JPS6383721A - Radiation sensitive positive type resist and its production - Google Patents

Radiation sensitive positive type resist and its production

Info

Publication number
JPS6383721A
JPS6383721A JP22835886A JP22835886A JPS6383721A JP S6383721 A JPS6383721 A JP S6383721A JP 22835886 A JP22835886 A JP 22835886A JP 22835886 A JP22835886 A JP 22835886A JP S6383721 A JPS6383721 A JP S6383721A
Authority
JP
Japan
Prior art keywords
chloroacrylate
copolymer
resist
tetrafluoropropyl
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22835886A
Other languages
Japanese (ja)
Inventor
Mutsuo Kataoka
片岡 睦雄
Naoko Yano
矢野 直子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22835886A priority Critical patent/JPS6383721A/en
Publication of JPS6383721A publication Critical patent/JPS6383721A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To improve dry etching resistance and sensitivity by incorporating specific ratios of phenyl alpha-chloroacrylate and 2,2,3,3-tetrafluoropropyl alpha- chloroacrylate into a titled resist. CONSTITUTION:This radiation sensitive positive type resist consists of a copolymer contg. phenyl alpha-chloroacrylate and 2,2,3,3-tetrafluoropropyl alpha-chloroacrylate at 50:50-80:20wt. Radical polymn. is executed under the conditions of 50-65% polymn. rate at the time of producing said copolymer by mixing phenyl alpha- chloroacrylate and 2,2,3,3-tetrafluoropropyl alpha-chloroacrylate and subjecting the same to the radical polymn. The preferable limiting viscosity of the copolymer is 0.5-2.0 limiting viscosity measured at 25 deg.C in methyl ethyl ketone. The radiation sensitive positive type resist provided with both of good dry etching resistance and high sensitivity is thereby obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、IC,LSI等の製造およびその伯の超微細
加工に用いられる放射線感応ポジ型レジストおよびその
製造法に関するものであり、ざらに詳しくはドライエツ
チング方式により微細加工を行う場合に好適に使用され
る放射線感応ポジ型レジストおよびその製造法に関する
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a radiation-sensitive positive resist used for manufacturing ICs, LSIs, etc. and their ultrafine processing, and a method for manufacturing the same. More specifically, the present invention relates to a radiation-sensitive positive resist that is suitably used when performing microfabrication using a dry etching method, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

放射線感応ポジ型レジストとしては、PBS(ポリ1−
ブテンスルホン)や“EBR−9”(ポリ2,2.2−
トリフルオロエチルα−クロロアクリラート)(東しく
株)製>、PMMA(ポリメチルメタクリラート)等が
用いられている。
As a radiation-sensitive positive resist, PBS (poly 1-
butenesulfone) and “EBR-9” (poly 2,2.2-
Trifluoroethyl α-chloroacrylate (manufactured by Toshiku Co., Ltd.), PMMA (polymethyl methacrylate), and the like are used.

また“E B R−9”モノマと他の芳香族系モノマと
のコポリマとしては、2,2.2−トリフルオロエチル
α−クロロアクリラートとフェニルα−クロロアクリラ
ートとのコポリマが提案されている(特開昭57−11
8243)。
Furthermore, as a copolymer of "E B R-9" monomer and other aromatic monomers, a copolymer of 2,2,2-trifluoroethyl α-chloroacrylate and phenyl α-chloroacrylate has been proposed. (Unexamined Japanese Patent Publication No. 57-11)
8243).

〔発明か解決しようとする問題点〕[Problem that the invention attempts to solve]

PMM△はポジ型電了線しジス]〜として用いられるこ
とは古くから知られているが、感度が低く、電子線露光
装置によるIC,LSIの:装造等に用いるには生産性
に問題があった。
It has been known for a long time that PMM△ is used as a positive-type electric conductor, but it has low sensitivity and has problems with productivity when used for IC, LSI assembly, etc. using electron beam exposure equipment. was there.

PBS$よ従来ホ1〜マスクの製造等に広く用いられて
来たが、感度が現像時の諸条件、づなわも温度や湿度に
よって大きく異なり、再現性および収率良くホトマスク
をjqることは困難であった。
PBS has been widely used in the past for the production of photomasks, but its sensitivity varies greatly depending on various conditions during development, as well as temperature and humidity, making it difficult to produce photomasks with good reproducibility and yield. It was difficult.

最近、LSI等の製造においては、高集積化が進むに従
い、パターン11〕はサブミクロンの領域にはいってい
る。この場合にはレジストパターンを再現性良く塁仮に
転写するにtよ従来用いられて来たウエットエツチング
方法に代り、ドライエツヂングを用いることが必要であ
る。
Recently, in the manufacture of LSIs and the like, as higher integration has progressed, patterns 11] have entered the submicron range. In this case, it is necessary to use dry etching instead of the conventional wet etching method to transfer the resist pattern with good reproducibility.

一般にポジ型電子線しジメ1〜においては、感度とドラ
イエツチング耐性とは相反する関係にあり、感度の高い
ものほどドライエツチング耐性は悪くなる。すなわちP
BSは感度は極めて高いがドライエツチング耐性は悪く
、PMMAはある程度ドライエツチング耐性はあるが1
盛度が低い。
Generally, in positive type electron beams, sensitivity and dry etching resistance are in a contradictory relationship, and the higher the sensitivity, the worse the dry etching resistance becomes. That is, P
BS has extremely high sensitivity but poor dry etching resistance, while PMMA has some degree of dry etching resistance but 1
The intensity is low.

ドライエツチング耐性を有し、おる程度感度の高いもの
として前記フェニルα−クロロアクリラートと2.2.
2−トリフルオロエチルα−クロロアクワラ−1〜との
コポリマが提案されているが感度的に十分ではなく、か
つシリコンウェハとの接着性が十分ではなく現像後、レ
ジスト膜のクラック発生、細かいパターンのはがれ等の
問題を生じる。
The above-mentioned phenyl α-chloroacrylate and 2.2.
A copolymer with 2-trifluoroethyl α-chloroaqualer-1 has been proposed, but it is not sufficiently sensitive and has insufficient adhesion to silicon wafers, resulting in cracks in the resist film and the formation of fine patterns after development. This causes problems such as peeling.

