JPS6379714A - Production of high purity nitrogen - Google Patents

Production of high purity nitrogen

Info

Publication number
JPS6379714A
JPS6379714A JP61225099A JP22509986A JPS6379714A JP S6379714 A JPS6379714 A JP S6379714A JP 61225099 A JP61225099 A JP 61225099A JP 22509986 A JP22509986 A JP 22509986A JP S6379714 A JPS6379714 A JP S6379714A
Authority
JP
Japan
Prior art keywords
adsorption
desorption
tank
nitrogen
vessels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61225099A
Other languages
Japanese (ja)
Inventor
Tsuneo Genma
玄馬 恒夫
Tetsuhiko Matsuura
哲彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP61225099A priority Critical patent/JPS6379714A/en
Publication of JPS6379714A publication Critical patent/JPS6379714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To constantly produce high purity nitrogen from air at a low cost by picking three vessels with molecular sieve carbon having specified performance as an adsorbent and by alternately using two of the three vessels as adsorption vessels and the remaining one as a vacuum desorption vessel. CONSTITUTION:Molecular sieve carbon adsorbing oxygen in >=3 volume ratio of oxygen to nitrogen for 120sec adsorption time and requiring >=0.4min<-1> space velocity to separate product nitrogen having 0.01vol% concn. of residual oxygen from air under prescribed pressure swing adsorption conditions is used as an adsorbent. Three vessels are packed with the adsorbent, two of the three vessels are arranged in series and used as adsorption vessels and the remaining one is used as a vacuum desorption vessel. After adsorption and desorption operations are carried out for a certain time, the internal pressure of the desorption vessel in which desorption has been finished is made equal to that of the adsorption vessels the desorption vessel is connected to the rear side vessel of the two adsorption vessels and the front side vessel is changed over to a vacuum desorption vessel. Thus, nitrogen of >=99.99vol% purity is obtd. with air as starting material.

Description

【発明の詳細な説明】 実施例1〜3 微細に粉砕したやし殻炭100部にコールタール35部
をバインダーとして加え、造粒後900℃で乾留した。
DETAILED DESCRIPTION OF THE INVENTION Examples 1 to 3 35 parts of coal tar was added as a binder to 100 parts of finely ground coconut shell charcoal, and after granulation, carbonization was carried out at 900°C.

この乾留炭を希塩酸溶液に浸漬した後、充分水洗を行い
乾燥した。更に140〜260℃の留分のクレオソート
5部を含浸させ700℃で30分間熱処理した後窒素ガ
ス中で常温まで冷却してMSCを調整した。
This carbonized carbon was immersed in a dilute hydrochloric acid solution, thoroughly washed with water, and dried. Furthermore, 5 parts of creosote distilled from 140 to 260°C was impregnated, heat treated at 700°C for 30 minutes, and then cooled to room temperature in nitrogen gas to prepare MSC.

得られたMSC25℃1気圧の酸素平衡吸着量は7.6
c c/g、吸着時間120秒における酸素窒素の吸着
容量比は4.27、所定の圧力スイング吸着条件範囲で
得られる製品窒素中の残存酸素濃度0.01容量%にお
ける空間速度の最高値は1.04m1n ”でありた・
このMSCを本発明システムの3槽式圧カスイング吸着
装置に充填し下部条件で製品窒素中の酸素濃度が0.0
1容量シにおける空間速度及び原料空気原単位を求めた
。結果を表−1に示す。
The oxygen equilibrium adsorption amount of the obtained MSC at 25°C and 1 atm is 7.6.
c c/g, the adsorption capacity ratio of oxygen and nitrogen at an adsorption time of 120 seconds is 4.27, and the maximum space velocity at a residual oxygen concentration of 0.01% by volume in the product nitrogen obtained in the predetermined pressure swing adsorption condition range is It was 1.04m1n”.
This MSC is filled into the three-tank pressure casing adsorption device of the present invention system, and the oxygen concentration in the product nitrogen is 0.0 under the lower condition.
The space velocity and feed air basic unit for one volume were determined. The results are shown in Table-1.

