JPS6380226A - Liquid crystal electrooptic device - Google Patents

Liquid crystal electrooptic device

Info

Publication number
JPS6380226A
JPS6380226A JP22574086A JP22574086A JPS6380226A JP S6380226 A JPS6380226 A JP S6380226A JP 22574086 A JP22574086 A JP 22574086A JP 22574086 A JP22574086 A JP 22574086A JP S6380226 A JPS6380226 A JP S6380226A
Authority
JP
Japan
Prior art keywords
liquid crystal
dislocation
orientation
optical element
crystal electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22574086A
Other languages
Japanese (ja)
Other versions
JP2562307B2 (en
Inventor
Minoru Yazaki
矢崎 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61225740A priority Critical patent/JP2562307B2/en
Publication of JPS6380226A publication Critical patent/JPS6380226A/en
Application granted granted Critical
Publication of JP2562307B2 publication Critical patent/JP2562307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent lowering of contrast due to orientation defect, and to enable an application for a display device, and an electron shutter, etc., by effecting dislocation orientation at the time of operation of the titled device. CONSTITUTION:The titled device is effected at least dislocation orientation at the time of the operation of said device. The dislocation orientation is effected by impulsing a high frequency bias pulse train to the liquid crystal which is uniaxially orientated with relatively smooth. At this time, the defect is removed by cutting a zigzag wall, etc., which is one of defects, in piece, thereby operating uniformly the whole liquid crystal device. Thus, the excellent titled device having less lowering of the contrast is obtd.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は、液晶電気光学素子に関し、特に強誘電性液晶
を用いた液晶電気光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal electro-optical device, and particularly to a liquid crystal electro-optic device using ferroelectric liquid crystal.

[従来の技術] 従来の強誘電性液晶素子は、mob 、 0ryst 
、 Liq。
[Prior art] Conventional ferroelectric liquid crystal elements include mob, 0ryst, etc.
, Liq.

0ryat、1983.Vo19a、PP、213〜2
34中のF’igure 7.又はF’igure &
の写真に代表される様に比較的均一でなめらかな配向状
態(モノドメイン)を利用しているのが一般的である。
Oryat, 1983. Vo19a, PP, 213-2
F'igure in 34 7. Or F'igure &
Generally, a relatively uniform and smooth alignment state (monodomain) is used, as typified by the photograph.

これらは素子中に配向欠陥があると、光もれによるコン
トラスト低下につながる九めである。配向方法としては
、配向膜を用いる、液晶分子にせん断力を与える、結晶
生長技術の如くフィルム断面より液晶成長させる等の方
法により液晶分子を配向させている6又実際の電気光学
素子の動作時には、はぼとの配向外観のまま液晶分子を
動作させる。しかし、前記配向方法で作成した液晶電気
光学素子は、IFerroelectrics、 19
84.Vo159 、 PP!、 69〜1)6中に示
されているジグザグ壁δ−φ欠陥が発生し易い。この欠
陥は、セル構成と液晶分子の分極の相互作用により発生
するとされている。又我々の実験からは、前記以外に液
晶層にストレスが印加される環境化でも多数発生するこ
とが認められている。この欠陥が液晶電気光学素子中に
前記何らかの原因により発生すると、従来液晶電気光学
素子では、この欠陥部分による光もれにより大巾なコン
トラスト低下を生じてい友。
These are the ninth reasons that if there is an alignment defect in the element, it will lead to a decrease in contrast due to light leakage. Orientation methods include using an alignment film, applying shear force to liquid crystal molecules, or growing liquid crystal from a cross section of a film using crystal growth technology. , the liquid crystal molecules operate while maintaining their oriented appearance. However, the liquid crystal electro-optical device produced by the above alignment method is manufactured by IFerroelectrics, 19
84. Vo159, PP! , 69-1) The zigzag wall δ-φ defect shown in 6 is likely to occur. This defect is said to be caused by the interaction between the cell configuration and the polarization of liquid crystal molecules. Furthermore, our experiments have shown that, in addition to the above, many occurrences occur in environments where stress is applied to the liquid crystal layer. When this defect occurs in a liquid crystal electro-optical element due to any of the causes mentioned above, in the conventional liquid crystal electro-optical element, a large contrast decrease occurs due to light leakage due to this defective portion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記問題点を解決するもので、その目的とす
るところは、液晶電気光学素子をディスロケーション配
向で動作することによシ、コントラスト低下の少ない浸
れた液晶電気光学素子を提供することである。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a submerged liquid crystal electro-optical element with less reduction in contrast by operating the liquid crystal electro-optical element in a dislocation orientation. It is.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明の液晶電気光学素子は、動作時に少なくともディ
スロケーション配向をしていること全特徴とする。
The liquid crystal electro-optical element of the present invention is characterized in that it has at least dislocation alignment during operation.