本発明はかかる従来技術の諸欠点に鑑み創案されたもの
で、その目的は、ドライエツチング耐性が良好であると
共に高感度を同時に兼ね備えた放射線感応ポジ型しジメ
]〜を提供することにある。
The present invention was devised in view of the various drawbacks of the prior art, and its object is to provide a radiation-sensitive positive-working film which has good dry etching resistance and high sensitivity at the same time.

〔問題点を解決するための手段〕[Means for solving problems]

かかる本発明の目的は、フェニルα−クロロアクリラー
トと2.2,3.3−テトラフルオロプロピルα−クロ
ロアクワラ−1〜を虫ω比で50 : 50〜80:2
0○むコポリマよりなる放射線感応ポジ型レジストおよ
びフェニルα−クロロアククラ−1〜と2.2,3.3
−テトラフルオロプロピルα−タロロアクララ−1〜と
を混合し、ラジカル重合によりコポリマを製8するに際
し、上記ラジカル重合を重合率50〜65%の条件で行
なうことを特徴とする放射線感応ポジ型レジストの製造
法により達成される。
The object of the present invention is to combine phenyl α-chloroacrylate and 2,2,3,3-tetrafluoropropyl α-chloroaquala-1 in an ω ratio of 50:50 to 80:2.
Radiation-sensitive positive resist made of 0○mu copolymer and phenyl α-chloroacura-1 to 2.2, 3.3
-Tetrafluoropropyl α-taloloaclara-1~ to produce a copolymer by radical polymerization. This is achieved through manufacturing methods.

すなわち、本発明においては、フェニルα−クロロアク
リラートと共重合せしめる成分として、2、2.3.3
−テ1〜ラフルオロプロピルα−クロロアクリラートを
使用することが重要である。
That is, in the present invention, as a component to be copolymerized with phenyl α-chloroacrylate, 2, 2.3.3
It is important to use -Te1-rafluoropropyl α-chloroacrylate.

PMMAに比べ高感度となすためには、仝共重合成分中
に占めるフェニルα−クロロアククラ−1〜の割合を8
0重ω%以下、さらに好ましくは70手rM%以下とな
すのがよい。
In order to achieve higher sensitivity than PMMA, the proportion of phenyl α-chloroacura-1 to 8 in the copolymerization component must be
It is preferable to set it to 0 weight ω% or less, more preferably 70 hands rM% or less.

フェニルα−クロロアクリラートの91合か50Iff
i%を下回ると、シリコンウェハに対する接着性及びド
ライエツチング耐性が悪くなる。より好ましくは55重
最%以上となすのがよい。
91 or 50 Iff of phenyl α-chloroacrylate
If it is less than i%, the adhesion to silicon wafers and dry etching resistance will deteriorate. More preferably, the maximum weight is 55% or more.

従って、全井手合成分に占めるフェニルα−タロロアク
ララ−1〜の91合は80重量%以下、50重最%以上
となすのがよい。
Therefore, the proportion of phenyl α-taloloaclara-1 to 91 in the total Ide composition is preferably 80% by weight or less, and 50% by weight or more.

コポリマの分子量に関係する極限粘度はレジス1〜の性
能において重要な要素である。
The intrinsic viscosity, which is related to the molecular weight of the copolymer, is an important factor in the performance of Regis 1~.

本発明におけるコポリマの極限粘度としては、メチルエ
チルケトン中25℃で測定した極限粘度が0.5〜2.
0のちのが好ましく、より好ましくは0.9〜1.6と
なすのがよい。分子量が高い方が一般に感度が高くなる
が、)濾過性、塗膜性が悪くなり良好なレジスト膜を形
成することが困難となる。
The intrinsic viscosity of the copolymer in the present invention is 0.5-2.
It is preferably after 0, more preferably from 0.9 to 1.6. Generally, the higher the molecular weight, the higher the sensitivity; however, the filterability and coating properties deteriorate, making it difficult to form a good resist film.

本発明のレジメ]〜は、後述するように、好ましくはM
CA (メチルセロソルブアセタート)を主成分とする
溶媒に溶解し、レジスト溶液、即ち、レジスト組成物と
して使用に供せられるが、上記、1へ限粘度のみで溶液
粘度を知ることは)1TI常不可能である。溶液粘度が
高すぎるものは、上記のごとく)濾過性、塗膜性が悪く
なる。
The regimen of the present invention] is preferably M as described below.
It is dissolved in a solvent containing CA (methyl cellosolve acetate) as a main component and used as a resist solution, that is, a resist composition. It's impossible. If the solution viscosity is too high, the filtration properties and coating properties will deteriorate (as mentioned above).

本発明のコポリマにおいてはMCA中に5%の温度で溶
解した時の溶液粘度が好ましくは20〜70c、p、の
範囲のもの、ざらに好ましくは25〜45c、p、のち
のか用いられる。
The copolymers of the present invention preferably have a solution viscosity in the range of 20 to 70 c.p., more preferably 25 to 45 c.p., when dissolved in MCA at a temperature of 5%.

本発明の]ポリマを溶解する溶媒としては特に限定され
ないが、MCA単独あるいはMCAを主体とする混合溶
媒が好ましく用いられる。混合溶媒としては、特にMC
Aを70%以上含むものが好ましく用いられる。
The solvent for dissolving the polymer of the present invention is not particularly limited, but MCA alone or a mixed solvent mainly composed of MCA is preferably used. As a mixed solvent, especially MC
Those containing 70% or more of A are preferably used.

MCAに混合して用いられる溶媒としては、公知のエス
テル系、ケトン系等の溶媒を用いることができる。
As the solvent mixed with MCA, known ester-based, ketone-based, etc. solvents can be used.

