JPS6380540A - Plasma apparatus - Google Patents

Plasma apparatus

Info

Publication number
JPS6380540A
JPS6380540A JP22657786A JP22657786A JPS6380540A JP S6380540 A JPS6380540 A JP S6380540A JP 22657786 A JP22657786 A JP 22657786A JP 22657786 A JP22657786 A JP 22657786A JP S6380540 A JPS6380540 A JP S6380540A
Authority
JP
Japan
Prior art keywords
plasma
microwave
microwave source
chamber
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22657786A
Other languages
Japanese (ja)
Inventor
Seitaro Matsuo
松尾 誠太郎
Akihiro Tawara
田原 章博
Satoru Nakayama
中山 了
Seiichi Nakamura
誠一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Metal Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22657786A priority Critical patent/JPS6380540A/en
Publication of JPS6380540A publication Critical patent/JPS6380540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To increase the plasma generating efficiency for improving the manufacturing efficiency and to ensure stable operation for a plasma apparatus independently from types of film to be deposited, by providing the plasma apparatus with a plasma generating chamber having a structure serving as a cavity resonator with respect to microwave power introduced thereinto and by adapting the plasma apparatus such that the microwave source can be driven either continuously with constant-voltage direct current or intermittently at a frequency higher than a commercial frequency by switching power supplies. CONSTITUTION:A plasma apparatus according to the invention comprises a first power supply 183 for driving a microwave source 11 intermittently at a frequency higher than a commercial frequency, a second DC power supply 181 for driving microwaves continuously and switching devices l9a and 19b for switching over the first and second power supplies and connecting one of them to the microwave source. A plasma generating chamber 1 has a structure serving as a cavity resonator with respect to microwave power introduced into the chamber. Therefore, resonance is caused by driving the microwave source 11 and introducing microwaves into the chamber. If the microwave source is driven intermittently, the plasma generating chamber 1 functions as a cavity resonator according to its original design and provides a high plasma generating efficiency. As a result, a high film deposition rate and a high etching rate can be obtained. In the case of forming an amorphous silicon film, however, the microwave source 11 is driven continuously by the second power supply 181 since generated plasma is instable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造のためのCVD(Chemi
calVapor Deposition)装置、エッ
ヂング装置、スパンタリング装置等とし才用いられる電
子サイクロトロン共鳴を利用したプラズマ装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to CVD (Chemistry) for manufacturing semiconductor devices.
The present invention relates to a plasma device that utilizes electron cyclotron resonance, which is commonly used in calVapor deposition devices, edging devices, sputtering devices, and the like.

〔従来技術〕[Prior art]

電子サイクロトロンを利用したプラズマ装置は低ガス圧
で活性度の高いプラズマを生成出来、イオンエネルギの
広範囲な選択が可能であり、また大きなイオン電流がと
れ、イオン流の指向性。
Plasma devices using electron cyclotrons can generate highly active plasma at low gas pressure, allow a wide range of ion energies to be selected, and can generate large ion currents and improve the directionality of the ion flow.

均一性に優れるなどの利点があり、高集積度半導体装置
の製造に欠せぬものとしてその研究、開発が進められて
いる。
It has advantages such as excellent uniformity, and its research and development are progressing as it is essential for manufacturing highly integrated semiconductor devices.

第1図はプラズマCVD ’l置として構成した電子サ
イクロトロン共鳴利用のプラズマ装置の縦断面図であり
、1はプラズマ生成室を示している。プラズマ生成室1
は周囲壁を2重構造にして冷却水の通流室13を備え、
また−側壁中央には石英ガラス板6にて封止したマイク
ロ波導入口1aを、更に前記−側壁と対向する他側壁中
央には前記マイクロ波導入口1aと対向する位置にプラ
ズマ引出口1bを夫々備えており、前記マイクロ波導入
口1aには導波管7の一端が接続され、またプラズマ引
出口1bに5nませて反応室2を配設し、更に周囲には
プラズマ生成室1及びこれに接続した導波管7の一端部
にわたってこれらを囲繞する態様でこれらと同心状に励
磁コイル4を配設しである。
FIG. 1 is a longitudinal sectional view of a plasma device utilizing electron cyclotron resonance configured as a plasma CVD device, and 1 indicates a plasma generation chamber. Plasma generation chamber 1
is equipped with a cooling water circulation chamber 13 with a surrounding wall having a double structure,
Furthermore, a microwave inlet 1a sealed with a quartz glass plate 6 is provided in the center of the side wall, and a plasma outlet 1b is provided in the center of the other side wall opposite to the microwave inlet 1a. One end of a waveguide 7 is connected to the microwave inlet 1a, and a reaction chamber 2 is disposed 5 nm apart from the plasma outlet 1b, and furthermore, a plasma generation chamber 1 and a chamber connected thereto are arranged around the microwave inlet 1a. An excitation coil 4 is disposed concentrically with one end of the waveguide 7 so as to surround them.