吸脱着槽(1槽当り)容量 1.Ol 吸着圧力       3〜61−G 脱着圧力       1QQTorr吸着時間   
    120〜240秒脱看時間  脱着   60
〜120秒加圧操作    吸脱着種間(3槽)及び吸
脱看槽製品槽間(3槽) 供給空気温度         20℃表−1 実施例2  λ0  6.0  240  120  
99.99  0.94  3.8実施例3  2.0
  3.0  120   60  99.99  0
.46  5.2吸着圧力が□ K9/ci Gより3
.0 Kp/、a Gまで低下すると空間速度が大巾に
低下し空気原単位は増大するが圧力差がそれ以上の比率
となるため圧縮に要するエネルギーは逆に減少して来る
。然しこの場合においても、吸脱着槽容量及び減圧関係
のエネルギー増大は避は得ない。
Adsorption/desorption tank (per tank) capacity 1. Ol Adsorption pressure 3~61-G Desorption pressure 1QQTorr Adsorption time
120-240 seconds removal time Desorption 60
Pressurizing operation for ~120 seconds Between adsorption/desorption species (3 tanks) and between adsorption/desorption tank and product tank (3 tanks) Supply air temperature 20°C Table-1 Example 2 λ0 6.0 240 120
99.99 0.94 3.8 Example 3 2.0
3.0 120 60 99.99 0
.. 46 5.2 Adsorption pressure is □ K9/ci 3 from G
.. When the space velocity decreases to 0 Kp/, a G, the space velocity decreases greatly and the air consumption rate increases, but the pressure difference becomes a ratio greater than that, so the energy required for compression decreases. However, even in this case, an increase in the adsorption/desorption tank capacity and energy related to pressure reduction is unavoidable.

比較例1 比較例1においては実施例1のMSCを用い、通常の2
槽式圧カスイング吸着装置で下記条件のもとに空間速度
及び空気原単位を求めた。
Comparative Example 1 In Comparative Example 1, the MSC of Example 1 was used, and the normal 2
The space velocity and air consumption rate were determined using a tank type pressure swing adsorption device under the following conditions.

吸脱着槽容量(1槽当シ容ff1)2.07吸着圧力 
      6卿−G 脱着圧力       IQQTorr吸脱着時間  
    各60秒 均圧操作     吸脱着検量及び脱着糟製品検量供給
空気温度     20℃ その結果は製品中の酸素濃度が0.01容量%の時点で
空間速度1.02mff1・空気原単位は6.1と言う
値を示し実用性に乏しい。
Adsorption/desorption tank capacity (capacity per tank ff1) 2.07 Adsorption pressure
6 Lord-G Desorption pressure IQQTorr Adsorption and desorption time
Pressure equalization operation for 60 seconds each Adsorption/desorption calibration and desorption/desorption product calibration Supply air temperature 20°C The results show that when the oxygen concentration in the product is 0.01% by volume, the space velocity is 1.02mff1 and the air consumption rate is 6.1. It shows a value that is not practical.

比較例2 25℃1気圧の酸素平衡吸着量6.ICC/g吸着時間
120秒における酸素窒素の吸着比2.8を示す市販の
MSCを用い、所定の圧力スイング吸着条件でテストを
実施したが、この条件範囲内においては製品窒素中の残
存酸素濃度が最低値でも0.04容量%であった。
Comparative Example 2 Equilibrium adsorption amount of oxygen at 25°C and 1 atm 6. Using a commercially available MSC that exhibits an oxygen/nitrogen adsorption ratio of 2.8 at an ICC/g adsorption time of 120 seconds, a test was conducted under predetermined pressure swing adsorption conditions, but within this condition range, the residual oxygen concentration in the product nitrogen The lowest value was 0.04% by volume.

特坪文々f1k    クラい1;Hzν舜八なへLI
<J汰ん れl’((小田甲各尾   1喝 特許庁長官 小 川 邦 夫 殿 り事件の表示 特願昭61−225099号 λ発明の名称 高純度窒素製造方法 1補正をする者 クラレケミカル株式会社 代表取締役 豊 島 賢太部 を代 理 人 大阪市北区芝田町1丁目4番14号 クラレケミカル株式会社内 i補正の対象 7、補正の内容 (υ 明細書第2頁、第13行「本発明分子篩炭」を「
本発明の分子篩炭」と訂正する。
Tokutsubo Bunbun f1k Kurai 1; Hzν Shunhachi Nahe LI
<JTanren' ((Oda Ko Eacho 1Kunio Ogawa, Director General of the Patent Office, Patent Application No. 1987-225099 λ Name of Invention High Purity Nitrogen Production Process 1 Amended Person Kuraray Chemical Co., Ltd. Kuraray Chemical Co., Ltd., 1-4-14 Shibata-cho, Kita-ku, Osaka, Representative Director Kentabe Toyoshima Co., Ltd. Subject of amendment 7, Contents of amendment (υ Page 2, line 13 of the specification) Molecular sieve charcoal of the present invention”
It has been corrected to read, "Molecular sieve charcoal of the present invention."