MCA中に低級アルコール、好ましくはメタノールを2
0重重量以下の範囲で混入すると、同一のポリマ温度に
おいて、溶液粘度がより低くなり、塗りムラのないより
良好な塗膜を形成させることができる。メタノールの量
はさらに好ましくは全溶媒最の3〜10重量%とするの
がよい。3%未満では効果が少なく、10%を越える場
合は逆に溶液粘度は高くなる。
2 lower alcohols, preferably methanol, in MCA
When it is mixed in an amount of 0 weight or less, the solution viscosity becomes lower at the same polymer temperature, and a better coating film without coating unevenness can be formed. The amount of methanol is more preferably 3 to 10% by weight of the total solvent. If it is less than 3%, the effect will be small, and if it exceeds 10%, the solution viscosity will increase.

上述のごとく、本発明のレジストはレジスト溶液として
使用されるが、本発明のコポリマを用いたレジスト溶液
を長期間、経時変化なしに保存するためには、レジスト
溶液中、すなわち2,2,3.3−テトラフルオロプロ
ピルα−クロロアクリラートを含むコポリマとMCAを
主成分とする溶媒のなかにラジカル禁止剤を添加するこ
とが好ましい。
As mentioned above, the resist of the present invention is used as a resist solution, but in order to preserve the resist solution using the copolymer of the present invention for a long period of time without changing over time, it is necessary to . It is preferred to add a radical inhibitor into a copolymer containing 3-tetrafluoropropyl α-chloroacrylate and a solvent based on MCA.

本発明において、2,2,3.3−テトラフルオロプロ
ピルα−クロロアクリラートを含む特定のコポリマから
なるレジスト溶液にラジカル禁止剤を添加せしめた場合
には、レジスト溶液を粘度変化を生ずることなく長期間
、例えば室温で1年以上、50℃でも2力月以上、安定
に保存できるものである。
In the present invention, when a radical inhibitor is added to a resist solution made of a specific copolymer containing 2,2,3,3-tetrafluoropropyl α-chloroacrylate, the resist solution can be used without causing a change in viscosity. It can be stably stored for a long period of time, for example, for one year or more at room temperature, or for two months or more at 50°C.

本発明で用いるラジカル禁止剤は、室温で安定なもので
おればいかなるものでも良いが、分子ロ600以下のも
のが好ましい。すなわち、レジスト溶液は基板上にスピ
ンコードされ、160℃〜210’Cでプリベークされ
るが、プリベータ時に蒸発し、失われるものが好ましい
。プリベータの後にレジスト膜中にラジカル禁止剤が残
存する場合は、レジスト膜中に析出して貸物となり、レ
ジストの感度に悪影響を及ぼす等の好ましくはない効果
が現われる。
The radical inhibitor used in the present invention may be any radical inhibitor as long as it is stable at room temperature, but it is preferably one with a molecular weight of 600 or less. That is, the resist solution is spin-coded onto the substrate and prebaked at 160°C to 210'C, but it is preferable that it evaporate and be lost during prebaking. If the radical inhibitor remains in the resist film after pre-beta, it will precipitate into the resist film and become a compound, causing undesirable effects such as adversely affecting the sensitivity of the resist.

本発明において用いるラジカル禁止剤としては、トリー
p−ニトロフェニルメチル、ジフェニルビクリルヒドラ
ジル、ガルピノキシル等の安定ラジカル、ベンゾキノン
、クロロベンゾキノン、2,5−ジクロロベンゾキノン
、2,3−ジメチルベンゾキノン、2.5−ジメチルベ
ンゾキノン、メトキシベンゾキノン、メチルベンゾキノ
ン、テトラプロ[ベンゾキノン、テトラクロロベンゾキ
ノン、テトラクロロベンゾキノン、トリクロロベンゾキ
ノン、1〜リメヂルベンゾキノン等のキノン類、α−ナ
フ1〜−ル、2−ニトロ−1−ナフトール、β−ナフト
ール、1−二トロー2−ナフトール等のナフトール類、
ヒドロキノン、カテコール、レゾルシン、o−t−ブチ
ルフェノール、p−メトキシフェール、p−エトキシフ
ェノール、2,6−ジーt−ブチル−p−クレゾール、
2,6−ジー1−ブチルフェノール、2,4−ジ−t−
ブチルフェノール、3,5−ジ−t−ブチルフェノール
、3,5−ジ−t−ブチルカテコール キシ安息香酸、2,2°−メヂレンビス(6−t−ブヂ
ルー叶クレゾール)等のフェノール類、2,4−ジニト
ロフェノール、O−ニトロフェノール、m−ニトロフェ
ノール、叶ニトロフェノール等のニトロフェノール類等
であるが、安定性および安全性の点より  ′上記フェ
ノール類が特に好ましい。
The radical inhibitors used in the present invention include stable radicals such as tri-p-nitrophenylmethyl, diphenylvicrylhydrazyl, and galpinoxyl, benzoquinone, chlorobenzoquinone, 2,5-dichlorobenzoquinone, 2,3-dimethylbenzoquinone, 2. Quinones such as 5-dimethylbenzoquinone, methoxybenzoquinone, methylbenzoquinone, tetrapro[benzoquinone, tetrachlorobenzoquinone, tetrachlorobenzoquinone, trichlorobenzoquinone, 1-rimedylbenzoquinone, α-naph 1--, 2-nitro-1- Naphthols such as naphthol, β-naphthol, 1-nitro-2-naphthol,
Hydroquinone, catechol, resorcinol, o-t-butylphenol, p-methoxyphenol, p-ethoxyphenol, 2,6-di-t-butyl-p-cresol,
2,6-di-1-butylphenol, 2,4-di-t-
Phenols such as butylphenol, 3,5-di-t-butylphenol, 3,5-di-t-butylcatecholoxybenzoic acid, 2,2°-medylenebis (6-t-butylene cresol), 2,4- Examples include nitrophenols such as dinitrophenol, O-nitrophenol, m-nitrophenol, and nitrophenol, but the above-mentioned phenols are particularly preferred in terms of stability and safety.

もちろん酸素にも禁止効果はあるが、有機溶媒を酸素加
圧することは極めて危険である、溶媒中に溶存できる量
が限られている等の理由で好ましい方法ではない。
Of course, oxygen also has an inhibiting effect, but pressurizing an organic solvent with oxygen is not a preferred method because it is extremely dangerous and the amount that can be dissolved in the solvent is limited.