導波管7の中途には整合器8、マイクロ波電力モニタ9
、アイソレータ10を有し、他端部はマグネトロン等の
マイクロ波源11に接続されており、また反応室2内に
はプラズマ引出口1bと対向させて半4体ウェーハ等で
ある試料15用の載置台16が設置され、反応室2の載
置台16の裏側に臨む壁には排気系に連なる排気口17
を開口せしめである。
In the middle of the waveguide 7 is a matching box 8 and a microwave power monitor 9.
, an isolator 10, the other end of which is connected to a microwave source 11 such as a magnetron, and a sample 15 such as a half-quad wafer placed in the reaction chamber 2, facing the plasma outlet 1b. A mounting table 16 is installed, and an exhaust port 17 connected to the exhaust system is installed on the wall facing the back side of the mounting table 16 in the reaction chamber 2.
It is forced to open.

その他18はマイクロ波源11の電源、13.14は原
料ガスをプラズマ生成室1及び反応室2夫々にm人する
給気管である。
In addition, 18 is a power source for the microwave source 11, and 13.14 is an air supply pipe for supplying raw material gas to each of the plasma generation chamber 1 and the reaction chamber 2.

而してこのようなプラズマCVD装置にあっては、載置
台16上に試料15を載置しておき、プラズマ生成室1
内に給気管13を通じてガスを導入する一方、励磁コイ
ル4に直流電圧を印加すると共に導波管7を通じてマイ
クロ波を導入し、プラズマ生成室1内にプラズマを生成
させ、生成させたプラズマを励磁コイル4にて形成され
る、プラズマ引出口1b前方の反応室2側に向うに従っ
て磁束密度が低下する発散磁界によって反応室2内の試
料15に向けて投射せしめ、反応室2内のガスをプラズ
マ分解し、試料15表面にシリコン酸化膜等の薄膜を形
成せしめるようになっている。
In such a plasma CVD apparatus, the sample 15 is placed on the mounting table 16, and the plasma generation chamber 1 is
While introducing gas into the chamber through the air supply pipe 13, a DC voltage is applied to the excitation coil 4 and microwaves are introduced through the waveguide 7 to generate plasma within the plasma generation chamber 1, and the generated plasma is excited. A diverging magnetic field, which is formed by the coil 4 and whose magnetic flux density decreases toward the reaction chamber 2 in front of the plasma extraction port 1b, is projected toward the sample 15 in the reaction chamber 2, turning the gas in the reaction chamber 2 into plasma. The sample 15 is decomposed to form a thin film such as a silicon oxide film on the surface of the sample 15.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に半導体装置の製造装置においては高い生産能率を
要求され、特に薄膜形成、エツチングの反応速度の向上
が望まれている。しかし上述した如き従来のプラズマ装
置はこの要求に十分に応え得るものではなかった。
In general, semiconductor device manufacturing equipment is required to have high production efficiency, and in particular, it is desired to improve the reaction speed of thin film formation and etching. However, the conventional plasma apparatuses described above have not been able to fully meet this demand.

本発明は斯かる事情に鑑みてなされたものであり、プラ
ズマ生成効率を高めて高い生産能率を実現し得ると共に
、膜の種類によらず安定して動作させ得るプラズマ装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma device that can increase plasma generation efficiency and achieve high production efficiency, and can operate stably regardless of the type of film. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るプラズマ装置は、マイクロ波発生源を駆動
して発せしめたマイクロ波をプラズマ生成室に導いて電
子サイクロトロン共鳴によりプラズマを生成すべくなし
たプラズマ装置において、それに導かれるマイクロ波電
力に対して空洞共振器構造を有するプラズマ生成室と、
商用周波数以上の周波数にてマイクロ波源を断続駆動す
る第1電源と、直流にてマイクロ波を連続駆動する第2
電源と、第1.第2電源を切換えてマイクロ波源と接続
する切換装置とを具備することを特徴とする。
A plasma device according to the present invention is a plasma device in which microwaves emitted by driving a microwave generation source are guided to a plasma generation chamber to generate plasma by electron cyclotron resonance. On the other hand, a plasma generation chamber having a cavity resonator structure,
A first power source that drives the microwave source intermittently at a frequency higher than the commercial frequency, and a second power source that continuously drives the microwave source with direct current.
Power supply and 1st. It is characterized by comprising a switching device that switches the second power source and connects it to the microwave source.