■ 明細書第5頁、第19行「結合の性能を有する」を
「特定の性能を有する」と訂正する。
■ On page 5 of the specification, line 19, ``Has the ability to combine'' is corrected to ``Has a specific ability.''

■ 明細書第10頁、第8行「除泡され」を「除湿され
」と訂正する。
■ On page 10 of the specification, line 8, "defoamed" is corrected to "dehumidified".

(4)明細書第12頁、第6行「砥過と言う概念」を「
破過と言う概念」と訂正する。
(4) On page 12 of the specification, line 6, “the concept of polishing” was changed to “
"The concept of breakthrough," he corrected.

と訂正する。I am corrected.

Claims (1)

【特許請求の範囲】 1、吸着時間120秒で窒素に対する酸素の吸着容量比
が3.0以上、かつ所定の圧力スイング吸着条件範囲内
で空気から製品窒素中の残存酸素濃度0.01容量%を
分離するに必要な空間速度が0.4min^−^1以上
の性能を示す分子篩炭を吸着剤として使用し、該吸着剤
を充填した3槽のうち、吸着槽として直列に2槽、減圧
脱着用に1槽を充当し、一定時間、吸脱着操作を行なっ
たのち、脱着を完了した槽は他の2つの吸着槽と均圧し
たあと、吸着槽として用いるため前記直列に配した2つ
の吸着槽の後側の槽の次に接続し、前側の槽は減圧脱着
槽に切替え、メリーゴーランド方式で循環使用すること
により、空気を原料とし99.99容量%以上の純度の
窒素を分離することを特徴とする圧力スイング吸着方式
の高純度窒素製造方法。 2、均圧に際して、2つの吸着槽のあとに脱着完了した
槽を直列に接続して均圧し、次に、吸着槽間を遮断し、
得られた高純度窒素の製品槽と脱着を完了した槽及び後
側の吸着槽を3槽直列に接続して再均圧する特許請求範
囲第1項記載の高純度窒素製造方法。 3、吸着時の最高圧力が2.5〜10kg/cm^2、
脱着時の最高真空度が50〜150Torrの範囲内で
ある特許請求範囲第1項及び第2項記載の高純度窒素製
造方法。
[Claims] 1. The adsorption capacity ratio of oxygen to nitrogen is 3.0 or more at an adsorption time of 120 seconds, and the residual oxygen concentration in the product nitrogen from air is 0.01% by volume within a predetermined pressure swing adsorption condition range. Molecular sieve charcoal with a space velocity of 0.4 min^-^1 or more is used as an adsorbent, and two of the three tanks filled with the adsorbent are placed in series as adsorption tanks under reduced pressure. One tank is used for desorption, and after performing adsorption and desorption operations for a certain period of time, the tank that has completed desorption is pressure-equalized with the other two adsorption tanks, and then the two tanks arranged in series are used as adsorption tanks. By connecting the adsorption tank next to the rear tank and switching the front tank to a vacuum desorption tank and circulating it in a merry-go-round style, nitrogen with a purity of 99.99% by volume or higher can be separated using air as a raw material. A method for producing high-purity nitrogen using a pressure swing adsorption method. 2. When equalizing the pressure, connect the two adsorption tanks in series and equalize the pressure after desorption, then cut off the adsorption tanks,
The method for producing high-purity nitrogen according to claim 1, wherein the obtained high-purity nitrogen product tank, the tank in which desorption has been completed, and the rear adsorption tank are connected in series to re-equalize the pressure. 3. Maximum pressure during adsorption is 2.5-10kg/cm^2,
The method for producing high-purity nitrogen according to claims 1 and 2, wherein the maximum degree of vacuum during desorption is within the range of 50 to 150 Torr.
JP61225099A 1986-09-24 1986-09-24 Production of high purity nitrogen Pending JPS6379714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61225099A JPS6379714A (en) 1986-09-24 1986-09-24 Production of high purity nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225099A JPS6379714A (en) 1986-09-24 1986-09-24 Production of high purity nitrogen

Publications (1)

Publication Number Publication Date
JPS6379714A true JPS6379714A (en) 1988-04-09

Family

ID=16823967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225099A Pending JPS6379714A (en) 1986-09-24 1986-09-24 Production of high purity nitrogen

Country Status (1)

Country Link
JP (1) JPS6379714A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925461A (en) * 1989-02-01 1990-05-15 Kuraray Chemical Co., Ltd. Process for separating nitrogen gas by pressure swing adsorption system
JPH03232515A (en) * 1990-02-06 1991-10-16 Kanebo Ltd Separation of gaseous nitrogen
US5441558A (en) * 1994-08-09 1995-08-15 Air Products And Chemicals, Inc. High purity nitrogen PSA utilizing controlled internal flows
US5738709A (en) * 1996-12-20 1998-04-14 Air Products And Chemicals, Inc. Nitrogen PSA with intermediate pressure transfer
CN1051475C (en) * 1994-11-30 2000-04-19 美国Boc氧气集团有限公司 Pressure swing adsorption process
CN103908869A (en) * 2014-04-24 2014-07-09 赣州川汇气体设备制造有限公司 Vacuum pressure swing adsorption (VPSA) oxygen enrichment process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925461A (en) * 1989-02-01 1990-05-15 Kuraray Chemical Co., Ltd. Process for separating nitrogen gas by pressure swing adsorption system
JPH03232515A (en) * 1990-02-06 1991-10-16 Kanebo Ltd Separation of gaseous nitrogen
US5441558A (en) * 1994-08-09 1995-08-15 Air Products And Chemicals, Inc. High purity nitrogen PSA utilizing controlled internal flows
CN1051475C (en) * 1994-11-30 2000-04-19 美国Boc氧气集团有限公司 Pressure swing adsorption process
US5738709A (en) * 1996-12-20 1998-04-14 Air Products And Chemicals, Inc. Nitrogen PSA with intermediate pressure transfer
CN103908869A (en) * 2014-04-24 2014-07-09 赣州川汇气体设备制造有限公司 Vacuum pressure swing adsorption (VPSA) oxygen enrichment process

Similar Documents

Publication Publication Date Title
US4477267A (en) Molecular sieve zeolite for producing hydrogen by pressure variation adsorption technique
US3996028A (en) Process for purification of argon from oxygen
US5912422A (en) Method for purifying hydrogen based gas mixture using a lithium- exchanged X zeolite
US6231644B1 (en) Air separation using monolith adsorbent bed
US4915711A (en) Adsorptive process for producing two gas streams from a gas mixture
KR920007671A (en) Double adsorption process
WO1989006218A1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
DE3061325D1 (en) Process for producing carbon monoxide and hydrogen from methanol
CN110092706B (en) Separation method of p-chlorotoluene and o-chlorotoluene
JPS6379714A (en) Production of high purity nitrogen
US3078637A (en) Process for the removal of carbon dioxide from ethylene
JPS6241055B2 (en)
CN108129256B (en) Process for separating halogenated olefin impurities from 2-chloro-1, 1,1, 2-tetrafluoropropane
JPH0621006B2 (en) High-concentration oxygen gas production equipment by pressure fluctuation adsorption method
JP5807945B2 (en) Propane purification method and purification apparatus
JP3569420B2 (en) Hydrogen production method by pressure swing adsorption method
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
JP3062759B2 (en) Manufacturing method of carbon dioxide adsorbent
EP0092208A2 (en) Improved gas separation process
US3197942A (en) Method for removal of hydrogen halide from a process stream
US1497544A (en) Adsorbent charcoal and process for making the same
JPH0663397A (en) Molecular sieve carbon material for purifying hydrogen
JP2662265B2 (en) Ammonia adsorption separation method in gas
JPS59227701A (en) Method for selective concentration and separative purification of hydrogen gas
EP0132239B1 (en) Gas separation process