本発明で用いられるラジカル禁止剤の母はポリマ重量に
対し0.01〜5%、好ましくは0. 1〜2%である
The base of the radical inhibitor used in the present invention is 0.01 to 5%, preferably 0.01 to 5%, based on the weight of the polymer. It is 1-2%.

次に本発明の製造法について説明する。Next, the manufacturing method of the present invention will be explained.

本発明のフェニルα−クロロアクリラートと2。Phenyl α-chloroacrylate of the present invention and 2.

2、3.3−テトラフルオロプロピルα−クロロアクリ
ラートとのコポリマは好ましくはラジカル開始剤による
バルク重合または溶液重合により製造される。
Copolymers with 2,3,3-tetrafluoropropyl α-chloroacrylate are preferably prepared by bulk or solution polymerization with radical initiators.

重合は、溶媒を用いないバルク重合も可能であるが、重
合制御の面より、溶液重合がより好ましい。
Although bulk polymerization without using a solvent is also possible, solution polymerization is more preferable from the viewpoint of polymerization control.

手合開始と共に直らに生成ポリマが析出し始める沈澱重
合の場合は、分解能の良いレジストを得ることはできな
い。
In the case of precipitation polymerization, in which the produced polymer begins to precipitate as soon as the process starts, a resist with good resolution cannot be obtained.

本発明に用いる重合溶媒としては、モノマおよび、生成
ポリマを溶解するものでおればいかなるものでもよい。
The polymerization solvent used in the present invention may be any solvent as long as it dissolves the monomer and the produced polymer.

通常はアセトン、メチルエチルケトン等のケトン類、ジ
オキサン、テトラヒドロフラン等のエーテル類、酢酸エ
チル、酢酸プロピル等のエステル類、ジメチルホルムア
ミド、ジメチルスルホキシド等の非プロトン性極性溶媒
が用いらる。
Usually, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, esters such as ethyl acetate and propyl acetate, and aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide are used.

手合に用いる溶媒の口としては通常モノマに対し0.3
〜5.0倍量、好ましくは0.5〜1゜5倍量が用いら
れる。溶媒の量は少ないと重合時間が短くなるが、重合
熱の発生が著しくなり制御が困難となる。逆に溶媒が多
いと、重合時間は長くなるが、重合の制御がし易くなる
The amount of solvent used in the procedure is usually 0.3 to the monomer.
~5.0 times the amount, preferably 0.5 to 1.5 times the amount used. If the amount of solvent is small, the polymerization time will be shortened, but the generation of polymerization heat will be significant and control will be difficult. Conversely, if the amount of solvent is large, the polymerization time will be longer, but the polymerization will be easier to control.

重合温度は用いる開始剤、溶媒の種類により当然異なる
が、通常は30〜90℃1好ましくは40〜70’Cが
用いられる。
The polymerization temperature naturally varies depending on the type of initiator and solvent used, but is usually 30 to 90°C, preferably 40 to 70'C.

反応時間も当然のことながら他の反応条件、すなわち重
合温度、開始剤の種類及び最、溶媒の種類及び口、用い
るモノマの割合により異なるが、通常は2〜30時間、
好ましくは5〜20時間である。
The reaction time naturally varies depending on other reaction conditions, such as the polymerization temperature, the type and amount of initiator, the type and amount of solvent, and the ratio of monomers used, but it is usually 2 to 30 hours.
Preferably it is 5 to 20 hours.

本発明のコポリマの製造に際しては、重合率が生成した
ポリマの性能に重大な影響を及ばず点で重要である。
In preparing the copolymers of the present invention, the degree of polymerization is important in that it does not significantly affect the performance of the resulting polymer.

雨上ツマの七ツマ反応性比は等しくはないので重合初期
に生成するコポリマは、仕込比よりもフェニルα−クロ
ロアクリラートに富み、組合後期に生成するコポリマは
仕込比よりも2,2,3.3−テトラフルオロプロピル
α−クロロアクリラートに富む。
Since the reactivity ratios of Amejo Tsuma and Nanatsuma are not equal, the copolymer produced in the early stage of polymerization is richer in phenyl α-chloroacrylate than the charging ratio, and the copolymer produced in the late stage of polymerization is richer in phenyl α-chloroacrylate than the charging ratio. 3. Rich in 3-tetrafluoropropyl α-chloroacrylate.

重合率が70%以上で得られるポリマは分子間の組成の
差が大きくなり、レジスト膜を形成した時相分離を起こ
す。相分離を起こすポリマは当然のことながら微細パタ
ーンを形成するためのレジス1〜としては使用できない
A polymer obtained at a polymerization rate of 70% or more has a large difference in composition between molecules, causing phase separation when a resist film is formed. It goes without saying that polymers that undergo phase separation cannot be used as the resist 1 to form fine patterns.

相分離を起さず、微細パターンを形成できる重合方法を
検問した処、重合率を65%以下、さらに好ましくは6
0%以下で重合を行なえば良いことが判明した。しかし
生産性の点からは重合率を50%以上とすることが好ま
しい。
We investigated a polymerization method that can form a fine pattern without causing phase separation, and found that the polymerization rate is 65% or less, more preferably 65% or less.
It has been found that polymerization can be carried out at 0% or less. However, from the viewpoint of productivity, it is preferable that the polymerization rate is 50% or more.

重合に用いるラジカル開始剤としては、通常のラジカル
車台に用いられるものでおれば特に制限はないが、過酸
化ジアセチル、過酸化ジプロピオニル、過酸化ジブヂリ
ル、過酸化ジベンゾイル等の過酸化ジアシル類、2,2
−アゾビス(プロピオニトリル)、2,2°−アゾビス
(ブヂロニ1〜リル)、2.2′−アゾビス(バレロニ
トリル)、2,2−アゾビス(3−メチルブチロニトリ
ル) 、2.2’−アゾビス(2−メチルプロピオニト
リル) 、2.2−アゾビス(メチル−2−メチル−プ
ロピオナート) 、1.1’−アゾビス(1−フェニル
エタン)、アゾヒスジフェニルメタン等のアゾビス類が
好ましい。
The radical initiator used for polymerization is not particularly limited as long as it is used in ordinary radical chassis, but diacyl peroxides such as diacetyl peroxide, dipropionyl peroxide, dibutyryl peroxide, dibenzoyl peroxide, etc. ,2
-azobis(propionitrile), 2,2°-azobis(butyronitrile), 2,2'-azobis(valeronitrile), 2,2-azobis(3-methylbutyronitrile), 2.2' Azobis such as -azobis(2-methylpropionitrile), 2,2-azobis(methyl-2-methyl-propionate), 1,1'-azobis(1-phenylethane), and azohisdiphenylmethane are preferred.

組合反応の後は、溶媒にいったん溶解した後、非溶媒中
で再沈澱し、;戸数、洗浄、屹燥する。
After the combination reaction, it is once dissolved in a solvent, reprecipitated in a non-solvent, washed, and then dried.

本発明のレジス1〜は上記方法により得られたポリマを
ラジカル禁止剤と共に所望の溶媒に所定の濃度で溶解し
、0.2〜0.45μのメンブランフィルタ−で精密濾
過し、使用に供せられる。
The resists 1 to 1 of the present invention are prepared by dissolving the polymer obtained by the above method in a desired solvent together with a radical inhibitor at a predetermined concentration, microfiltering it with a membrane filter of 0.2 to 0.45μ, and using it. It will be done.

かくして得られた本発明の放射線感応ポジ型レジストは
、電子線露光装置による各種基板上への微細パターンの
形成の他、各種ドライエツヂングによる微細加工に好適
に用いられる。もちろん基板への十分な接着性を有して
いるのでウエットエッヂングに用いられることも可能で
ある。
The radiation-sensitive positive resist of the present invention thus obtained is suitably used for forming fine patterns on various substrates using an electron beam exposure apparatus, as well as for fine processing using various dry etching methods. Of course, since it has sufficient adhesion to the substrate, it can also be used for wet etching.

また遠紫外光、軟X$3;!に対しても感度を有してい
るため、上記電磁波を用いた一括転写にも利用できる。
Also far ultraviolet light, soft X$3;! Since it is also sensitive to electromagnetic waves, it can also be used for batch transfer using the electromagnetic waves mentioned above.

特性の測定方法並びに効果の評価方法 ■ 放射線感応ポジ型レジストの感度を測定する方法 まずポリマをメチルセロソルブアゼタート等の適当な溶
媒に溶解した俊、0.2〜0.45μのメンブランフィ
ルタ−にてシ濾過しレジスト溶液を調製する。このレジ
スト溶液を基板上にスピンナーを用いてスビンコー1へ
し0.4〜1.0μの均一なレジスト溶液を形成する。
Method for measuring properties and evaluating effectiveness ■ Method for measuring sensitivity of radiation-sensitive positive resist First, dissolve the polymer in a suitable solvent such as methyl cellosolve azetate and apply it to a 0.2-0.45μ membrane filter. and filter to prepare a resist solution. This resist solution is applied onto a substrate using a spinner to form a uniform resist solution with a thickness of 0.4 to 1.0 .mu.m.

次に溶媒を除きかつ!J板との密着性を向上させるため
プリベーク処理を行なう。本発明の放射線感応ポジ型レ
ジストの場合は160’C〜210℃で15分〜1時間
プリベークすることが好ましい。
Next, remove the solvent! Perform pre-bake treatment to improve adhesion to J plate. In the case of the radiation-sensitive positive resist of the present invention, it is preferable to prebake at 160'C to 210C for 15 minutes to 1 hour.

電子線露光装置を用い基板上の一定面積を一定の電流量
で、露光時間を等比扱数的に変えながら10〜20カ所
露光する。該露光部分について、面積、電流量、露光時
間より、単位面積当りの電気量(μC/cnf)を計算
する。
Using an electron beam exposure device, a fixed area on the substrate is exposed at 10 to 20 locations with a fixed amount of current, while changing the exposure time geometrically. For the exposed portion, the amount of electricity per unit area (μC/cnf) is calculated from the area, amount of current, and exposure time.

次に基板を適当な現像液中に、一定温度で一定時間浸漬
し、このあと非溶媒中に浸してリンスする。乾燥後、基
板をポストベークする。ボス1〜べ一り温度は一般にポ
リマのガラス転移温度にり低い温度で行なうことが好ま
しい。
Next, the substrate is immersed in a suitable developer at a constant temperature for a certain period of time, and then immersed in a non-solvent for rinsing. After drying, post-bake the substrate. Generally, it is preferable to set the temperature at which the boss 1 to plate is lower than the glass transition temperature of the polymer.

基板上の露光部分及び未露光部分の膜厚を表面荒さ計等
で測定する。横軸に電気量(露光量)、縦軸に露光部分
の膜厚をプロブ1〜し、感度曲線を作成する。この感度
曲線が横軸と交わる時を感度とする。
Measure the film thickness of exposed and unexposed areas on the substrate using a surface roughness meter or the like. A sensitivity curve is created by plotting the amount of electricity (exposure amount) on the horizontal axis and the film thickness of the exposed portion on the vertical axis. Sensitivity is defined as the point where this sensitivity curve intersects with the horizontal axis.

露光前の膜厚も測定してあき、現像後の未露光部分の膜
厚と比較して減少分を膜減りとする。
The film thickness before exposure is also measured and compared with the film thickness of the unexposed area after development, and the decrease is taken as film reduction.

一般に放射線感応ポジ型レジストにおいては、露光部分
のポリマは主鎖切断を起し、分子量が低下している。こ
れを現像すると露光部分のポリマは未露光部分のポリマ
より速い速度で溶解し、従ってレジストパターンが形成
される。このように現像時には未露光部分の膜厚は必ず
、現像前に比べて減少する。
Generally, in a radiation-sensitive positive resist, the polymer in the exposed portion undergoes main chain scission, resulting in a decrease in molecular weight. When this is developed, the polymer in the exposed areas dissolves at a faster rate than the polymer in the unexposed areas, thus forming a resist pattern. In this manner, during development, the film thickness of the unexposed portion is always reduced compared to before development.

放射線感応ポジ型レジトスの感度は、現像液の種類、温
度、現像時間、レジスト膜厚によって変化し、これらを
記載しないと感度のみのデータは意味がない。すなわち
、長い現像時間、高い現像温度を用いると感度は見かけ
上高くなるが、膜減りも大きくなる。
The sensitivity of radiation-sensitive positive resists varies depending on the type of developer, temperature, development time, and resist film thickness, and data on sensitivity alone is meaningless unless these are described. That is, when a long development time and a high development temperature are used, the sensitivity apparently increases, but the film loss also increases.

■ ポジ型レジストのシリコンウェハ等半導体基板に対
する接着性を評価する方法 レジスト膜の形成は上記感度測定の方法の場合と同一で
ある。電子線露光により0.5〜5μのラインアンドス
ペース又は格子パターンを露光後現像する。
(2) Method for evaluating the adhesion of a positive resist to a semiconductor substrate such as a silicon wafer The formation of a resist film is the same as in the method for measuring sensitivity described above. A line and space or lattice pattern of 0.5 to 5 μm is exposed and developed by electron beam exposure.

一般にポジ梨型子線しジス1〜は基板に塗膜後そのガラ
ス転移点以上の温度でプリベークされる。
In general, positive pear-shaped wires 1 to 1 are coated on a substrate and then prebaked at a temperature above the glass transition point.

プリベータ中はレジストは液体状態にあると考えらるの
で基板との間にひずみは存在しない。これを空温まで冷
却すると一般にレジス1〜を形成するポリマは基板より
熱膨張係数が大きいのでレジスト膜厚ひずみ応力が発生
する。
Since the resist is considered to be in a liquid state during pre-beta, there is no strain between it and the substrate. When this is cooled to air temperature, resist film thickness distortion stress occurs because the polymer forming the resists 1 to 1 generally has a larger coefficient of thermal expansion than the substrate.

基板とレジストの接着力が充分でない場合は、このひず
みにより現像時にレジスト膜にクラックが発生する。
If the adhesive strength between the substrate and the resist is not sufficient, cracks will occur in the resist film during development due to this strain.

また基板とレジストとの接着力が充分でない場合は1μ
以下のパターンは現像時にはがれ落ちることがある。
In addition, if the adhesive strength between the substrate and resist is not sufficient, 1μ
The following patterns may peel off during development.

以上は100〜1000倍の光学顕微鏡でvA察するこ
とにより評価する。
The above is evaluated by observing vA using an optical microscope with a magnification of 100 to 1000 times.

(実施例) 実施例1 フェニルα−クロロアクリラート5.5C1,2゜2.
3.3−テ1〜ラフルオロプロビルα−クロロアクリラ
ート4.5g、アゾビスイソブチロニトリル35ma、
アセトン8.○qを200m1のナスフラスコに仕込み
、攪拌して溶解させた。フラスコ内を窒素で置換した後
50’Cの湯浴内で9時間重合した。
(Example) Example 1 Phenyl α-chloroacrylate 5.5C1,2°2.
3.3-te1-lafluoroprobil α-chloroacrylate 4.5 g, azobisisobutyronitrile 35 ma,
Acetone8. ○q was placed in a 200 ml eggplant flask and stirred to dissolve. After purging the inside of the flask with nitrogen, polymerization was carried out in a water bath at 50'C for 9 hours.

得られた重合物をメチルエチルケトン70m1に溶解し
メタノール、水の混合物(2:1)10.中に注ぎポリ
マを再沈した。析出したポリマを;戸数し、真空乾燥器
内で乾燥した。5.91C]のコポリマが得られた。重
合条件、メチルエチルケトン中25℃での極限粘度、5
%MCA溶液の溶液粘度、元素分析値を表1に示す。元
素分析値より計算したコポリマの組成は、フェニルα−
クロロアクリラート:2.2,3.3−テトラフルオロ
プロピルα−クロロアクワラ−1〜が63:37(ff
l量比)であった。
The obtained polymer was dissolved in 70ml of methyl ethyl ketone and mixed with a mixture of methanol and water (2:1)10. The polymer was poured into the container and re-precipitated. The precipitated polymer was separated and dried in a vacuum dryer. A copolymer of 5.91C] was obtained. Polymerization conditions, intrinsic viscosity at 25°C in methyl ethyl ketone, 5
% MCA solution solution viscosity and elemental analysis values are shown in Table 1. The composition of the copolymer calculated from the elemental analysis values is phenyl α-
Chloroacrylate: 2,2,3,3-tetrafluoropropyl α-chloroacrylate-1 ~ 63:37 (ff
1 amount ratio).

上記の方法で得たポリマ粉末5.0CI、2.6−ジー
t−ブチル−p−クレゾール(BHT>50mgを84
.3gのMCA:メタノール95:5(虫最比の混合溶
媒に溶解し、0.2μのメンブランフィルタ−を用い窒
素加圧下に;濾過した。
5.0CI of polymer powder obtained by the above method, 2.6-di-t-butyl-p-cresol (BHT>50mg)
.. It was dissolved in a mixed solvent of 3 g of MCA:methanol at a ratio of 95:5 and filtered under nitrogen pressure using a 0.2μ membrane filter.

レジスト溶液をシリコンウェハ上に1000回転でスピ
ンコー!〜し、200’Cで30分間プリベークした。
Spin the resist solution onto the silicon wafer at 1000 revolutions! ~ and prebaked at 200'C for 30 minutes.

レジスト膜厚は5530人であった。The resist film thickness was 5530.

レジスト膜は透明で相分離による白濁は見られなかった
The resist film was transparent and no clouding due to phase separation was observed.

電子線露光装置(エリオニクス装ERE−301)を用
い、7JO速電圧20kV、電流Q 2 rl Aで0
.45X0.60mmの面積を順次露光時間を変えて走
査露光した。また同時に1μのライン&スペースを露光
した。
Using an electron beam exposure device (Elionix ERE-301), 7JO speed voltage 20 kV, current Q 2 rl A 0
.. An area of 45 x 0.60 mm was scanned and exposed while sequentially changing the exposure time. At the same time, lines and spaces of 1μ were exposed.

基板をメチルイソブヂルケ]〜ンーイソプロパノール8
2:18(重量比)の現像液中25℃で攪拌下3分間>
H漬し、次いでイソプロパツールに30秒間浸漬した。
Substrate with methyl isopropanol 8
3 minutes under stirring at 25°C in a developer of 2:18 (weight ratio)>
The sample was soaked in H and then in isopropanol for 30 seconds.

その(U100’Cで30分間ポストベークし、未露光
部分および露光部分のレジスト膜厚を順次測定し、感度
曲線を作成した。
It was post-baked at U100'C for 30 minutes, and the resist film thicknesses of the unexposed and exposed areas were sequentially measured to create a sensitivity curve.

感度は12μChart、未露光部分の膜減りは100
人であった。
Sensitivity is 12μChart, film loss in unexposed areas is 100
It was a person.

ラインアンドスペース部分および未露光部分を光学顕微
鏡で12察した処、パターンのはがれ、レジスト膜のク
ラック等は見られなかった、次に平行平板式リアクティ
ブイオンエツチング装置を用い、PMMAを塗膜したウ
ェハと共にドライエッヂングを行ない両者の膜減り速度
を比較した。
When the line and space areas and unexposed areas were inspected using an optical microscope, no peeling of the pattern or cracks in the resist film were observed.Next, a PMMA film was coated using a parallel plate reactive ion etching device. Dry etching was performed together with the wafer, and the film reduction speeds of both were compared.

エツチングガスは四フッ化炭素:酸素96:4、圧力4
.OPa、25℃,0,64w/−で3分間エツヂング
を行なった。エツヂレグ後膜厚を測定し、膜減り速度を
計算した。PMMAの膜減り速度は660人/分でおり
本発明のレジストは430人/分(PMMA比0.65
倍)であった。
Etching gas is carbon tetrafluoride:oxygen 96:4, pressure 4
.. Etching was performed at OPa, 25° C., 0.64 w/− for 3 minutes. After the edge leg, the film thickness was measured and the film thinning rate was calculated. The film reduction rate of PMMA is 660 people/min, and the resist of the present invention has a film reduction rate of 430 people/min (PMMA ratio 0.65
times).

実施例2,3.4 実施例1と同様の方法により、仕込モノマの比率を変え
てコポリマを10だ。条件および結果を表2に示す。本
発明の]ポリマはフェニルα−クロロアクリラートの含
量が増すほど溶解性は減少する。本実施例では既知のポ
リマ(フェニルα−クロロアクリラートと2.2.2−
1〜リフルオロエチルα−クロロアクリラートとのコポ
リマ)と感度を厳密に比較するため同一の現像条件で等
しい膜減りを与える現像液を用いた。
Examples 2 and 3.4 The same method as in Example 1 was used to prepare a copolymer of 10 by changing the ratio of monomers charged. The conditions and results are shown in Table 2. The solubility of the polymer of the present invention decreases as the content of phenyl α-chloroacrylate increases. In this example, known polymers (phenyl α-chloroacrylate and 2.2.2-
In order to strictly compare the sensitivity with the copolymer (copolymer with 1-trifluoroethyl α-chloroacrylate), a developer was used that gave the same film loss under the same development conditions.

フェニルα−タロロアクリラ−1〜の含量が増加する稈
感磨は低くなるがドライエツチング耐111は増加する
。使用の目的に応じてコポリマの組成が決定される。な
d3 P M Mへの同一条件での感度は50μC/ 
carなので、感度、ドライエツヂング耐訃共に未発明
のポリマが優れていることがわかる。
As the content of phenyl α-taloloacrylate 1 increases, the culm sensitization becomes lower, but the dry etching resistance 111 increases. The composition of the copolymer is determined depending on the purpose of use. The sensitivity to d3 P M M under the same conditions is 50 μC/
car, it can be seen that the uninvented polymer is superior in both sensitivity and dry etching resistance.

比較例1,2 実施例1と同一の七ツマを使用し、表1に示す重合条件
でコポリマを1dた。
Comparative Examples 1 and 2 Using the same seven polymers as in Example 1, 1 d of copolymer was produced under the polymerization conditions shown in Table 1.

レジスト溶液を調製し、シリコンウェハに塗膜し、光学
箱微鏡08視野で11!l!察した処、ポリマの相分離
による白濁が見られた。
Prepare a resist solution, coat it on a silicon wafer, and look at the 08 field of view of the optical box microscope at 11! l! Upon inspection, white turbidity was observed due to phase separation of the polymer.

また実施例1と同様に1μのラインアンドスペースのレ
ジストパターンを形成した処、エツジラフネスは実施例
]の場合より劣っていた。
Further, when a 1 μm line-and-space resist pattern was formed in the same manner as in Example 1, the edge roughness was inferior to that in Example.

比較例3 + 415 実施例1と同様の方法によりフ]ニルα−クロロアクリ
ラ−1〜と2.2.2−トリフルオロエヂルα−クロロ
アクリラ−1〜よりなるコポリマを1−I!′:′、。
Comparative Example 3 + 415 A copolymer consisting of phenyl α-chloroacryla-1~ and 2.2.2-trifluoroedyl α-chloroacryla-1~ was prepared by the same method as in Example 1 into 1-I! ′:′,.

これらのコポリマはメチルイソブヂルケ1ヘンで25℃
3分間現(象することにJ=り約100人の膜減りを与
える。この場合の感j夏は対応するコポリマ組成を何す
る本発明のコポリマに比べ約半分である。またトライ丁
ツヂング耐性は対応する二1ポリマ組成を有り−る本発
明の」ポリマにほぼ簀(7い。
These copolymers were prepared using methyl isobutylene at 25°C.
In this case, the film loss is approximately half that of the copolymer of the present invention with a corresponding copolymer composition. is approximately the same as the polymer of the present invention, which has a corresponding 21 polymer composition.