〔作用〕 本発明におけるディスロケーション配向について説明す
る。先ず本発明におけるディスロケーション配向とは、
強誘電性液晶の層構造の乱れに起因すると予想される層
方向に対してほぼ直角方向に出るスジ状組織が比較的緻
密に集合された配向組織であり、参考写真1.参考写真
2にその代表的外観写真を示す。
[Operation] Dislocation orientation in the present invention will be explained. First, the dislocation orientation in the present invention is
It is an oriented structure in which a striped structure appearing in a direction approximately perpendicular to the layer direction, which is expected to be caused by disorder of the layer structure of the ferroelectric liquid crystal, is relatively densely assembled, and reference photo 1. Reference photo 2 shows a typical external photo.

このディスロケーション配向を作るには、従来配向方法
で比較的なめらかに一軸配向された液晶層に、高周波バ
イアスパルス列を、前記ディスロケーション配向を発生
する大きさく周波数及び波高値)以上印加することによ
り得られる。この時従未配向により発生してい友ジグザ
グ壁、δ−φ欠陥は、ディスロケーション配向により寸
断され除去される。従って液晶素子全体が均一な動作状
態となる。尚このときの電気光学効果は、若干の散乱効
果は生ずるものの、従来配向での電気光学効果とほぼ同
等の電気光学効果となる。又、ディスロケーション配向
の発生のメカニズムについては、現状において明確では
ないが、我々は素子の厚み方向に傾い次層に、高周波バ
イアスを印加することにより、液晶の自発分極と電場と
の結合により、スメクチック層の一部が湾曲することK
より発生するのではないかと考えている。
In order to create this dislocation alignment, a high-frequency bias pulse train is applied to the liquid crystal layer, which has been relatively smoothly uniaxially aligned by the conventional alignment method, at a magnitude (frequency and peak value) or higher that generates the dislocation alignment. It will be done. At this time, the zigzag walls and δ-φ defects generated due to uncontrolled orientation are cut into pieces and removed due to the dislocation orientation. Therefore, the entire liquid crystal element is in a uniform operating state. The electro-optic effect at this time is almost the same as the electro-optic effect in the conventional orientation, although some scattering effect occurs. Furthermore, although the mechanism by which dislocation alignment occurs is not clear at present, we applied a high-frequency bias to the next layer tilted in the thickness direction of the device, and by coupling the spontaneous polarization of the liquid crystal with the electric field, Part of the smectic layer is curved K
I think this will occur more often.

〔実権例〕[Example of real power]

実施例1 チツン■社製、O8−101)カイラルスメクチック液
晶を、表面にラビング処理tmこし九透明電極を有する
2枚の基板間に封入し、セル厚がおよそ2μ悔となるよ
うに組み立てた。この液晶電気光学素子を、互いに直交
する2枚の偏光板の間に挾持し、−例として第1図中に
示すような高周波バイアス波形を液晶層に印加し次。尚
、この時のコモン電極に印加される高周波バイアスのパ
ルス幅及び波高値を変化させ、ディスロケーション配向
する条件を探し次。この液晶の場合、30℃でペルス幅
20〜50μ冠の時V、が±50〜士50Vの波高値の
範囲以上の大きさを印加すると良好なディスロケーショ
ン配向となり九。この条件下で選択時の電圧及びパルス
幅を設定、例えばPvt6rJOpe、V、=−20V
、V、=10V、Vd=±8■で液晶素子を動作させ九
ところ、初期にジグザグ壁、δ−φ欠陥のあつ九場所も
均一なディスロケーション配向となり、全体に良好なコ
ントラスト特性50対1が得られた。この時の童気光学
素子の配向状態は参考写真1に示されている状態であっ
た。又、−度、ディスロケーション配向させ九素子は、
以後の動作は高周波バイアスパルス列を印加しなくても
又、低電圧印加でもディスロケーション配向を維持する
Example 1 A chiral smectic liquid crystal (O8-101, manufactured by Chitsun Corporation) was sealed between two substrates each having a rubbed transparent electrode on the surface, and assembled so that the cell thickness was approximately 2 μm. This liquid crystal electro-optical element is sandwiched between two mutually orthogonal polarizing plates, and a high frequency bias waveform as shown in FIG. 1 is applied to the liquid crystal layer. At this time, the pulse width and peak value of the high-frequency bias applied to the common electrode were varied to find conditions for dislocation orientation. In the case of this liquid crystal, when a pulse width of 20 to 50 .mu.m is applied at 30.degree. C., a good dislocation alignment can be obtained if a voltage exceeding the peak value range of ±50 to +50 V is applied. Under this condition, set the voltage and pulse width when selecting, for example, Pvt6rJOpe, V, = -20V
When the liquid crystal element was operated at , V, = 10 V, Vd = ±8 ■, uniform dislocation alignment was achieved even in the initial zigzag wall and δ-φ defects, and the overall contrast property was 50:1. was gotten. The alignment state of the Doki optical element at this time was the state shown in Reference Photo 1. Moreover, the nine elements oriented by -degree dislocation are:
In subsequent operations, the dislocation orientation is maintained even without applying a high-frequency bias pulse train or even when a low voltage is applied.