即ち従来は定電圧の直流にて連続駆動していたマイクロ
波源を商用周波数以上の周波数で断続駆動することをも
切換えて可能とするのである。
In other words, the microwave source, which conventionally was driven continuously with constant voltage direct current, can now be switched and driven intermittently at a frequency higher than the commercial frequency.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof.

本発明に係るプラズマ装置全体の構成は第1図に示した
ものと同様であり、相異する部分はマグネトロン等マイ
クロ波源の電源18にある。
The overall configuration of the plasma apparatus according to the present invention is similar to that shown in FIG. 1, and the difference lies in the power source 18 of the microwave source such as a magnetron.

第2図はこの電源18の構成を示し商用周波数の三相交
流電tA181を平滑回路を備えた三相の全波整流回路
182へ与え、第3図に示す如き直流電圧を得、スイッ
チ19bを介してマイクロ波源11に与え得るようにな
しであると共に、商用周波数の単相交流電源183を平
滑回路を備えない単相の全波整流回路184へ与え、第
5図に示す如き商用周波数の2倍の周波数を有する脈流
状の電圧を得、これをスイッチ19aを介してマイクロ
波?txuに与え得るようになしである。スイッチ19
a、 19bは相補的にオン、オフし、いずれか一方の
電圧がマイクロ波源11に与えられる。
FIG. 2 shows the configuration of this power supply 18. A commercial frequency three-phase AC current tA181 is applied to a three-phase full-wave rectifier circuit 182 equipped with a smoothing circuit to obtain a DC voltage as shown in FIG. At the same time, a single-phase AC power supply 183 at a commercial frequency is supplied to a single-phase full-wave rectifier circuit 184 without a smoothing circuit, so that the power supply is twice the commercial frequency as shown in FIG. A pulsating voltage having a frequency of None as can be given to txu. switch 19
a and 19b are turned on and off in a complementary manner, and the voltage of either one is applied to the microwave source 11.

第4図、第6図は夫々第3図、第5図の電圧をマイクロ
波源11に与えた場合のマイクロ波出力波形である。
4 and 6 show microwave output waveforms when the voltages shown in FIGS. 3 and 5 are applied to the microwave source 11, respectively.

第7図は本発明の電源の他の実施例を示しており、商用
周波数の三相交流電源181を平滑回路を有する三相の
全波整流回路182へ与えて第3図に示す如き直流電圧
を得てこれをスイッチ19bを介してマイクロ波源11
へ与えると共に、全波整流回路182出力をスイッチ1
9a、を介してチョッパ回路185へ与えて第8図に示
す如きパルス状の電圧を得、これをスイッチ19a2を
介してマイクロ波源11へ与える。
FIG. 7 shows another embodiment of the power supply of the present invention, in which a commercial frequency three-phase AC power source 181 is applied to a three-phase full-wave rectifier circuit 182 having a smoothing circuit to generate a DC voltage as shown in FIG. and connects it to the microwave source 11 via the switch 19b.
At the same time, the output of the full-wave rectifier circuit 182 is sent to the switch 1.
9a to the chopper circuit 185 to obtain a pulsed voltage as shown in FIG. 8, which is then applied to the microwave source 11 via the switch 19a2.

スイッチ19bと19a+ 、19azとは相補的にオ
ン。
Switches 19b, 19a+, and 19az are turned on in a complementary manner.

オフし、いずれか一方の電圧がマイクロ波源11に印加
される。
The microwave source 11 is turned off and one of the voltages is applied to the microwave source 11.

第9図は第8図に示す電圧をマイクロ波源11に与えた
場合のマイクロ波出力を示す。
FIG. 9 shows the microwave output when the voltage shown in FIG. 8 is applied to the microwave source 11.

第2図に示す実施例では単相交流量a183.全波整流
回路184が前記第1電源に、また三相交流電源181
、全波整流回路182が前記第2電源に相当し、第7図
に示す実施例では三相交流電源181、全波整流回路1
82及びチョッパ回路185が第1電源に相当し、三相
交流電源181及び全波整流回路182が前記第2電源
に相当する。
In the embodiment shown in FIG. 2, the single-phase alternating current amount a183. A full-wave rectifier circuit 184 is connected to the first power source, and a three-phase AC power source 181
, the full-wave rectifier circuit 182 corresponds to the second power supply, and in the embodiment shown in FIG.
82 and the chopper circuit 185 correspond to the first power source, and the three-phase AC power source 181 and the full-wave rectifier circuit 182 correspond to the second power source.

本発明の電源の構成は上記2実施例に限るものではなく
、またそれらを切換えてマイクロ波源11に電力を供給
せしめる切換装置も上記実施例のものに限らないことは
言うまでもない。
It goes without saying that the configuration of the power source of the present invention is not limited to the above two embodiments, and the switching device that switches between them to supply power to the microwave source 11 is not limited to that of the above embodiments.

以上の如き本発明装置はSi203 、Si:+ N4
等について成膜の能率を向上させるためには第1電源に
てマイクロ波源11を駆動する。この駆動は断続的なも
のとなるが、これによって後述する理由によって高い成
膜能率と優れた物理特性とが得られる。一方アモルファ
スシリコン膜を形成する場合にはマイクロ波源の断続駆
動ではプラズマ生成が不安定となるので、第2電源にて
マイクロ波源11を駆動する。この駆動は従来同様の連
続的な駆動である。
The device of the present invention as described above has Si203, Si:+N4
In order to improve the efficiency of film formation, the microwave source 11 is driven by the first power source. Although this driving is intermittent, high film-forming efficiency and excellent physical properties can be obtained for reasons described later. On the other hand, when forming an amorphous silicon film, plasma generation becomes unstable if the microwave source is driven intermittently, so the microwave source 11 is driven by the second power source. This drive is a continuous drive similar to the conventional one.

〔効果〕〔effect〕

第10図、第11図は本発明の効果を示すグラフであっ
てSix N4 ′gJ膜を形成した場合の(a)3膜
のB肛エツチング速度、(b1gJ膜の屈折率、(C1
薄膜形成速度を夫々示している。図中黒丸は従来装置に
よりマイクロ波源を直流にて連続駆動した場合の、白三
角は60Hzにて断続駆動した場合の、また白丸は12
0 Hzにて断続駆動した場合の結果を夫々示している
。なお、第10図はマイクロ波電力が300にの場合、
第11図はマイクロ波電力が15叶の場合である。
FIGS. 10 and 11 are graphs showing the effects of the present invention, in which (a) the B etching rate of the three films, (b1 the refractive index of the gJ film, (C1
The thin film formation speed is shown respectively. In the figure, the black circles indicate the case when the microwave source is continuously driven by direct current using the conventional device, the white triangles indicate the case when the microwave source is intermittently driven at 60 Hz, and the white circles indicate the case when the microwave source is driven continuously by DC.
The results are shown in the case of intermittent driving at 0 Hz. In addition, in Fig. 10, when the microwave power is 300,
FIG. 11 shows the case where the microwave power is 15 times.

両図の(a)をみると150−の場合の高ガス圧(反応
室内ガス圧)領域を除き白三角、白丸で示される本発明
装置による場合の方が従来装置による場合よりもBHF
エツチング速度が低く、本発明による場合はより機密な
薄膜が形成されていることが解る。
Looking at (a) of both figures, except for the high gas pressure (gas pressure in the reaction chamber) area in the case of 150-, the BHF is higher with the device of the present invention than with the conventional device, which is indicated by white triangles and white circles.
It can be seen that the etching rate is low and a more sensitive thin film is formed in the case of the present invention.

また(ト))に明らかな如く本発明装置による場合は屈
折率1.95付近の安定した特性が得られる。
Furthermore, as is clear from (g)), the device of the present invention provides stable characteristics with a refractive index of around 1.95.

更に(C)をみると本発明装置による場合の方が成膜速
度が高いことが解る。
Furthermore, looking at (C), it can be seen that the film formation rate is higher when using the apparatus of the present invention.

このように本発明による場合は成膜の能率が高いだけで
な(、薄膜の特性も向上するという利点がある。なお、
エツチング装置においても従来装置よりもエツチング速
度が向上し、またスパッタリング装置においても同じ(
薄膜形成速度が向上している。
As described above, the present invention has the advantage that not only is the efficiency of film formation high (but also the characteristics of the thin film are improved).
The etching speed of the etching equipment is also improved compared to the conventional equipment, and the same is true for the sputtering equipment (
Thin film formation speed is improved.

なお、第10.11図から明らかな如く商用周波数によ
る場合よりもその2倍周波数を用いる方が能率的である
As is clear from Fig. 10.11, it is more efficient to use a frequency twice the commercial frequency than to use the commercial frequency.

而して以上の如くマイクロ波源を断続駆動することによ
って高い能率が得られる理由について考察する。プラズ
マ生成室1はこれに導かれるマイクロ波電力に対して空
洞共振器構造を有している。
The reason why high efficiency can be obtained by intermittent driving the microwave source as described above will be discussed. The plasma generation chamber 1 has a cavity resonator structure for microwave power guided thereto.

これは従来装置同様である。然してマイクロ波源11を
駆動してここにマイクロ波を導入すると共振が生じるが
、電子サイクロトロン共鳴によってプラズマが生じると
プラズマ生成室1の共振条件が変化することとなり、爾
後は駆動前の無プラズマ状態における場合の如き完全な
共振状態が得られない。つまり、プラズマ生成室は無プ
ラズマ状態において空洞共振すべく設計されているので
プラズマが生成してこれがマイクロ波伝播に影響を及ぼ
す状態下では設計どおりの空洞共振器として機能せず、
従ってプラズマ生成能率低下を招来するのである。
This is similar to the conventional device. However, when the microwave source 11 is driven and microwaves are introduced here, resonance occurs, but when plasma is generated by electron cyclotron resonance, the resonance conditions of the plasma generation chamber 1 change, and after that, the plasma-free state before driving changes. A completely resonant state cannot be obtained as in the case. In other words, the plasma generation chamber is designed to have cavity resonance in a plasma-free state, so if plasma is generated and this affects microwave propagation, it will not function as a cavity resonator as designed.
Therefore, this results in a decrease in plasma generation efficiency.

従って従来装置の如く連続駆動する場合はこのような能
率の低い状態が持続することになるのである。これに対
して本発明装置の如く断続駆動する場合は駆動の都度プ
ラズマ生成室は設計どおりの空洞共振器として機能する
ので高いプラズマ生成能率が得られ、その結果、高い成
膜速度、エツチング速度が得られるのである。
Therefore, when continuously driven as in the conventional device, such a state of low efficiency continues. On the other hand, in the case of intermittent driving as in the device of the present invention, the plasma generation chamber functions as a designed cavity resonator each time it is driven, resulting in high plasma generation efficiency and, as a result, high deposition and etching rates. You can get it.

これに対してアモルファスシリコンの成膜の場合はこの
ような効果が得られず、プラズマが不安定となる。その
理由は不明である。従って前述したようにこの場合は第
2電源によりマイクロ波源を連続駆動するのである。
On the other hand, in the case of amorphous silicon film formation, such an effect cannot be obtained, and the plasma becomes unstable. The reason is unknown. Therefore, as described above, in this case, the microwave source is continuously driven by the second power source.

以上のように本発明による場合は高い成膜速度、エツチ
ング速度を有する高能率の半導体装置の製造装置が得ら
れ、しかもこれによって形成される半導体膜はその物理
特性も優れており、また膜の種類によらず利用できるな
ど本発明は倭れた効果を奏する。
As described above, according to the present invention, a highly efficient semiconductor device manufacturing apparatus having a high film formation rate and high etching rate can be obtained, and the semiconductor film formed thereby has excellent physical properties. The present invention has outstanding effects such as being usable regardless of the type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプラズマCVD装置の模式図、第2図は本発明
装置の電源のブロック図、第3.5図はマイクロ波源の
駆動波形図、第4,6図はマイクロ波の出力波形図、第
7図は本発明の他の実施例の電源のブロック図、第8図
はそのマイクロ波源の駆動波形図、第9図はそのマイク
ロ波の出力波形図、第10.11図は本発明の効果を示
すグラフである。 1・・・プラズマ生成室 2・・・反応室 7・・・導
波管11・・・マイクロ波源 18・・・電源 181
・・・三相交流電源 182.184・・・全波整流回
路 183・・・単相交流電源185 ・・・チョッパ
回路 19a、 19a+ 、 19a、 19b−・
・スイッチ 特 許 出願人  住友金属工業株式会社 外1名代理
人 弁理士  河  野  登  夫時間→ 隼  5  巳 篤  S  区 時間− 鷺  8  旦 已  9  ヱ 篤  10   記 菓  11    図
Fig. 1 is a schematic diagram of the plasma CVD apparatus, Fig. 2 is a block diagram of the power supply of the apparatus of the present invention, Fig. 3.5 is a driving waveform diagram of the microwave source, Figs. 4 and 6 are diagrams of the microwave output waveform, FIG. 7 is a block diagram of a power supply according to another embodiment of the present invention, FIG. 8 is a driving waveform diagram of the microwave source, FIG. 9 is a diagram of the microwave output waveform, and FIGS. This is a graph showing the effect. 1... Plasma generation chamber 2... Reaction chamber 7... Waveguide 11... Microwave source 18... Power supply 181
... Three-phase AC power supply 182.184 ... Full-wave rectifier circuit 183 ... Single-phase AC power supply 185 ... Chopper circuit 19a, 19a+, 19a, 19b-.
・Switch patent Applicant: Sumitomo Metal Industries, Ltd., 1 other agent, patent attorney Noboru Kono Time → Hayabusa 5 Atsushi Mitsu S Ku Time- Heron 8 Danmi 9 Eatsu 10 Chika 11 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、マイクロ波発生源を駆動して発せしめたマイクロ波
をプラズマ生成室に導いて電子サイクロトロン共鳴によ
りプラズマを生成すべくなしたプラズマ装置において、
それに導かれるマイクロ波電力に対して空洞共振器構造
を有するプラズマ生成室と、商用周波数以上の周波数に
てマイクロ波源を断続駆動する第1電源と、直流にてマ
イクロ波を連続駆動する第2電源と、第1、第2電源を
切換えてマイクロ波源と接続する切換装置とを具備する
ことを特徴とするプラズマ装置。
1. In a plasma device configured to drive a microwave generation source and guide the emitted microwaves to a plasma generation chamber to generate plasma by electron cyclotron resonance,
A plasma generation chamber having a cavity resonator structure for the microwave power guided therein, a first power source that drives the microwave source intermittently at a frequency higher than the commercial frequency, and a second power source that continuously drives the microwave with direct current. and a switching device that switches between the first and second power sources and connects them to a microwave source.
JP22657786A 1986-09-24 1986-09-24 Plasma apparatus Pending JPS6380540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22657786A JPS6380540A (en) 1986-09-24 1986-09-24 Plasma apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22657786A JPS6380540A (en) 1986-09-24 1986-09-24 Plasma apparatus

Publications (1)

Publication Number Publication Date
JPS6380540A true JPS6380540A (en) 1988-04-11

Family

ID=16847348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22657786A Pending JPS6380540A (en) 1986-09-24 1986-09-24 Plasma apparatus

Country Status (1)

Country Link
JP (1) JPS6380540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125588B2 (en) * 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125588B2 (en) * 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film

Similar Documents

Publication Publication Date Title
JPS593018A (en) Manufacture of silicon-base film by plasma deposition
US6022460A (en) Enhanced inductively coupled plasma reactor
US9721765B2 (en) Plasma device driven by multiple-phase alternating or pulsed electrical current
JPH11260596A (en) Plasma processing device and plasma processing method
US8404602B2 (en) Plasma oxidation method and plasma oxidation apparatus
JPH1027782A (en) Method and apparatus for plasma treatment
JPH0469415B2 (en)
JPS6380540A (en) Plasma apparatus
JPH0888218A (en) Method and device for plasma etching
JPH09115882A (en) Plasma treating method and apparatus therefor
JP2662219B2 (en) Plasma processing equipment
JP2763291B2 (en) Plasma processing method and processing apparatus
JPS6380539A (en) Plasma apparatus
JPH02312231A (en) Dryetching device
CN113436951A (en) Ion beam and radio frequency hybrid driven capacitively coupled plasma source
JPS62170475A (en) Plasma treatment device
JP2001244250A (en) Method and apparatus for surface treatment
JP2750430B2 (en) Plasma control method
JPH10199699A (en) Plasma processing device
JP2000012529A (en) Surface machining apparatus
JPH10106796A (en) Plasma treatment device
JP2800766B2 (en) Plasma processing method and apparatus
JP2633849B2 (en) Plasma processing equipment
JPH0680640B2 (en) Plasma equipment
JP2012023098A (en) Plasma processing apparatus