表的な従来装置では、10個の燃焼器が
環状に配置され、通常2個の燃焼器だけに点火プ
ラグ12が設けられ、残りの8個の燃焼器は交差
点火管10によつて交差点火される。点火および
交差点火中、さらにまた燃焼器が低負荷で働く間
は、1次燃料ノズル5だけが燃料を燃焼器1に送
込む。この点までの燃焼は従来の燃焼器の単段不
均質乱流拡散火炎燃焼特性を示す。
The operation of the combustor of the present invention is illustrated graphically in FIG. Combustion begins by ignition of a mixture of hydrocarbon fuel and air in the first combustion zone 2. This is done in a conventional manner by means of a spark plug 12 arranged close to the fuel nozzle 5 in the first combustion zone 2 (spark plugs are normally provided only in the first combustion zone 2). . In a typical conventional device, 10 combustors are arranged in a ring, and usually only two combustors are provided with spark plugs 12, and the remaining eight combustors are connected to the crossfire by crossfire tubes 10. be done. During ignition and crossfire, and also while the combustor is working at low loads, only the primary fuel nozzle 5 delivers fuel to the combustor 1. Combustion up to this point exhibits the single stage heterogeneous turbulent diffusion flame combustion characteristics of a conventional combustor.

中程度の負荷状態では、2次燃料ノズル6が活
用される。なお、この状態の正確な調時は安定性
限界と、各燃焼方式の汚染物排出特性と、両段間
の燃料分割とに関係する。点火された燃料が第1
域2から第2域4内に進むと、第2域4内で点火
が生ずる。この時燃焼器は2段不均質方式で働い
ており、この方式は所望のベース負荷が得られる
まで続く。安定化とウオームアツプに短い時間を
取つた後、燃焼器の作用は2段不均質燃焼から単
段均質燃焼へと転換される。この転換は、全燃料
流量を一定に保ちながら2次ノズル6への燃料流
量を増すと同時に1次ノズル5への燃料流量を減
らすことによつて開始される。ノズル5,6への
燃料流量の比は、ノズル5とノズル6に連結され
た燃料流量制御装置13によつて制御され得る。
燃料分配の変化は火炎が1次燃焼域2内で消える
まで続く。この消炎はほとんどの場合全燃料流が
2次ノズル6に移された時に生ずる。
Under moderate load conditions, the secondary fuel nozzle 6 is utilized. Note that the precise timing of this condition is related to stability limits, the pollutant emission characteristics of each combustion type, and the fuel split between the stages. The ignited fuel is the first
Proceeding from zone 2 into second zone 4, ignition occurs within second zone 4. The combustor is then working in a two-stage heterogeneous mode, which continues until the desired base load is obtained. After a short period of time for stabilization and warm-up, combustor operation is converted from two-stage heterogeneous combustion to single-stage homogeneous combustion. The conversion is initiated by increasing the fuel flow to the secondary nozzle 6 while decreasing the fuel flow to the primary nozzle 5 while keeping the total fuel flow constant. The ratio of fuel flow rates to nozzles 5 and 6 may be controlled by a fuel flow control device 13 coupled to nozzles 5 and 6.
The change in fuel distribution continues until the flame is extinguished within the primary combustion zone 2. This extinguishing occurs in most cases when the entire fuel flow is transferred to the secondary nozzle 6.

次いでノズル5への燃料流を再び発生させるか
増加させかつノズル6への燃料流を減らし、その
間全燃料流量を実質的に一定に保つ。燃焼器1
は、第1域2を十分長くして流れ断面が十分に発
達した乱流管流の断面と類似するようにするとと
もに、スロート3を十分狭くして流速を高め、正
常使用状態で逆火を起こさないように設計され
る。その結果、燃料の大部分と空気が第1段(す
なわち第1域2)においてあらかじめ混合しそし
て第2段、すなわち、第2域4において均等に燃
焼する。2次ノズル6から1次ノズル5への燃料
分配の切換えは、汚染物の排出が所望の低いレベ
ルに達するまで続く。所望排出レベルは、燃料流
の大部分がノズル5を通り、そして、ほとんどの
場合、燃料流の少なくとも60%がノズル5を通る
時に得られる。
Fuel flow to nozzle 5 is then regenerated or increased and fuel flow to nozzle 6 is reduced, while keeping the total fuel flow substantially constant. Combustor 1
The first region 2 is made sufficiently long so that the flow cross section resembles that of a well-developed turbulent pipe flow, and the throat 3 is made sufficiently narrow to increase the flow velocity and prevent backfire under normal operating conditions. It is designed to prevent this from happening. As a result, most of the fuel and air are premixed in the first stage (ie, first zone 2) and combusted evenly in the second stage, ie, second zone 4. The switching of fuel distribution from the secondary nozzle 6 to the primary nozzle 5 continues until the pollutant emissions reach a desired low level. The desired emission level is obtained when the majority of the fuel flow passes through the nozzle 5, and in most cases at least 60% of the fuel flow passes through the nozzle 5.

本発明の燃焼器の重要な特徴は、逆火が生じた
場合、予混合が燃焼室内でなされているので、従
来の代表的な予混合設計の場合のような構造部の
破損が生じないということであることを理解され
たい。しかし、かなりのNOxが発生するおそれ
があるので燃料分配の切換えを再び行うとともに
燃焼器を再び均質燃焼方式で使用するように制御
処置を取らなければならない。
An important feature of the combustor of the present invention is that in the event of a flashback, because the premixing is done within the combustion chamber, structural damage will not occur as would occur with typical conventional premix designs. I hope you understand that this is true. However, significant NOx may be produced, and control measures must be taken to redirect the fuel distribution and return the combustor to homogeneous combustion mode.

ガスタービンの停止に際して、第1域2で再点
火するように処置が取られる。なぜなら均質方式
では小さいターンダウン比しか得られないからで
ある。第1段の再点火は不均質2段燃焼へ戻ると
いうことを意味し、この方式の燃焼では系は大き
なターンダウン比を有し、タービンはゆつくり停
止し得るので望ましくない熱応力が緩和される。
Upon shutdown of the gas turbine, steps are taken to reignite the first zone 2. This is because the homogeneous method provides only a small turndown ratio. Reignition of the first stage means a return to heterogeneous two-stage combustion, where the system has a large turndown ratio and the turbine can come to a slow stop, relieving undesirable thermal stresses. Ru.

本発明によつて達成されるNOx排出量の減少
を明示するため、本発明に従つて製作された燃焼
器を、MS7001E装置を用いた従来の市販燃焼器
と比較した。本発明の燃焼器は第1図に示す構造
を有し、1次ノズル5として単一の空気噴霧式
MS7001Eノズルとそれより小さい4個の圧力噴
霧式2次ノズル6とを利用したものであつた。デ
ータの収集は、約2080〓(1138℃)、すなわち、
ベース負荷に対する実験室等価値(熱伝対からの
放射損失に対して修正された値)において行われ
た。こうした状態の下で、従来の標準燃焼器は
120ppmvの実験室NOx排出量を示し、他方本発
明によつて作られた燃焼器の排出量はわずかに
56ppmvであつた。この試験は汚れ空気供給源を
用いて行なわれた。これは、空気温度を適切な入
口レベルまで高めるのに使われる直接加熱器(例
えば、プロパンヒータ)からの燃焼生成物を、試
験の際に、燃焼用酸化体として利用することを意
味する。従つて、NOx排出量は汚れていない空
気(間接的に予約された空気。燃焼生成物を含ん
でいない。)を用いて得られるはずの排出量より
少ない。これらの実験室内の試験結果に基いて期
待されることは、現場状態(すなわち、実際のタ
ービンをきれいな空気と共に使用する状態)で本
発明の燃焼器を均質方式で使用すれば、その際に
示されるはずのNOx排出量の減少は上記の減少
に匹敵するものになろうということである。従つ
て、本発明によつて作られた燃焼器は低レベル
NOx排出要件に合うものと評価される。
To demonstrate the reduction in NOx emissions achieved by the present invention, a combustor constructed in accordance with the present invention was compared to a conventional commercial combustor using an MS7001E device. The combustor of the present invention has the structure shown in FIG.
It utilized an MS7001E nozzle and four smaller pressure spray secondary nozzles 6. Data collection was performed at approximately 2080〓 (1138℃), i.e.
The laboratory equivalent values for base load (values corrected for radiation losses from thermocouples) were performed. Under these conditions, the conventional standard combustor
showed laboratory NOx emissions of 120 ppmv, whereas the combustor made according to the present invention had only a
It was 56 ppmv. This test was conducted using a dirty air source. This means that the combustion products from the direct heater (eg, propane heater) used to raise the air temperature to the appropriate inlet level are utilized as the combustion oxidant during testing. Therefore, the NOx emissions are less than would be obtained using clean air (indirectly reserved air, which does not contain combustion products). Based on these laboratory test results, it is expected that if the combustor of the present invention is used in a homogeneous manner under field conditions (i.e., using a real turbine with clean air), The expected reduction in NOx emissions would be comparable to the above reduction. Therefore, a combustor made according to the present invention has a low level
Evaluated to meet NOx emission requirements.

本発明の2段複式燃焼装置について第2の試験
を行つた。この試験中、汚れ空気供給源が利用さ
れ、かつ点火温度は約2070〓の一定値に保たれ
た。1次ノズル5を通る燃料流量が20%でありそ
して燃焼域2と燃焼域4の両方で燃焼が生じてい
る時2次燃料ノズル6において燃料流量が増加し
ている間のある時点において、NOx排出量は約
95ppmvであつた。2段不均質燃焼方式(2段と
は、第1燃焼域2と第2の燃焼域4の両方で燃焼
が生じていること。不均質とは、2段燃焼の場
合、燃料と空気の予混合(均質化)がなされてい
ないので、燃焼域の断面でみると燃焼が均一でな
い状態。)から均質燃焼方式への切換え後、燃料
の約14%が1次ノズル(第1段のノズル)を通つ
て流れている或時点において、NOx排出量は
93.5ppmvであつた。1次ノズル5へ流れる燃料
の量は、14%から、全燃料流量の約70%が1次ノ
ズル5を通る点まで増加し、そしてNOx排出量
は93.5ppmvから約49ppmvまで減少し続けた。
A second test was conducted on the two-stage compound combustion apparatus of the present invention. During this test, a dirty air source was utilized and the ignition temperature was kept constant at approximately 2070°. At some point during the increase in fuel flow in the secondary fuel nozzle 6 when the fuel flow through the primary nozzle 5 is 20% and combustion is occurring in both combustion zone 2 and combustion zone 4, NOx Emissions are approx.
It was 95 ppmv. Two-stage heterogeneous combustion method (Two-stage means that combustion occurs in both the first combustion zone 2 and the second combustion zone 4.Heterogeneity means that in the case of two-stage combustion, there is a Since there is no mixing (homogenization), combustion is not uniform when looking at the cross section of the combustion zone.) After switching from the homogeneous combustion method to the homogeneous combustion method, approximately 14% of the fuel is transferred to the primary nozzle (first stage nozzle). At a certain point in time while flowing through the
It was 93.5 ppmv. The amount of fuel flowing to the primary nozzle 5 increased from 14% to the point where approximately 70% of the total fuel flow passed through the primary nozzle 5, and NOx emissions continued to decrease from 93.5 ppmv to approximately 49 ppmv.

上記第1試験と同様の仕方で、ただし汚れてい
ない空気の供給源、すなわち、燃焼生成物を含ま
ない間接的に予熱された空気を用いて第3試験を
行つた。約2060〓の点火温度で、従来の燃焼器は
約260ppmvのNOxを排出し、他方、本発明の燃
焼器は均質燃焼方式の場合約65ppmvのNOxを排
出した。上記試験の各々において用いた燃料は第
2番留出物であつた。
A third test was conducted in a manner similar to the first test above, but using a source of clean air, ie, indirectly preheated air free of combustion products. At an ignition temperature of about 2060㎓, the conventional combustor emitted about 260 ppmv of NOx, while the combustor of the present invention emitted about 65 ppmv of NOx in the homogeneous combustion mode. The fuel used in each of the above tests was No. 2 distillate.

上述の実験室試験データ、特に、汚れのない空
気の供給源を利用した第3試験のデータから、当
業者は本発明によつて作られた燃焼器によつて
NOx排出量がかなりの程度(因数4)減少する
ことを認識し得る。このような燃焼器を利用する
ことによつて、NOx排出量はかなり減らされ、
ほとんどのNOx排出要件に適合するであろう。
From the laboratory test data described above, and in particular from the third test utilizing a source of clean air, it is clear to those skilled in the art that a combustor made in accordance with the present invention
It can be noticed that the NOx emissions are reduced to a considerable extent (by a factor of 4). By using such a combustor, NOx emissions can be significantly reduced,
Will meet most NOx emission requirements.

以上、本発明の2つの実施例とそれらの作用方
式とを説明したので、当業者は本発明が前述の先
行技術特許といかに異なるかを一層良く理解し得
よう。特に、ロバーツ(Roberts)等の米国特許
第3946553号は排出制御用の多数の燃料ノズルを
備えた2段式燃焼器を開示していると思われる。
しかし、この場合、燃料と空気は燃焼ライナ壁の
外側で混合され、これは本発明とは異なるもので
ある。また、本発明の燃焼器によれば、反応が予
混合無しの不均質方式で生ずるような幾つかの状
態がある(すなわち、始動中、部分負荷中および
ベース負荷の過渡期中)。この方式はロバーツ等
の特許の燃焼器ではあり得ない作用方式である。
本発明の作用方式によれば、大きなターンダウン
比、容易な点火と交差点火、火炎安定性といつた
実際設計の重要な特性を確保しやすい。また、不
均質燃焼方式から均質燃焼方式への切換えは、本
発明によれば、第1および第2段の燃料ノズル間
の燃料分割を変えることによつて達成され、これ
はロバーツ等によつて開示されていない特性であ
る。
Having described two embodiments of the present invention and their mode of operation, those skilled in the art can better understand how the present invention differs from the prior art patents mentioned above. In particular, Roberts et al., US Pat. No. 3,946,553, appears to disclose a two-stage combustor with multiple fuel nozzles for emission control.
However, in this case the fuel and air are mixed outside the combustion liner wall, which is different from the present invention. Also, with the combustor of the present invention, there are several conditions (ie, during start-up, during part load, and during base load transients) where the reaction occurs in a heterogeneous manner without premixing. This method of operation is not possible with the combustor patented by Roberts et al.
The mode of operation of the present invention facilitates ensuring important characteristics of practical design such as large turndown ratio, easy ignition and cross-fire, and flame stability. Also, switching from a heterogeneous combustion regime to a homogeneous combustion regime is achieved according to the present invention by changing the fuel split between the first and second stage fuel nozzles, as described by Roberts et al. This is an undisclosed characteristic.

コーネリウス(Cornelius)等の米国特許第
3958413号とハモンド、ジユニア(Hammond,
Jr.)等の米国特許第3958416号は2段式燃焼器に
関し、両段は中細スロート部によつて分離されて
いる。また、両特許の第1段は、サイクル中の或
時は燃焼が生ずる部分として使われ、サイクル中
の他の時は予混合が生ずる部分として使われる。
従つて、逆火はロバーツ等の特許の場合のような
構造部の破損をひき起こさない。コーネリウス等
の特許とハモンド、ジユニア等の特許はまた、第
1段あるいは第1段と第2段における不均質燃焼
から第2段だけにおける均質燃焼への移行を達成
するために両段間の空気分配予定量を変えるため
の可変の空気入口形状を開示していると思われ
る。これに対し、本発明は両段間の燃料分配調整
を利用するもので、(可変形状ではなく)多数の
燃料ノズルを利用しそして空気分割ではなく燃料
分割の割合を変えるものである。
Cornelius et al. U.S. Patent No.
No. 3958413 and Hammond, Giunia (Hammond,
Jr. et al., U.S. Pat. No. 3,958,416, relates to a two-stage combustor in which the stages are separated by a medium-narrow throat. Also, the first stage in both patents is used as the part where combustion occurs at some times in the cycle and as the part where premixing occurs at other times in the cycle.
Therefore, flashbacks do not cause structural failure as in the Roberts et al. patent. The Cornelius et al. patents and the Hammond, Giunia et al. patents also require that air be used between both stages to achieve a transition from heterogeneous combustion in the first stage or first and second stages to homogeneous combustion in only the second stage. It appears to disclose a variable air inlet geometry to vary the volume dispensed. In contrast, the present invention utilizes fuel distribution adjustment between stages, utilizes multiple fuel nozzles (rather than variable geometry), and varies the rate of fuel split rather than air split.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の概略断面図、第
2図は本発明の第2実施例の概略断面図、第3図
は高負荷点火系を有する本発明の3個の燃焼器を
示す概略図、第4図は本燃焼器使用中の燃料流量
を時間の関数として示すグラフである。 1……燃焼器、2……第1燃焼域、3……スロ
ート域(ネツク域)、4……第2燃焼域、5,6
……燃料ノズル、7……空気入口、8……開口、
9……小形燃焼室、10,11……交差点火管、
12……点火プラグ、13……燃料流量制御装
置。A……全燃料流、B……1次ノズル燃料流、
C……2次ノズル燃料流。
FIG. 1 is a schematic cross-sectional view of a first embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of a second embodiment of the present invention, and FIG. 3 is a three-piece combustor of the present invention having a high-load ignition system. FIG. 4 is a graph showing fuel flow rate as a function of time during use of the combustor. 1... Combustor, 2... First combustion area, 3... Throat area (neck area), 4... Second combustion area, 5, 6
... Fuel nozzle, 7 ... Air inlet, 8 ... Opening,
9...Small combustion chamber, 10,11...Intersection fire tube,
12...Spark plug, 13...Fuel flow rate control device. A...Total fuel flow, B...Primary nozzle fuel flow,
C...Secondary nozzle fuel flow.

Claims (1)

【特許請求の範囲】 1 スロート室によつて相互に連結された第1お
よび第2燃焼室を備え、前記第1燃焼室が第1燃
料導入手段を有しそして前記スロート室と前記第
2燃焼室の少なくとも一方が第2燃料導入手段を
有するようなガスタービン燃焼器の排出NOxを
低減させる方法であつて、 (a) 前記第1燃料導入手段によつて燃料を前記第
1室に連続的に導入しかつその燃料を前記第1
室内で燃焼させることと、 (b) 前記第2燃料導入手段によつて燃料を前記第
2室に導入することを開始し、そしてこの導入
燃料流量を、前記燃料導入手段のすべてを通つ
て導入される燃料の流量がほぼ所望の導入燃料
流量となるまで増加させ、前記第2室内の燃料
の点火が前記第1室から前記第2室への燃焼生
成物の通過の結果として始められることと、 (c) 前記第1燃料導入手段を通つて導入される燃
料の流量を減らし、それに応じて前記第2燃料
導入手段を通つて導入される燃料の流量を増
し、かくて全導入燃料流量が少なくとも前記第
1室内の燃料の燃焼が終わるまで実質的に一定
のままとなるようにすることと、 (d) 前記第1燃料導入手段を通つて導入される燃
料の流量を増し、それに応じて前記第2燃料導
入手段を通つて導入される燃料の流量を減ら
し、かくて前記燃焼器からのNOx放出が所望
レベルに達するまで全導入燃料流量が実質的に
一定のままとなるようにすることを順次行うこ
とから成る方法。 2 段階(c)において前記第1燃料導入手段を通つ
て導入される燃料の流量を、全燃料導入が前記第
2燃料導入手段によつてなされるまで減らす、特
許請求の範囲第1項記載の方法。 3 段階(d)の終了時における燃料分配が、燃料の
大部分が前記第1燃料導入手段を経て導入される
ようになつている、特許請求の範囲第2項記載の
方法。 4 段階(d)の終了時における燃料分配が、全燃料
の少なくとも60%が前記第1燃料導入手段を経て
導入されるようになつている、特許請求の範囲第
3項記載の方法。 5 段階(d)の終了時における燃料分配が、燃料の
大部分が、前記第1燃料導入手段を経て導入され
るようになつている、特許請求の範囲第1項記載
の方法。 6 前記第1燃料導入手段が1個の軸対称燃料ノ
ズルでありそして前記第2燃料導入手段が対称に
配置された複数の燃料ノズルから成る特許請求の
範囲第1項記載の方法。 7 各燃焼器がネツク部によつて相互に連結され
た第1および第2燃焼室を有しそして少なくとも
1個の燃焼器がその第1室内の燃料に点火する手
段を有するような複数の隣合う燃焼器と、各々が
1個の燃焼器の第1室とその隣りの燃焼器の第1
室とを連結する複数の第1交差点火管と、各々が
1個の燃焼器の第2室とその隣りの燃焼器の第2
室とを連結する複数の第2交差点火管とから成る
定置ガスタービン燃焼装置。 8 10個の燃焼器を備え、各燃焼器が他の燃焼器
と隣合つている特許請求の範囲第7項記載の定置
ガスタービン燃焼装置。
Claims: 1 comprising first and second combustion chambers interconnected by a throat chamber, said first combustion chamber having a first fuel introduction means, and said throat chamber and said second combustion chamber having first fuel introduction means; A method for reducing exhaust NOx from a gas turbine combustor in which at least one of the chambers has a second fuel introduction means, the method comprising: (a) continuously introducing fuel into the first chamber by the first fuel introduction means; and the fuel is introduced into said first
(b) initiating the introduction of fuel into the second chamber by the second fuel introduction means, and introducing the introduced fuel flow through all of the fuel introduction means; increasing the flow rate of fuel introduced until it is approximately the desired flow rate of fuel introduced, and ignition of fuel in the second chamber is initiated as a result of passage of combustion products from the first chamber to the second chamber; (c) reducing the flow rate of fuel introduced through said first fuel introduction means and correspondingly increasing the flow rate of fuel introduced through said second fuel introduction means, such that the total introduced fuel flow rate is (d) increasing the flow rate of fuel introduced through the first fuel introduction means so as to increase the flow rate of the fuel introduced through the first fuel introduction means and accordingly reducing the flow rate of fuel introduced through said second fuel introduction means, such that the total introduced fuel flow rate remains substantially constant until NOx emissions from said combustor reach a desired level; A method consisting of sequentially performing 2. In step (c), the flow rate of fuel introduced through the first fuel introduction means is reduced until the entire fuel introduction is by the second fuel introduction means. Method. 3. The method of claim 2, wherein the fuel distribution at the end of step (d) is such that the majority of the fuel is introduced via the first fuel introduction means. 4. The method of claim 3, wherein the fuel distribution at the end of step (d) is such that at least 60% of the total fuel is introduced via the first fuel introduction means. 5. The method of claim 1, wherein the fuel distribution at the end of step (d) is such that the majority of the fuel is introduced via the first fuel introduction means. 6. The method of claim 1, wherein said first fuel introduction means is an axisymmetric fuel nozzle and said second fuel introduction means comprises a plurality of symmetrically arranged fuel nozzles. 7. A plurality of adjacent combustors, each combustor having first and second combustion chambers interconnected by a neck and at least one combustor having means for igniting fuel in the first chamber. the first chamber of one combustor and the first chamber of the adjacent combustor.
a plurality of first crossfire tubes connecting a second chamber of one combustor and a second crossfire tube of an adjacent combustor;
A stationary gas turbine combustion device comprising a plurality of second crossfire tubes connected to a combustion chamber. 8. The stationary gas turbine combustion apparatus according to claim 7, comprising ten combustors, each combustor adjacent to another combustor.
JP143380A 1979-01-12 1980-01-11 Method and device for combustion on gas turbine Granted JPS55112933A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US301679A 1979-01-12 1979-01-12

Publications (2)

Publication Number Publication Date
JPS55112933A JPS55112933A (en) 1980-09-01
JPS638373B2 true JPS638373B2 (en) 1988-02-22

Family

ID=21703684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP143380A Granted JPS55112933A (en) 1979-01-12 1980-01-11 Method and device for combustion on gas turbine

Country Status (7)

Country Link
JP (1) JPS55112933A (en)
DE (1) DE3000672A1 (en)
FR (1) FR2446443A1 (en)
GB (2) GB2040031B (en)
IT (1) IT1130186B (en)
NL (1) NL187769C (en)
NO (1) NO150616C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429477U (en) * 1987-08-13 1989-02-22

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU559254B2 (en) * 1981-03-05 1987-03-05 Westinghouse Electric Corporation Catalytic gas turbine combustor fuel supply
US4545196A (en) * 1982-07-22 1985-10-08 The Garrett Corporation Variable geometry combustor apparatus
CA1209810A (en) * 1982-10-15 1986-08-19 Paul E. Scheihing Turbine combustor having improved secondary nozzle structure for more uniform mixing of fuel and air and improved downstream combustion
JPS6057131A (en) * 1983-09-08 1985-04-02 Hitachi Ltd Fuel feeding process for gas turbine combustor
US5237812A (en) * 1992-10-07 1993-08-24 Westinghouse Electric Corp. Auto-ignition system for premixed gas turbine combustors
US5487275A (en) * 1992-12-11 1996-01-30 General Electric Co. Tertiary fuel injection system for use in a dry low NOx combustion system
US5465570A (en) * 1993-12-22 1995-11-14 United Technologies Corporation Fuel control system for a staged combustor
DE4429757A1 (en) * 1994-08-22 1996-02-29 Abb Management Ag Two=stage combustion chamber
DE4441235A1 (en) * 1994-11-19 1996-05-23 Abb Management Ag Combustion chamber with multi-stage combustion
DE19649486A1 (en) * 1996-11-29 1998-06-04 Abb Research Ltd Combustion chamber
DE19728375A1 (en) * 1997-07-03 1999-01-07 Bmw Rolls Royce Gmbh Operating method for aircraft gas turbine engines
ITMI20032327A1 (en) * 2003-11-28 2005-05-29 Techint Spa GAS BURNER WITH LOW POLLUTING EMISSIONS.
DE102005060704A1 (en) 2005-12-19 2007-06-28 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustor
RU2534189C2 (en) * 2010-02-16 2014-11-27 Дженерал Электрик Компани Gas turbine combustion chamber (versions) and method of its operation
FR2969703B1 (en) * 2010-12-23 2014-11-28 Snecma FUEL SUPPLY METHOD OF A TURBOMACHINE
JP6906381B2 (en) * 2017-07-03 2021-07-21 株式会社東芝 Combustion equipment and gas turbine
CN114353121B (en) * 2022-01-18 2022-12-20 上海交通大学 Multi-nozzle fuel injection method for gas turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065708A (en) * 1973-10-15 1975-06-03
US3958413A (en) * 1974-09-03 1976-05-25 General Motors Corporation Combustion method and apparatus
JPS5378428A (en) * 1976-12-22 1978-07-11 Engelhard Min & Chem Method of continuous combustion of carbonaceous fuels
JPS5426481U (en) * 1977-07-26 1979-02-21