又、第1図に示し九如(その都度高周波パルス列を印加
することも可能である。
It is also possible to apply a high-frequency pulse train each time as shown in FIG.

一方比較のために、前記ディスロケーション配向しない
大きさの高周波バイアスを印加したところは、初期の配
向状態が良好な場所では、良好なコントラスト比55対
1が得られるが、ジグザグ壁、δ−φ欠陥のある場所で
は光もれを起こし、特に大きなδ−φ欠陥のある場所で
は5対1程度にコントラスト比が低下し友。
On the other hand, for comparison, when a high-frequency bias of a magnitude that does not cause the dislocation orientation is applied, a good contrast ratio of 55:1 is obtained in a place where the initial alignment state is good, but the zigzag wall, δ-φ In places with defects, light leaks, and in places with especially large δ-φ defects, the contrast ratio drops to about 5:1.

実権例2 メルク社製、zLニー3489カイラルスメクチック液
晶を、実施例1と同様の素子中に封入し組立て友。この
素子に第1図に示したような高周波バイアス波形を印加
し次。尚この時コモン電極に印加される高周波パルスの
パルス幅及び波高値を変化させ、ディスロケーション配
向する条件を探し友。この液晶の場合、40℃でパルス
幅5〜20μ式の時、vllが±60〜±25Vの波高
値の範囲以上の大きさを印加すると良好なディスロケー
ション配向となった。この配向状態を参考写真2に示す
。又、温度を下げるとパルス幅は長い方向で良好なディ
スロケーション配向となる。更に前記高周波パルス条件
化で選択時の電圧及びパルス幅を設定し例えばPwlO
O#sec、V+=−1sv。
Practical Example 2 A chiral smectic liquid crystal, zL 3489 manufactured by Merck, was sealed in the same device as in Example 1 and assembled. Next, a high frequency bias waveform as shown in Fig. 1 is applied to this element. At this time, the pulse width and peak value of the high-frequency pulse applied to the common electrode were varied to find conditions for dislocation orientation. In the case of this liquid crystal, good dislocation alignment was obtained when a voltage of vll greater than the peak value range of ±60 to ±25 V was applied at 40° C. and with a pulse width of 5 to 20 μm. This orientation state is shown in Reference Photo 2. Further, when the temperature is lowered, the pulse width becomes good in the long direction, resulting in a good dislocation orientation. Furthermore, the voltage and pulse width at the time of selection are set in the high frequency pulse condition, for example, PwlO.
O#sec, V+=-1sv.

v、=+5v 、 vα=±3vで液晶電気光学素子を
駆動させたところ、初期にジグザグ欠陥、δ−φ欠陥の
あった場所も均一なディスロケーション配向となり、全
体に良好なコントラスト比38対1が得られた。
When the liquid crystal electro-optical element was driven with v, = +5v and vα = ±3v, the locations where there were initially zigzag defects and δ-φ defects became uniformly dislocated, and the overall contrast ratio was 38:1. was gotten.

上記実施例は、本発明の一部を示すもので、液晶材料は
上記材料に限定されず又、ディスロケーション配向の発
生する高周波バイアス条件も発生する条件範囲内で任意
に選択できる。更に素子の配向膜構成も任意に選択でき
るが、液晶層との界面の材質が異なる組合せ(例えば、
PJ−工To。
The above-mentioned embodiments illustrate a part of the present invention, and the liquid crystal material is not limited to the above-mentioned materials, and the high-frequency bias conditions that cause dislocation alignment can be arbitrarily selected within the range of conditions that cause the dislocation alignment. Furthermore, the configuration of the alignment film of the element can be selected arbitrarily, but it is possible to select a combination of different materials at the interface with the liquid crystal layer (for example,
PJ-Engineering To.