レジス]・溶液を調製し、シリコンウェハに塗膜し、実
施例1と同様の評価を(1つだ所、レジメ1〜肱にクラ
ックJ3よび微細パターンのはがれが見られた。
A solution was prepared, coated on a silicon wafer, and evaluated in the same manner as in Example 1 (cracks J3 and peeling of fine patterns were observed in one area from Regime 1 to the elbow).

比較例6 実施例1と同様の方法によりフェニルα−り[」ロアク
リラ−1へと2.2.2−1〜リフルオ口エヂルα−り
ロロアクリラ−1〜よりなるコポリマをQた。
Comparative Example 6 In the same method as Example 1, the phenyl α -ri [Loa Clila -1) to 2.2.2-1 to Lefluo Exit α -Lolo Cryla -1 ~

この場合はΦ合圧率を58.1%と低くシt:ので塗膜
1時の相分離は見られなかったが、レジス[−膜のクラ
ックおよび微■!のパターンの(j、かれは依然として
観察された。
In this case, the Φ combined pressure ratio was as low as 58.1%, so no phase separation was observed in the coating film 1; The pattern of (j, he still observed.

(発明の効果) 本発明は上)小のごとく構成したので、ドライエッヂン
グ耐性が良好であると共に凸感度を同1(4に兼ね偵1
えた敢則線感応ポジ型しジスlへal;よびその製造法
を)がることができたちのである。
(Effects of the Invention) Since the present invention is configured as shown in Fig.
It is now possible to transfer the resulting positive-type wire-sensitive film and its manufacturing method.

Claims (4)

【特許請求の範囲】[Claims] (1)フェニルα−クロロアクリラートと2,2,3,
3−テトラフルオロプロピルα−クロロアクリラートを
重量比で50:50〜80:20含むコポリマよりなる
放射線感応ポジ型レジスト。
(1) Phenyl α-chloroacrylate and 2,2,3,
A radiation-sensitive positive resist made of a copolymer containing 3-tetrafluoropropyl α-chloroacrylate in a weight ratio of 50:50 to 80:20.
(2)メチルエチルケトン中、25℃で測定した極限粘
度が0.5〜2.0である特許請求の範囲第(1)項記
載の放射線感応ポジ型レジスト。
(2) The radiation-sensitive positive resist according to claim (1), which has an intrinsic viscosity of 0.5 to 2.0 as measured at 25°C in methyl ethyl ketone.
(3)メチルセロソルブアセタート中に5%の温度で溶
解した時の25℃での溶液粘度が20〜70c.p.で
ある特許請求の範囲第(1)項記載の放射線感応ポジ型
レジスト。
(3) Solution viscosity at 25°C when dissolved in methyl cellosolve acetate at 5% temperature is 20-70c. p. A radiation-sensitive positive resist according to claim (1).
(4)フェニルα−クロロアクリラートと2,2,3,
3−テトラフルオロプロピルα−クロロアクリラートと
を混合し、ラジカル重合によりコポリマを製造するに際
し、上記ラジカル重合を重合率50〜65%の条件で行
なうことを特徴とする放射線感応ポジ型レジストの製造
法。
(4) Phenyl α-chloroacrylate and 2,2,3,
3-Tetrafluoropropyl α-chloroacrylate is mixed with 3-tetrafluoropropyl α-chloroacrylate to produce a copolymer by radical polymerization, and the radical polymerization is carried out at a polymerization rate of 50 to 65%. Law.
JP22835886A 1986-09-29 1986-09-29 Radiation sensitive positive type resist and its production Pending JPS6383721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22835886A JPS6383721A (en) 1986-09-29 1986-09-29 Radiation sensitive positive type resist and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22835886A JPS6383721A (en) 1986-09-29 1986-09-29 Radiation sensitive positive type resist and its production

Publications (1)

Publication Number Publication Date
JPS6383721A true JPS6383721A (en) 1988-04-14

Family

ID=16875206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22835886A Pending JPS6383721A (en) 1986-09-29 1986-09-29 Radiation sensitive positive type resist and its production

Country Status (1)

Country Link
JP (1) JPS6383721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434702A4 (en) * 2016-03-25 2019-12-18 Zeon Corporation Method for producing copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434702A4 (en) * 2016-03-25 2019-12-18 Zeon Corporation Method for producing copolymer

Similar Documents

Publication Publication Date Title
CN113214427B (en) Bio-based ArF photoresist film-forming resin, photoresist composition and preparation method thereof
KR20010012648A (en) Light-absorbing polymers and application thereof to antireflection film
JP7069557B2 (en) Photosensitive resin composition, manufacturing method of pattern cured product, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic components.
JPH04288365A (en) Photopolymer material
US5756260A (en) Photosensitive polyimide resin composition containing a stabilizer and method for formation of relief pattern using same
JPS6383721A (en) Radiation sensitive positive type resist and its production
US7659050B2 (en) High resolution silicon-containing resist
CN113214429B (en) ArF photoresist film-forming resin, preparation method thereof and photoresist composition
JPS5983157A (en) Method of increasing sensitivity and contrast of positive type polymer resist
JPS617835A (en) Resist material
JPS62223750A (en) Radiation sensitive positive type resist and such resist composition
JPS63271253A (en) Positive type radiation sensitive resist having high resolution
JPS61238809A (en) Liquid photosensitive polyimide resin composition
CN114163564B (en) Film-forming resin containing cholic acid-butenoate derivative and photoresist composition
JPH0358104B2 (en)
JPH11102068A (en) Positive photosensitive resin composition and its production
JPS6259950A (en) Ionizing radiation sensitive positive type resist
JPS61241747A (en) Developing solution for radiation sensitive resist
JPS63116151A (en) Formation of pattern
JP3303416B2 (en) Developer for photosensitive polyimide precursor
JPH0358103B2 (en)
JPS62218960A (en) Radiation sensitive positive type resist and resist composition
JP2890491B2 (en) Actinic radiation sensitive polymer composition
JPH0381142B2 (en)
JP2016024306A (en) Photosensitive resin composition, patterned cured film and method for the production thereof, semiconductor element and electronic device