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB726491A (en) * 1952-07-16 1955-03-16 Onera (Off Nat Aerospatiale) Improvements in internal combustion engines through which a continuous gaseous stream is flowing and in particular in turbo-jet and turbo-prop engines
US3728039A (en) * 1966-11-02 1973-04-17 Gen Electric Fluid cooled porous stator structure
AT279483B (en) * 1968-10-18 1970-03-10 Flensburger Maschinenbau Ansta LOADING TRUCK, IN PARTICULAR FOR TRANSPORTING HOT BLACK CEILING MIXED MATERIAL
US3777484A (en) * 1971-12-08 1973-12-11 Gen Electric Shrouded combustion liner
GB1489339A (en) * 1973-11-30 1977-10-19 Rolls Royce Gas turbine engine combustion chambers
US3958416A (en) * 1974-12-12 1976-05-25 General Motors Corporation Combustion apparatus
US3973390A (en) * 1974-12-18 1976-08-10 United Technologies Corporation Combustor employing serially staged pilot combustion, fuel vaporization, and primary combustion zones
US3946553A (en) * 1975-03-10 1976-03-30 United Technologies Corporation Two-stage premixed combustor
JPS51123413A (en) * 1975-04-19 1976-10-28 Nissan Motor Co Ltd Combustion system of gas turbine
DE2629761A1 (en) * 1976-07-02 1978-01-05 Volkswagenwerk Ag COMBUSTION CHAMBER FOR GAS TURBINES
US4253301A (en) * 1978-10-13 1981-03-03 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065708A (en) * 1973-10-15 1975-06-03
US3958413A (en) * 1974-09-03 1976-05-25 General Motors Corporation Combustion method and apparatus
JPS5378428A (en) * 1976-12-22 1978-07-11 Engelhard Min & Chem Method of continuous combustion of carbonaceous fuels
JPS5426481U (en) * 1977-07-26 1979-02-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429477U (en) * 1987-08-13 1989-02-22

Also Published As

Publication number Publication date
JPS55112933A (en) 1980-09-01
NO150616C (en) 1984-11-14
NO150616B (en) 1984-08-06
GB2040031A (en) 1980-08-20
GB2098720A (en) 1982-11-24
IT8019051A0 (en) 1980-01-07
NL7909203A (en) 1980-07-15
IT1130186B (en) 1986-06-11
DE3000672A1 (en) 1980-07-24
DE3000672C2 (en) 1989-02-09
NO794284L (en) 1980-07-15
NL187769B (en) 1991-08-01
GB2098720B (en) 1983-04-27
FR2446443A1 (en) 1980-08-08
FR2446443B1 (en) 1983-10-28
GB2040031B (en) 1983-02-09
NL187769C (en) 1992-01-02

Similar Documents

Publication Publication Date Title
US4420929A (en) Dual stage-dual mode low emission gas turbine combustion system
US5127221A (en) Transpiration cooled throat section for low nox combustor and related process
CA1138658A (en) Dual stage-dual mode low nox combuster
EP1193449B1 (en) Multiple annular swirler
US7185497B2 (en) Rich quick mix combustion system
JPS638373B2 (en)
US6826913B2 (en) Airflow modulation technique for low emissions combustors
US6339925B1 (en) Hybrid catalytic combustor
EP0335978B1 (en) Gas turbine combustor
JP2597793B2 (en) Fuel stage premixed low NOx combustor
US6474071B1 (en) Multiple injector combustor
US20100089066A1 (en) Cool flame combustion
US20100101229A1 (en) Flame Holding Tolerant Fuel and Air Premixer for a Gas Turbine Combustor
JPS5916170B2 (en) afterbarnahoenouchi
US5142858A (en) Compact flameholder type combustor which is staged to reduce emissions
KR950001073A (en) Double fuel combustor with minimal nitrogen oxide emissions
EP0644994A1 (en) Combustion chamber apparatus and method for performing combustion.
JPH02309124A (en) Combustor and operating method thereof
EP0773410B1 (en) Fuel and air mixing tubes
JP3179871B2 (en) Gas turbine combustor and method of operating the same
JP3449802B2 (en) Gas combustion equipment
JPH11287409A (en) Low nox burner
JPH10196909A (en) Multistage premixed gas combustor and combustion method
JPH0674449A (en) Gas turbine combustor
JPH03144215A (en) Gas burner