PニーEliO,、PI−PVA等)の方が、ディスロ
ケーション配向が低電圧側で発生し易く好ましい。又駆
動の方式も本実施例に限定されず又、スタチック駆動も
可能である。
P-nee EliO, PI-PVA, etc.) are preferable because dislocation orientation occurs more easily on the low voltage side. Further, the driving method is not limited to this embodiment, and static driving is also possible.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば、従来液晶電気光学素子で問
題となる、配向欠陥によるコントラスト低下を防止し、
しかも全体に均一なコントラスト特性を得られる几め、
表示素子をはじめ、電子シャッター等への応用が可能で
ある。
As described above, according to the present invention, contrast reduction due to alignment defects, which is a problem in conventional liquid crystal electro-optic elements, can be prevented,
Moreover, it is carefully designed to obtain uniform contrast characteristics throughout the entire body.
It can be applied to display elements, electronic shutters, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明液晶電気光学素子の一例の駆動波形を示
す図。
FIG. 1 is a diagram showing driving waveforms of an example of the liquid crystal electro-optical element of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)対向する電極を有する2枚の基板間に、強誘電性
液晶を挾持してなる液晶電気光学素子に於いて、前記液
晶電気光学素子は、動作時に少なくともディスロケーシ
ョン配向をしていることを特徴とする液晶電気光学素子
(1) In a liquid crystal electro-optical element in which a ferroelectric liquid crystal is sandwiched between two substrates having opposing electrodes, the liquid crystal electro-optical element is at least dislocation oriented during operation. A liquid crystal electro-optical device featuring:
(2)上記液晶電気光学素子の駆動方法が、高周波バイ
アス駆動であることを特徴とする特許請求の範囲第1項
記載の液晶電気光学素子。
(2) The liquid crystal electro-optical element according to claim 1, wherein the driving method for the liquid crystal electro-optical element is high frequency bias driving.
(3)上記液晶電気光学素子に印加される高周波バイア
スの電圧パルス群の大きさがディスロケーション配向を
作るしきい値以上の大きさであることを特徴とする特許
請求の範囲第1項記載の液晶電気光学素子。
(3) The size of the high-frequency bias voltage pulse group applied to the liquid crystal electro-optical element is larger than a threshold value for producing a dislocation alignment. Liquid crystal electro-optical element.
JP61225740A 1986-09-24 1986-09-24 Liquid crystal electro-optical element Expired - Fee Related JP2562307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61225740A JP2562307B2 (en) 1986-09-24 1986-09-24 Liquid crystal electro-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225740A JP2562307B2 (en) 1986-09-24 1986-09-24 Liquid crystal electro-optical element

Publications (2)

Publication Number Publication Date
JPS6380226A true JPS6380226A (en) 1988-04-11
JP2562307B2 JP2562307B2 (en) 1996-12-11

Family

ID=16834090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225740A Expired - Fee Related JP2562307B2 (en) 1986-09-24 1986-09-24 Liquid crystal electro-optical element

Country Status (1)

Country Link
JP (1) JP2562307B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165730A (en) * 1985-01-16 1986-07-26 Seiko Epson Corp Liquid crystal electrooptic device
JPS6230222A (en) * 1985-08-01 1987-02-09 Seiko Instr & Electronics Ltd Production of smectic liquid crystal device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165730A (en) * 1985-01-16 1986-07-26 Seiko Epson Corp Liquid crystal electrooptic device
JPS6230222A (en) * 1985-08-01 1987-02-09 Seiko Instr & Electronics Ltd Production of smectic liquid crystal device

Also Published As

Publication number Publication date
JP2562307B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
EP0092181B1 (en) Method for driving liquid crystal element employing ferroelectric liquid crystal
EP0123181B1 (en) Electrooptical device
US4832462A (en) Liquid crystal devices
US4852978A (en) Liquid crystal cell utilizing a ferroelectric liquid crystal having a natural pitch length is no longer than the longest wavelength of visible light
JPS6262334A (en) Liquid crystal element
JPH01177016A (en) Ferroelectric liquid crystal shutter
EP0095012B1 (en) Liquid crystal display device
JPS6380226A (en) Liquid crystal electrooptic device
JPH0448368B2 (en)
JPS60235121A (en) Driving method of liquid crystal element
JP2791345B2 (en) Ferroelectric liquid crystal panel
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JPH0363725B2 (en)
JP2651842B2 (en) Liquid crystal element
JPS61219931A (en) Liquid crystal display device
JPS61223897A (en) Smectic liquid crystal display unit
JPH0519261A (en) Liquid crystal display device
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JPH01161221A (en) Liquid crystal element and its driving method
JP2966234B2 (en) Manufacturing method of ferroelectric liquid crystal display element
JPH02226116A (en) Ferroelectric liquid crystal element
JPH0457016A (en) Ferroelectric liquid crystal display
JP2628156B2 (en) Ferroelectric liquid crystal electro-optical device
JPS63194230A (en) Manufacture of liquid crystal electrooptical element
JPS62103620A (en) Liquid crystal cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees