JPS637942B2 - - Google Patents

Info

Publication number
JPS637942B2
JPS637942B2 JP11753186A JP11753186A JPS637942B2 JP S637942 B2 JPS637942 B2 JP S637942B2 JP 11753186 A JP11753186 A JP 11753186A JP 11753186 A JP11753186 A JP 11753186A JP S637942 B2 JPS637942 B2 JP S637942B2
Authority
JP
Japan
Prior art keywords
film
gas
packaging
palladium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11753186A
Other languages
Japanese (ja)
Other versions
JPS61293846A (en
Inventor
Kenji Hayashi
Kenichi Kawakami
Kazuhiko Kosuge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11753186A priority Critical patent/JPS61293846A/en
Publication of JPS61293846A publication Critical patent/JPS61293846A/en
Publication of JPS637942B2 publication Critical patent/JPS637942B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は包装材料に関し、包装容器内に混在す
る有害気体により包装物品が変質、劣化するのを
防止することを目的とする。 食品や、精密な電気、機械部品の包装において
は、外気との接触による酸化、変質、腐蝕、汚れ
等を防止するため、外気との遮断ができる密封性
の包装材料が用いられている。 しかし、外気との完全な密封遮断を達成するの
は困難なことが多く、また、包装容器内の物品の
間隙に存在する気体により包装物品の酸化、腐
蝕、変質を避けることはできない。かかる問題を
引き起こす最も大きな原因は、包装容器内部に酸
素等の反応性気体が混入、残存していることであ
る。この結果、食品包装においては、食品材料の
酸化による腐蝕、変質や酸素を含んだ食品容器内
での微生物の増殖が起こり、電気接点材料や機械
部品の包装においては、材料の酸化によるさびが
発生する。 これら、包装容器内に残存する酸素が包装物品
の劣化をひき起こすのを防止する方法として、従
来からガス置換包装と真空包装が行なわれてい
る。 しかしながら、包装容器内の空気を窒素、炭酸
ガスあるいはこれらの混合ガスのように酸素を含
まぬ気体で置き換えるガス置換包装においては、
置換装置のノズル周辺部に、密閉する工程におい
て少なくとも2体積%、通常4体積%程度の酸素
に相当する外気が包装容器内に再混入するのは避
けられず、このため長期間保管に際しては物品の
酸化、変質、腐蝕が進行するのを防止できないの
が実状である。 一方、包装容器内に包装物品を収納した後、包
装容器を真空とする真空包装においては、食品包
装の如く包装物品自身に水分等の真空抽出されや
すい物質が含まれており使用できなかつたり、物
品内部より水あるいは、水に可溶性のある物質が
抽出され、食品表面に偏析することになり、味
覚、風味を損うという欠点を有する。また、真空
包装工程そのものが大がかりとなり高価となるば
かりか、長期間真空に保ち得る包装材料がきわめ
て少ないという問題を有している。 この他に、ハイドロサルフアイトを使い化学反
応によつて酸素を除去する脱酸素剤があるが、化
学反応過程中で亜硫酸ガス、硫化水素等の有害ガ
スを発生する弊害があり、かつ高価である。 また、グルコースオキシダーゼ等の酵素を使つ
た脱酸素剤もあるが、酵素反応は温度・水素イオ
ン濃度・湿度の管理が極めて難しく、実際使用が
複雑となり、かつ高価である。 本発明者らは、かかる問題を全て解決し、包装
容器内に残存する有害ガスを短時間のうちに除去
し、かつ、長期保管の際、外部より侵入する有害
ガスをすみやかに除去できる簡易で安価、かつ確
実な包装方法について検討し、まず包装容器内部
の有害気体を他の無害な物質に変えることに注目
しさらに生成された物質が包装物品の品質に悪影
響をおよぼすことを防止するため、ガス選択透過
性の薄層で覆うことが効果のあることを見出し、
本発明に至つた。 すなわち、本発明は基体と、該基体上に真空析
出された触媒物質の薄層と、該触媒物質薄層上に
積層されたガス選択透過性物質の薄層とから成る
包装材料であつて、上記触媒物質はパラジウムで
構成され、上記ガス選択透過性物質は下記の群か
ら選ばれた少なくとも1種の有機重合体で構成さ
れて成る包装材料を提供する。 低密度ポリエチレン、高密度ポリエチレン、プ
リプロピレン、エチレン―プロピレン共重合物、
エチレン―酢酸ビニル共重合物、エチレン―エチ
ルアクリレート共重合物、ポリブテン―1、アイ
オノマー、ポリ4―メチル1―ペンテンまたはポ
リブタジエン。 以下本発明の詳細な内容について説明する。 物品の包装材料としては、ガス遮断特性の良い
こと、透明性が良好で美麗なこと、各種印刷が容
易であること、密封シールが簡単であること、可
撓性に優れていることなどから、主として有機重
合体フイルムが使用されている場合が多い。本発
明で用いる触媒被着用基体としては、これらの通
常使用されている包装材料が全て使用できる点が
特徴である。 すなわち本発明で使用する触媒被着基体の例と
しては、ポリエチレン、ポリプロピレン、ポリブ
テン―1、エチレンプロピレン共重合体、ポリ酢
酸ビニル、ポリ塩化ビニル、ポリ塩化ビニリデ
ン、ポリ弗化ビニル、ポリスチレン、ポリエーテ
ル、ポリビニルアルコール、ポリエチレンテレフ
タレートで代表されるポリエステル、“サーリン”
(デユポン社製)で代表されるアイオノマー、ポ
リカーボネート、ポリアミド、ポリイミド、ポリ
アミドイミド、セルローズ、アセテートなどの有
機重合体の単独物または混合物から成る原料の延
伸もしくは未延伸フイルムあるいは前記の重合体
およびシリコーン、ポリウレタン、ポリスルホ
ン、フエノール、メラミン、尿素樹脂、エポキシ
樹脂などの有機重合体から成る成形品が好まし
い。これらの有機重合体たる基体原料には、公知
の各種添加物、例えば熱安定剤、酸化防止剤、滑
剤、帯電防止剤、着色剤、透明化剤、紫外線防止
剤あるいは顔料などが添加されていてもよい。更
に、上記フイルム材料をエクストルージヨンラミ
ネーシヨン、ドライラミネーシヨン等により2層
以上に複合積層したフイルム、これらのフイルム
とアルミニウム箔等の金属箔を接着積層したも
の、あるいは、真空蒸着法等によりアルミニウ
ム、亜鉛、スズなどの金属を被着したもの、印刷
を施したものなども、全く同様に使用できる。 この他金属薄板や、ガラス、紙などでも使用で
きるが、有機重合体フイルムに比べて、触媒被着
が行ないにくく、また被着量が相対的に多量とな
るのはやむを得ないことである。 これらの触媒被着基体の形状は、本発明の性質
上特に制限を受けないが、最終的には包装容器を
構成する袋状、缶状、ふた状等の形状となるか、
ラベル、内張りシート、中ぶた等、実質的に包装
容器内に収納される形状である必要がある。 また、触媒被着基体が最終的に包装容器外壁を
構成する場合においては、長期にわたつて酸素ガ
ス等の有害気体を除去できるようにするため、基
体自身の酸素透過率が10c.c./24hr・m2・100μ・
1気圧以下のものが最も好ましい。 かかる基体上に被着する触媒材料としては、パ
ラジウムが使用される。 一般に、基体上に触媒物質を被着する方法とし
ては、触媒となる金属の化合物溶液中に基体を浸
漬し表面吸着させたのち、水素気流中等の高温炉
で焼成還元する方法が公知であるが、有機重合体
フイルムの如く、基板が平坦な場合や吸水性でな
いものの場合触媒活性を発現させることは困難で
あることがわかつた。また、アルミナ粒子表面に
パラジウムを被着した粒径1μ〜500μの粒子を有
機重合体等をバインダーとして基体表面に塗布乾
燥する方法について試みたが、大量に触媒物質を
充填した場合にも活性度が小さいため使用できな
いことが明らかとなつた。 本発明の目的を達成するのに最も好ましい方法
は、前記パラジウムを真空中で、一旦原子、分子
状気体に変えたのち基体上に付着させる方法であ
る。 かかる真空析出法としては、真空蒸着法、イオ
ンプレーテイング法、スパツタリング法等が挙げ
られる。いずれの場合も、材料を一旦、原子、分
子状気体に変えたのち、基体上に再付着させると
いう工程を含む。かかる工程を経て、基板上に付
着した触媒物質は、基体上で衝突、冷却により運
動エネルギーを減少させ、相互の合体により、直
径数10Åから数100Åの微細な島状構造体あるい
は網状構造体として基板に被着させることができ
る。 中でも真空析出法として、スパツタリング法を
採用した場合、スパツタリング条件の充分な調整
により粒子サイズが揃つた、かつ直径の小さい島
状構造を作り出すことが可能で、かかる構造の被
着の場合触媒活性度が最も高いものが得られるこ
とを見出した。 基体上に被着する触媒物質の量は10-7mol/m2
から5×10-3mol/m2の範囲にあることが好まし
く、10-7mol/m2以下では触媒活性が得にくい
し、5×10-3mol/m2以下では付着料に対する触
媒活性度が著しく低下する。 中でも、付着量が10-6mol/m2から5×
10-4mol/m2の範囲では、付着量に対する触媒活
性度が高く、最も好ましい。 スパツタリング法による触媒材料の被着に際し
ては、直流スパツタリング、高周波スパツタリン
グ、マグネトロンスパツタリング等各種の方法が
採用できる。封入する放電ガスは、アルゴン、ネ
オン、キセノン等の不活性ガスや、窒素、水素等
の非酸化性ガスが好ましく、酸素、水蒸気等の大
量の混入は触媒活性を低下させるため好ましくな
い。 かかる方法で被着した触媒材料薄層上にガス選
択透過性物質から成る層が形成される。 該ガス選択透過性物質は、包装容器内に存在す
る二種以上の反応性気体の透過性が良好であり、
該反応性気体が触媒反応によつて生成する物質の
透過率が小さいものであることが必要である。 包装物品の酸化による腐蝕、品質劣化、錆び等
を防止する目的で、包装容器内の酸素を除去する
場合においては、容器内に酸素と反応する水素が
同時に添加される。この結果、酸素ならびに水素
は、ガス選択透過性物質層を透過し、触媒層上に
て、水蒸気または水を生成する。生成された水
は、包装物品を湿らせ、食品包装の場合には、硬
さ、味覚、変りを変化させたり、食品相互に凝
集、粘着等を引き起こす。これらを防止するため
ガス選択透過性物質から成る層は水蒸気の透過率
が小さいものが選ばれる。 酸素ガスおよび水素ガスの透過性が良好で水蒸
気透過性が小さい好ましいガス選択透過性物質と
しては、例えば低密度ポリエチレン、高密度ポリ
エチレン、ポリプロピレン、エチレン―プロピレ
ン共重合物、エチレン―酢酸ビニル共重合物、エ
チレン―エチルアクリレート共重合物、ポリブテ
ン―1、アイオノマー、ポリ4―メチル1―ペン
テン、ポリブタジエン、ポリスチレン、ポリカー
ボネート、ポリイソブチレン等の有機重合体の単
独物または混合物から成る原料のフイルム、およ
びこれらを積層したものがあるが、必ずしもこれ
らに限定されない。 最も好ましいガス選択透過性物質としては、該
物質の体積水素透過率および体積酸素透過率が重
量水蒸気透過率の10倍以上である物質であり低密
度ポリエチレン、高密度ポリエチレン、エレチン
―プロピレン共重合物、アイオノマーおよびこれ
らを主体とした混合物あるいはこれらとの共重合
物等が含まれる。これらの有機重合体たる原料に
は公知の各種添加物、例えば、熱安定剤、滑剤、
可塑剤、着色剤、透明化剤、紫外線防止剤等が添
加されていてもよい。 ガス選択透過性物質の被覆層厚さは、各々のガ
スの透過性、遮断性を考慮すると好ましくは5〜
100μであり最も好ましくは10〜50μが良い。 触媒物質薄層上にこれらのガス選択透過性物質
の層を形成する手段としては、通常使用されてい
る方法が全て採用できる。即ち、例えば溶液コー
テイング法、エクストルージヨンラミネーシヨ
ン、ドライラミネーシヨン、接着剤によるガス選
択透過性フイルムとの接着、真空蒸着、放電重合
法等により形成することができる。これらの被覆
積層に先だち、接着性を上げる目的等のために触
媒被着基体表面を、適宜、アンカーコート、放電
処理、EC処理等の表面処理を行なつても良い。 かかる方法で触媒材料およびガス選択糖化性薄
層を被着した基体は、それ自身が包装容器を構成
する場合においては、感熱、感圧もしくは感熱感
圧接着剤層を必要に応じて塗布あるいは積層した
のち、ガス選択透過性薄層を内側にして袋状等の
容器に成形される。また、通常の包装容器内に包
装物品とともにそのまま収納されても良い。 かかる包装容器内に、食品あるいは精密部品な
どの包装物品を収納したのち、包装容器内部の有
害気体あるいは、包装物品から発生する有害ガス
と反応する気体を包装容器内に封入するか、該反
応性気体を発生する物質を包装容器内に封入する
工程を経たのち、容器は密封シールされなければ
ならない。例えば酸化による腐蝕、品質劣化、錆
等を防止する目的で、包装容器内の酸素を除去す
る目的においては、封入気体として水素が使用さ
れる。この場合、残存酸素の体積の2倍量以上に
相当する量の水素を封入するが、窒素、炭酸ガス
等の他の気体と水素を混合使用することも可能で
ある。 通常物品の包装においては、可燃性ガスである
水素単体を使用することよりも、むしろ水素含量
が8体積%以下の窒素混合ガスを使用する事が安
全性、作業性の点から好ましい。 また、水素を常温常圧でゆつくり発生する物質
を用いればわざわざ水素ガスを入れる必要がない
ので、作業性、安全性の点でより好ましい。水素
を発生する物質としては、次のような金属の水素
化物、例えば、ランタン―ニツケル系、マグネシ
ウム―ニツケル系、ジルコニウム―鉄系、ジルコ
ニウム―コバルト系、ジルコニウム―クロム系、
マグネシウム―銅系、ジルコニウム、マグネシウ
ムの水素化物があり、中でも常温常圧で水素を放
出しやすいものが望ましい。 本発明に基づく包装材料を用いることにより、
有害な酸素ガスは水素ガスとともにガス選択透過
性薄層を通して容易に触媒被着層に到達し、触媒
作用により室温状態でさえ、容易に水素と反応し
て極微量の水に変わる。そして生成された水は、
ガス選択透過性薄層により遮断され、直接物品に
触れることが防がれるため包装物品の長期にわた
る保管に際しても、全く品質低下のない状態に維
持するこくとが可能となつた。以上は酸素と水素
の例を示したが、別にこれに限られるものではな
い。 以上の如く本発明の包装材料は特異な効果を惹
起するものであるが、更に通常の包装材料に比し
直射日光の熱線や紫外線の遮断効果が大きく、か
つ包装外気の袋内への透過性が小さい特徴もあわ
せて有する。 本発明に基づく包装材料は、ポテトチツプ等の
油菓子、カステラ、おかき、ピーナツツ、かまぼ
こ、ちくわ、削り節、チーズ、粉ミルク、ハムソ
ーセージ、即席めん、パン、魚、肉類、生野菜、
果物等の食品、魚、肉類等の缶詰類、緑茶、紅
茶、コーヒー、ココア、日本酒、ワイン、ウイス
キー等の嗜好飲料、タバコ、ビタミン剤等の各種
薬品、電気接点材料、精密工具、精密測定器具等
の包装に全て使用することができる。 次に本発明の実施例について詳述する。 実施例 1 二軸延伸したポリエチレンテレフタレートフイ
ルム(東レ(株)製“ルミラー”厚さ12μ)の上にパ
ラジウムをスパツタリング法により付着した。ス
パツタリングは直流二極スパツタリングを使用し
た。幅400mm、長さ200mm、厚さ1mmのパラジウム
板を水冷されたターゲツトホルダー上に積載し、
これを陰極としてマイナス3kVの電圧を印加でき
るようにした。幅400mmのポリエチレンテレフタ
レートフイルムは、陰極に対向して配置された金
属製の水冷ドラムに沿つて走行させるようにし
た。まず、真空系内を5×10-5Torrに一旦排気
したのち、純度99.99%の乾燥したアルゴンガス
を封入し圧力を7×10-2Torrに保ちつつ、陰極
に電圧を印加し、プラズマ放電を発生させた。フ
イルムの走行速度と印加電圧を変えながら基板フ
イルム上にパラジウムを各種厚み付着させた。印
加電圧が3kVでフイルム速度が10m/分のとき
2.5×10-4mol/m2の均一な触媒被着層が形成でき
た。さらに、該フイルム上に押出しラミネーシヨ
ン法により高密度ポリエチレンを厚さ20ミクロン
積層した。使用した高密度ポリエチレンは三井石
油化学(株)の“ハイゼツクス”5000Fである。 基板フイルム上のパラジウム付着量は放射化分
析法によつて実測した。 一方、ガス遮断性の高いフイルムとして、ポリ
プロピレンフイルムの片面にポリ塩化ビニリデン
からなる組成物を塗布しさらに該塗布面にポリエ
チレンをラミネートしたもの(合計厚さ50μ)を
用いてポリエチレン面が内側になるようにして内
容積500c.c.の袋を作製した。 ここでポリ塩化ビニリデンからなる組成物は次
の条件で塗布した。 塗布剤 “クレハロン”DOA TX―27 (呉羽化学社製 塩化ビニリデテン系
共重合物)固形分量で100重量部“ゼ
オン”121 1.25重量部(日本ゼオン社
製 塩化ビニルストレートポリマ) ステアリン酸亜鉛 0.25重量部からな
る混合エマルジヨン (濃度30重量%) 塗布量 1g/m2(固形分量) 乾 燥 140℃ 4秒間 また、ポリエチレンは、低密度ポリエチレン
“スミカセン―L705”(住友化学社製)を340℃で
エクストルージヨンラミネート(約35μ厚)し
た。 この袋内にパラジウム被着フイルム100cm2と、
東芝ベツクマン社製の酸素濃度計(モデル777)
の検出部品およびSHAW社のマルチレンジ露点
計の検出部分を入れ水素濃度8体積%、窒素濃度
92体積%の置換ガスを用いて内部の空気を置換し
たのち、開口部分を熱シールした。 密封後の袋内の酸素濃度と露点を連続測定した
ものを表1に示す。密封直後の酸素濃度はいずれ
も3〜4%であつた。パラジウム被着フイルムを
封入したものは、いずれの場合も、一旦経過後の
酸素濃度は0.4%以下に低下した。 比較例 1 実施例1と同一の方法にて、基板フイルム上に
パラジウムをスパツタリングしたが、高密度ポリ
エチレンのラミネーシヨンを行なわなかつた触媒
被着フイルムを用いて、実施例1と同一の方法に
て、酸素除去効果と露点を測定した。結果を表2
に示す。酸素濃度は低下できたが、袋内の露点が
上昇し、袋壁面は結露状態となつた。 実施例 2 実施例1で用いたフイルムを基板上に、真空蒸
着法でパラジウム膜を付着した。純度99.9%のパ
ラジウム板を、電子ビーム加熱により加熱蒸気化
し、5×10-5Torrの圧力下で、加熱ルツボから
25cmの位置に配置したフイルム基板に被着した。
パラジウムの付着量は放射化分析法で測定した。
このあと実施例1と同様の方法で、袋内の酸素濃
度と露点を測定した。 実施例1でスパツタリングにより作成したサン
プルと同一の付着量を有する蒸着膜にて酸素濃度
の時間的変化と露点を調べた結果酸素除去効果と
結露防止は達成できたが、同一付着量ではスパツ
タリングの場合の方が短時間のうちに内部酸素を
除去できた。 実施例 3 厚さ35μの二軸延伸ポリプロピレンフイルムの
片面に、実施例1と同様、スパツタリング法によ
りパラジウムを5×10-5mol/m2付着せしめ、付
着面に20μの低密度ポリエチレン(住友化学(株)の
“スミカセン―L705”)を押出積層した。もう一
方の片面には、アクリル酸エステル―メタクリル
酸エステル共重合体(共重合比=99.5:0.5重量
%)を主成分とする粘着剤の酢酸エチル溶液を塗
布し、100℃の熱風で乾燥し、溶媒を蒸発除去せ
しめた。こうしてできたフイルムを30mm×30mm切
り出した(これをAフイルムとする)。一方、ヒ
ートシーラブルポリプロピレンフイルム(東レ(株)
製、TM214、40μ厚)の非ヒートシール面に、実
施例1と同様に、ポリ塩化ビニリデンからなる組
成物を塗布した(これをBフイルムとする)。次
いで、Bフイルムのヒートシール面のヒートシー
ル部以外の一部に、Aフイルムの粘着面がヒート
シール面と合うように圧着させて貼りつけた。こ
うしてできたフイルムを用いて、ヒートシール面
が内側になるようにして内容積500c.c.の包装袋を
作成し、ヒートシールし、実施例1と同様にし
て、袋内の酸素濃度および露点を測定した。その
結果、密封直後の酸素濃度3.4体積%のものが24
時間後には0体積%になり、露点は密封直後−20
℃のものが−18℃となつたが、結露しなかつた。 実施例 4 二軸延伸ポリプロピレンフイルム(“トレフア
ン“BO T2530 20μ)のコロナ放電処理面に実施
例7で用いたアクリル酸エステル・メタクリル酸
エステル共重合体を主成分とする粘着剤の酢酸エ
チル溶液を塗布し100℃で1分間熱風下で溶媒を
蒸発乾固せしめ、粘着剤面側に50μのアルミフオ
イルを貼り合せた。該アルミ面にパラジウムをス
パツタリング法によつて5×10-4mol/m2付着せ
しめ、次いで、パラジウム付着面に住友化学(株)の
エチレン―プロピレン共重合体“FA―6411”を
5μラミネートした。こうして得た複合積層フイ
ルムのエチレン―プロピレン共重合体面が内側に
なるように内容積500c.c.袋を作り、ヒートシール
して、実施例1と同様にして酸素濃度を測定し
た。その結果、密封直後の酸素濃度3.6体積%の
ものが、2日後には0体積%になり容器内は結露
しなかつた。 実施例 5 二軸延伸したポリエチレンテレフタレートフイ
ルム(東レ(株)製“ルミラー”厚さ25ミクロン)に
厚さ800Åのアルミニウムを真空蒸着し、その蒸
着面に実施例1と同じ方法でパラジウムをスパツ
タリングした。パラジウムの付着量は2×
10-4mol/m2となるよう調整した。更に該パラジ
ウム層上に厚さ25ミクロンの実施例3と同じ低密
度ポリエチレンをラミネートしたフイルムを作成
した。 該フイルムを用いて直径60mmの円筒状袋を作成
し、内部に、緑茶、コーヒー、ココアをそれぞれ
収納したのち、窒素濃度92体積%、水素濃度8体
積%の混合ガスにて置換包装を行ない、開口部を
熱圧着して、3種のサンプルを作成した。 30℃恒温下で6カ月間保管したのちも、香り風
味が変わらず包装前の新鮮な状態を維持できた。 実施例 6 実施例1と同一の方法にて、基板上にパラジウ
ムをスパツタリング法により10-4mol/m2付着さ
せたのち、該フイルム上に押出しラミネーシヨン
法でアイオノマー樹脂(デユポン社製“サーリ
ン”)を厚さ15μ積層した。押出し温度は230℃と
した。 この積層フイルム100cm2を用いて、実施例1と
同一の方法で、酸素除去効果と露点を測定した。 密封後の袋内の酸素濃度と露点を測定した結果
を表3に示す。2日後以降は酸素濃度は0.1%以
下を示し、露点も0℃以下を維持した。 実施例 7 実施例1と同一のスパツタリング法で、基板上
にパラジウムを10-5mol/m2付着させたフイルム
を作製した。 次にポリブタジエン樹脂(日本合成ゴム(株)製、
JSR RB820)を200℃で溶融押出しし、20℃の金
属ロール上で冷却し、厚さ50μのシートを作製し
た。 このシートを前記フイルムのパラジウム面に積
層し、80℃に加熱したアイロンでヒートシールし
積層フイルムを得た。 この積層フイルム100cm2を用いて実施例1と同
一の方法で、酸素除去効果と露点を測定した。密
封後の袋内の酸素濃度と露点の測定結果を表3に
示す。 実施例 8 エチレン―酢酸ビニル共重合体(三井ポリケミ
カル(株)製“エルバツクス”420)のペレツトを用
いて、実施例7と同一の方法で溶融押出しして、
厚さ30μのシートを作製した。押出し温度は220
℃とした。このシートを実施例7で用いたものと
同一のパラジウムを付着させたフイルムと積層
し、120℃に加熱した2枚の鉄板の間にはさみ圧
力を2Kg/cm2としてプレスし積層フイルムを得
た。 この積層フイルム100cm2を用いて、実施例1と
同一の方法で酸素除去効果と露点を測定した。密
封後の袋内の酸素濃度と露点の測定結果を表3に
示す。 実施例 9 ポリブテン樹脂(三井石油化学(株)製M1600)を
使用し、押出し温度を180℃とした以外は実施例
7と同一の方法で厚さ35μのシートを得た。これ
を実施例7と同一の方法でパラジウムを付着せた
フイルム上に接着温度90℃で接着させ積層フイル
ムを得た。 この積層フイルム100cm2を用いて実施例1と同
一の方法で酸素除去効果と露点を測定した。測定
結果を表3に示す。 実施例 10 実施例7と同一の方法で、エチレン―エチルア
クリレート共重合物(三井ポリケミカル(株)製A―
702)を押出し温度200℃で押出し、厚さ40μのシ
ートを得た。 一方、実施例1と同一の方法で厚さ25μの二軸
延伸したポリエチレンテレフタレートフイルム上
に、スパツタリング法で10-4mol/m2のパラジウ
ムを付着させたフイルムを得た。次いで、該フイ
ルムにウレタン系接着剤(武田薬品(株)製“タケラ
ツク”A―385を5部と“タケネート”A―10を
1部の混合体)の酢酸エチル溶液を接着剤固形分
として1g/m2となるよう塗布乾燥した。この接
着剤面と前記のエチレン―エチルアクリレート共
重合物のシートを重ね合わせ、50℃に加熱した2
本のニツプロールの間を、線圧2Kg/cmで圧接
し、積層フイルムを得た。この積層フイルムを3
日間、40℃で保管したのち、100cm2に切り出し、
実施例1と同一の方法で、酸素除去効果と露点を
測定した。結果を表3に示す。 実施例 11 ポリ4―メチル1―ペンテン樹脂(三井石油化
学(株)製RT―18)を用い、押出し温度を280℃と
した以外は、実施例10と同一の方法で、厚さ20μ
のシートを得た。 続いて、実施例10で用いた、パラジウム付着フ
イルムおよびウレタン系接着剤を用いて、実施例
10と同一の方法で上記薄層シートと接着し、積層
フイルムを得た。 この積層フイルム100cm2を用いて、実施例1と
同一の方法で、酸素除去効果と露点を測定した。
測定結果を表3に示す。
The present invention relates to packaging materials, and an object of the present invention is to prevent packaged articles from being altered or deteriorated due to harmful gases mixed in a packaging container. In the packaging of foodstuffs and precision electrical and mechanical parts, hermetic packaging materials that can be isolated from the outside air are used to prevent oxidation, deterioration, corrosion, staining, etc. due to contact with the outside air. However, it is often difficult to achieve complete sealing from the outside air, and it is impossible to avoid oxidation, corrosion, and deterioration of the packaged articles due to gases existing in the gaps between the articles in the packaging container. The most important cause of such problems is that reactive gases such as oxygen are mixed in and remain inside the packaging container. As a result, in food packaging, food materials undergo corrosion due to oxidation, deterioration, and microbial growth occurs in food containers containing oxygen, and in packaging for electrical contact materials and mechanical parts, rust occurs due to oxidation of the materials. do. Gas replacement packaging and vacuum packaging have been conventionally used as methods for preventing oxygen remaining in packaging containers from causing deterioration of packaged articles. However, in gas replacement packaging, in which the air in the packaging container is replaced with a gas that does not contain oxygen, such as nitrogen, carbon dioxide, or a mixture of these gases,
It is unavoidable that outside air containing at least 2% by volume, usually about 4% by volume of oxygen, will re-enter the packaging container around the nozzle of the replacement device during the sealing process, and for this reason, it is difficult to prevent the product from being stored for long periods of time. The reality is that the progress of oxidation, deterioration, and corrosion cannot be prevented. On the other hand, vacuum packaging, in which the packaging container is evacuated after the packaged product is stored in the packaging container, may not be usable because the packaged product itself contains substances that are easily extracted by vacuum, such as moisture, as in food packaging. Water or water-soluble substances are extracted from the inside of the product and segregated on the surface of the food, which has the disadvantage of impairing taste and flavor. Furthermore, not only is the vacuum packaging process itself large-scale and expensive, but there are also problems in that there are very few packaging materials that can be kept under vacuum for a long period of time. In addition, there are oxygen scavengers that use hydrosulfite to remove oxygen through a chemical reaction, but they have the disadvantage of generating harmful gases such as sulfur dioxide and hydrogen sulfide during the chemical reaction process, and are expensive. . There are also oxygen scavengers that use enzymes such as glucose oxidase, but enzymatic reactions are extremely difficult to control temperature, hydrogen ion concentration, and humidity, making actual use complicated and expensive. The present inventors have solved all of these problems by developing a simple and simple method that can quickly remove harmful gases remaining inside packaging containers and quickly remove harmful gases that enter from the outside during long-term storage. We investigated inexpensive and reliable packaging methods, first focusing on converting the harmful gas inside the packaging container into other harmless substances, and further, in order to prevent the generated substances from adversely affecting the quality of the packaged goods. We discovered that covering with a thin layer of gas selective permeability was effective.
This led to the present invention. That is, the present invention provides a packaging material comprising a substrate, a thin layer of a catalytic material deposited in vacuum on the substrate, and a thin layer of a gas selectively permeable material laminated on the thin layer of the catalytic material, the packaging material comprising: A packaging material is provided in which the catalytic material is comprised of palladium and the gas selectively permeable material is comprised of at least one organic polymer selected from the following group: low-density polyethylene, high-density polyethylene, propylene, ethylene-propylene copolymer,
Ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polybutene-1, ionomer, poly4-methyl-1-pentene or polybutadiene. The detailed contents of the present invention will be explained below. It is used as a packaging material for goods because of its good gas barrier properties, good transparency and beauty, ease of various printing, easy sealing, and excellent flexibility. Mainly organic polymer films are often used. The catalyst-coated substrate used in the present invention is characterized in that all of these commonly used packaging materials can be used. That is, examples of catalyst-adhered substrates used in the present invention include polyethylene, polypropylene, polybutene-1, ethylene propylene copolymer, polyvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polystyrene, and polyether. , polyvinyl alcohol, polyester represented by polyethylene terephthalate, “Surlyn”
Stretched or unstretched films of raw materials made of organic polymers such as ionomers (manufactured by Dupont), polycarbonates, polyamides, polyimides, polyamideimides, cellulose, acetate, etc. alone or in mixtures, or the above polymers and silicones, Molded articles made of organic polymers such as polyurethane, polysulfone, phenol, melamine, urea resin, and epoxy resin are preferred. Various known additives, such as heat stabilizers, antioxidants, lubricants, antistatic agents, colorants, clarifying agents, ultraviolet inhibitors, or pigments, are added to these organic polymer base materials. Good too. Furthermore, there are films in which the above film materials are laminated into two or more layers by extrusion lamination, dry lamination, etc., films in which these films and metal foils such as aluminum foil are bonded and laminated, or aluminum is formed by vacuum evaporation, etc. , those coated with metals such as zinc, tin, etc., and those coated with printing can also be used in exactly the same way. Other materials such as thin metal plates, glass, and paper can also be used, but it is unavoidable that the catalyst is difficult to adhere to and the amount of adhesion is relatively large compared to organic polymer films. The shape of these catalyst-coated substrates is not particularly limited due to the nature of the present invention;
The label, lining sheet, inner lid, etc. must be in a shape that can be practically stored inside the packaging container. In addition, when the catalyst-coated substrate ultimately constitutes the outer wall of the packaging container, the oxygen permeability of the substrate itself is 10 c.c. 24hr・m2・100μ・
A pressure of 1 atm or less is most preferred. Palladium is used as the catalytic material deposited on such a substrate. In general, a known method for depositing a catalyst substance on a substrate is to immerse the substrate in a solution of a metal compound that will serve as a catalyst so that the substrate is adsorbed on the surface, and then reduce it by firing in a high-temperature furnace such as a hydrogen stream. It has been found that it is difficult to develop catalytic activity when the substrate is flat or non-water absorbent, such as an organic polymer film. We also attempted a method in which palladium-coated alumina particles with a particle diameter of 1 to 500 microns were coated on the surface of a substrate using an organic polymer as a binder and dried, but the activity remained low even when a large amount of catalyst material was filled. It became clear that it could not be used because it was too small. The most preferable method for achieving the object of the present invention is to convert the palladium into an atomic or molecular gas in a vacuum and then deposit it on a substrate. Examples of such a vacuum deposition method include a vacuum evaporation method, an ion plating method, and a sputtering method. In either case, the process involves the step of converting the material into atomic or molecular gases and then redepositing the material onto the substrate. Through this process, the catalyst substances deposited on the substrate reduce their kinetic energy by colliding and cooling on the substrate, and coalesce with each other to form fine island-like structures or network structures with diameters of several 10 Å to several 100 Å. It can be applied to the substrate. Among them, when the sputtering method is adopted as a vacuum deposition method, it is possible to create an island-like structure with uniform particle size and small diameter by sufficiently adjusting the sputtering conditions, and when depositing such a structure, the catalyst activity It was found that the highest value can be obtained. The amount of catalyst material deposited on the substrate is 10 -7 mol/m 2
It is preferable that the catalytic activity is in the range of 5×10 -3 mol / m 2 from degree decreases significantly. Among them, the amount of adhesion is from 10 -6 mol/m 2 to 5×
A range of 10 −4 mol/m 2 is most preferable because the catalyst activity is high relative to the amount of adhesion. When depositing the catalyst material by the sputtering method, various methods such as direct current sputtering, high frequency sputtering, and magnetron sputtering can be employed. The discharge gas to be filled is preferably an inert gas such as argon, neon, or xenon, or a non-oxidizing gas such as nitrogen or hydrogen, and the inclusion of a large amount of oxygen, water vapor, etc. is not preferable because it reduces the catalytic activity. A layer of gas selectively permeable material is formed on the thin layer of catalyst material deposited in this manner. The gas selectively permeable material has good permeability to two or more reactive gases present in the packaging container,
It is necessary that the reactive gas has a low permeability to the substance produced by the catalytic reaction. When removing oxygen from a packaging container for the purpose of preventing corrosion, quality deterioration, rust, etc. due to oxidation of a packaged article, hydrogen that reacts with oxygen is simultaneously added to the container. As a result, oxygen and hydrogen permeate through the gas selectively permeable material layer and produce water vapor or water on the catalyst layer. The generated water moistens the packaged articles and, in the case of food packaging, changes the hardness, taste, and texture, or causes the foods to coagulate, stick, etc. to each other. In order to prevent these problems, the layer made of a gas selectively permeable material is selected to have a low water vapor permeability. Preferred gas-selective permeable materials having good permeability to oxygen gas and hydrogen gas and low permeability to water vapor include, for example, low-density polyethylene, high-density polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer. , ethylene-ethyl acrylate copolymer, polybutene-1, ionomer, poly4-methyl-1-pentene, polybutadiene, polystyrene, polycarbonate, polyisobutylene, and other organic polymers alone or in mixtures; Although some are laminated, they are not necessarily limited to these. The most preferable gas selectively permeable materials are those whose volumetric hydrogen permeability and volumetric oxygen permeability are 10 times or more the weight water vapor permeability, such as low-density polyethylene, high-density polyethylene, and eletine-propylene copolymers. , ionomers, mixtures based on these, or copolymers with these. These organic polymer raw materials contain various known additives, such as heat stabilizers, lubricants,
Plasticizers, colorants, clarifying agents, ultraviolet inhibitors, etc. may be added. The thickness of the coating layer of the gas-selective permeable substance is preferably 5 to 5, considering the permeability and barrier properties of each gas.
100μ, most preferably 10 to 50μ. All commonly used methods can be used to form the layer of the gas selectively permeable material on the thin layer of the catalyst material. That is, it can be formed by, for example, a solution coating method, extrusion lamination, dry lamination, adhesion with a gas selectively permeable film using an adhesive, vacuum evaporation, discharge polymerization, or the like. Prior to these coating layers, the surface of the catalyst-coated substrate may be appropriately subjected to surface treatments such as anchor coating, discharge treatment, and EC treatment for the purpose of increasing adhesion. When the substrate to which the catalyst material and the gas-selective saccharifying thin layer are applied by such a method constitutes a packaging container, a heat-sensitive, pressure-sensitive, or heat-sensitive pressure-sensitive adhesive layer may be coated or laminated as necessary. Thereafter, it is formed into a container such as a bag with the gas selectively permeable thin layer placed inside. Moreover, it may be stored as it is together with the packaged article in a normal packaging container. After a packaged article such as food or precision parts is stored in such a packaging container, a gas that reacts with the harmful gas inside the packaging container or the harmful gas generated from the packaged article is sealed in the packaging container, or the reaction is After the process of enclosing the gas-emitting substance within the packaging container, the container must be hermetically sealed. For example, hydrogen is used as an enclosed gas to remove oxygen from a packaging container in order to prevent corrosion, quality deterioration, rust, etc. due to oxidation. In this case, an amount of hydrogen equivalent to twice the volume of residual oxygen or more is enclosed, but it is also possible to use a mixture of hydrogen and other gases such as nitrogen and carbon dioxide. In the packaging of ordinary articles, it is preferable from the viewpoint of safety and workability to use a nitrogen mixed gas containing 8% by volume or less of hydrogen rather than using hydrogen alone, which is a flammable gas. Furthermore, if a substance that generates hydrogen slowly at room temperature and pressure is used, there is no need to take the trouble to add hydrogen gas, which is more preferable in terms of workability and safety. Substances that generate hydrogen include the following metal hydrides, such as lanthanum-nickel, magnesium-nickel, zirconium-iron, zirconium-cobalt, zirconium-chromium,
There are hydrides of magnesium-copper, zirconium, and magnesium, and among them, those that easily release hydrogen at room temperature and pressure are desirable. By using the packaging material according to the invention,
Harmful oxygen gas easily reaches the catalyst coating layer along with hydrogen gas through the gas selectively permeable thin layer, and due to the catalytic action, even at room temperature, it easily reacts with hydrogen and turns into a trace amount of water. And the water produced is
Since it is blocked by the gas selectively permeable thin layer and is prevented from coming into direct contact with the product, it has become possible to maintain the packaged product in a state with no deterioration in quality even when stored for a long period of time. Although examples of oxygen and hydrogen have been shown above, the present invention is not limited to these. As described above, the packaging material of the present invention has unique effects, but it also has a greater effect of blocking heat rays from direct sunlight and ultraviolet rays than ordinary packaging materials, and has a high permeability of air outside the packaging into the inside of the bag. It also has the characteristic of being small. Packaging materials based on the present invention include oil confectionery such as potato chips, castella, rice crackers, peanuts, kamaboko, chikuwa, shaved bonito flakes, cheese, powdered milk, ham sausage, instant noodles, bread, fish, meat, raw vegetables,
Foods such as fruits, canned foods such as fish and meat, beverages such as green tea, black tea, coffee, cocoa, sake, wine, whiskey, tobacco, various medicines such as vitamins, electrical contact materials, precision tools, precision measuring instruments It can be used for all kinds of packaging. Next, embodiments of the present invention will be described in detail. Example 1 Palladium was deposited on a biaxially stretched polyethylene terephthalate film ("Lumirror" manufactured by Toray Industries, Inc., thickness: 12 μm) by a sputtering method. For sputtering, DC bipolar sputtering was used. A palladium plate with a width of 400 mm, a length of 200 mm, and a thickness of 1 mm is loaded onto a water-cooled target holder.
Using this as a cathode, we were able to apply a voltage of -3kV. A 400 mm wide polyethylene terephthalate film was run along a metal water-cooled drum placed opposite the cathode. First, the inside of the vacuum system is evacuated to 5×10 -5 Torr, and then 99.99% pure dry argon gas is filled in to maintain the pressure at 7×10 -2 Torr, and a voltage is applied to the cathode to generate a plasma discharge. occurred. Palladium was deposited at various thicknesses on the substrate film while changing the film running speed and applied voltage. When the applied voltage is 3kV and the film speed is 10m/min
A uniform catalyst adhesion layer of 2.5×10 -4 mol/m 2 was formed. Furthermore, high-density polyethylene was laminated to a thickness of 20 microns on the film by extrusion lamination. The high-density polyethylene used was Mitsui Petrochemical Co., Ltd.'s "Hisex" 5000F. The amount of palladium deposited on the substrate film was actually measured by activation analysis. On the other hand, as a film with high gas barrier properties, a composition made of polyvinylidene chloride is coated on one side of a polypropylene film, and polyethylene is further laminated on the coated side (total thickness of 50μ), so that the polyethylene side is on the inside. In this way, a bag with an internal volume of 500 c.c. was produced. Here, the composition made of polyvinylidene chloride was applied under the following conditions. Coating agent “Krehalon” DOA TX-27 (vinylidene chloride copolymer manufactured by Kureha Chemical Co., Ltd.) 100 parts by weight of solids “Zeon” 121 1.25 parts by weight (vinyl chloride straight polymer manufactured by Nippon Zeon Co., Ltd.) Zinc stearate 0.25 parts by weight Mixed emulsion (concentration: 30% by weight) Coating amount: 1 g/m 2 (solid content) Drying: 140°C for 4 seconds In addition, for polyethylene, low-density polyethylene “Sumikasen-L705” (manufactured by Sumitomo Chemical Co., Ltd.) is extruded at 340°C. Rougeon laminated (approximately 35μ thick). Inside this bag is 100cm2 of palladium coated film.
Oxygen concentration meter manufactured by Toshiba Beckman (Model 777)
and the detection part of SHAW's multi-range dew point meter, and the hydrogen concentration is 8% by volume and the nitrogen concentration is 8% by volume.
After replacing the air inside with 92% by volume replacement gas, the opening was heat sealed. Table 1 shows the continuous measurements of the oxygen concentration and dew point inside the bag after it was sealed. The oxygen concentration immediately after sealing was 3 to 4% in all cases. In all cases in which the palladium-coated film was encapsulated, the oxygen concentration decreased to 0.4% or less after the passage of time. Comparative Example 1 Palladium was sputtered onto a substrate film in the same manner as in Example 1, but using a catalyzed film without high-density polyethylene lamination. , the oxygen removal effect and dew point were measured. Table 2 shows the results.
Shown below. Although the oxygen concentration was able to be reduced, the dew point inside the bag rose and the bag wall surface became dew-condensed. Example 2 A palladium film was attached to the film used in Example 1 on a substrate by vacuum evaporation. A palladium plate with a purity of 99.9% is heated and vaporized by electron beam heating, and then released from a heating crucible under a pressure of 5 × 10 -5 Torr.
It was attached to a film substrate placed at a distance of 25 cm.
The amount of palladium deposited was measured by activation analysis.
Thereafter, the oxygen concentration and dew point inside the bag were measured in the same manner as in Example 1. As a result of examining the temporal change in oxygen concentration and dew point using a deposited film having the same deposition amount as the sample created by sputtering in Example 1, it was found that oxygen removal effect and dew condensation prevention were achieved. In this case, internal oxygen could be removed in a shorter time. Example 3 5 x 10 -5 mol/m 2 of palladium was deposited on one side of a 35μ thick biaxially stretched polypropylene film by the sputtering method in the same manner as in Example 1, and 20μ of low density polyethylene (Sumitomo Chemical Co., Ltd.) was deposited on the attached surface. "Sumikasen-L705" manufactured by Co., Ltd.) was extruded and laminated. On the other side, apply an ethyl acetate solution of an adhesive whose main component is acrylic ester-methacrylic ester copolymer (copolymerization ratio = 99.5:0.5% by weight), and dry with hot air at 100°C. , the solvent was removed by evaporation. The film thus produced was cut out to a size of 30 mm x 30 mm (this will be referred to as A film). On the other hand, heat sealable polypropylene film (Toray Industries, Inc.)
As in Example 1, a composition made of polyvinylidene chloride was applied to the non-heat-sealed surface of a film (manufactured by TM214, 40μ thick) (this is referred to as B film). Next, the A film was attached to a part of the heat sealing surface of the B film other than the heat sealing part by pressure bonding so that the adhesive surface of the A film was aligned with the heat sealing surface. Using the film thus produced, a packaging bag with an internal volume of 500 c.c. was made with the heat-sealed surface facing inside, heat-sealed, and the oxygen concentration and dew point inside the bag were was measured. As a result, the oxygen concentration of 3.4% by volume immediately after sealing was 24
After hours, it becomes 0% by volume, and the dew point is -20 immediately after sealing.
℃ temperature dropped to -18℃, but there was no condensation. Example 4 An ethyl acetate solution of the adhesive mainly composed of the acrylic ester/methacrylic ester copolymer used in Example 7 was applied to the corona discharge treated surface of a biaxially oriented polypropylene film ("Torefane" BO T2530 20μ). After coating, the solvent was evaporated to dryness under hot air at 100°C for 1 minute, and 50μ aluminum foil was attached to the adhesive side. Palladium was deposited on the aluminum surface at a rate of 5×10 -4 mol/m 2 by sputtering, and then ethylene-propylene copolymer "FA-6411" from Sumitomo Chemical Co., Ltd. was applied to the palladium-deposited surface.
5μ laminated. A bag having an internal volume of 500 c.c. was made so that the ethylene-propylene copolymer side of the composite laminated film thus obtained was on the inside, heat-sealed, and the oxygen concentration was measured in the same manner as in Example 1. As a result, the oxygen concentration was 3.6% by volume immediately after sealing, but after two days, it became 0% by volume, and no dew condensation occurred inside the container. Example 5 Aluminum with a thickness of 800 Å was vacuum deposited on a biaxially stretched polyethylene terephthalate film ("Lumirror" manufactured by Toray Industries, Inc., thickness 25 microns), and palladium was sputtered on the deposited surface in the same manner as in Example 1. . The amount of palladium attached is 2×
It was adjusted to be 10 -4 mol/m 2 . Furthermore, a film was prepared by laminating the same low density polyethylene as in Example 3 with a thickness of 25 microns on the palladium layer. A cylindrical bag with a diameter of 60 mm was created using the film, and green tea, coffee, and cocoa were each stored inside, and the bag was replaced with a gas mixture having a nitrogen concentration of 92% by volume and a hydrogen concentration of 8% by volume. Three types of samples were created by thermocompression bonding the openings. Even after being stored at a constant temperature of 30℃ for 6 months, the aroma and flavor did not change and the product remained as fresh as before packaging. Example 6 In the same manner as in Example 1, 10 -4 mol/m 2 of palladium was deposited on the substrate by sputtering, and then an ionomer resin (Surlyn manufactured by Dupont) was deposited on the film by extrusion lamination. ”) was laminated to a thickness of 15μ. The extrusion temperature was 230°C. Using 100 cm 2 of this laminated film, the oxygen removal effect and dew point were measured in the same manner as in Example 1. Table 3 shows the results of measuring the oxygen concentration and dew point inside the bag after it was sealed. After two days, the oxygen concentration remained below 0.1% and the dew point remained below 0°C. Example 7 Using the same sputtering method as in Example 1, a film was prepared in which 10 −5 mol/m 2 of palladium was deposited on a substrate. Next, polybutadiene resin (manufactured by Japan Synthetic Rubber Co., Ltd.,
JSR RB820) was melt extruded at 200°C and cooled on a metal roll at 20°C to produce a 50μ thick sheet. This sheet was laminated on the palladium surface of the film and heat-sealed with an iron heated to 80°C to obtain a laminated film. Using 100 cm 2 of this laminated film, the oxygen removal effect and dew point were measured in the same manner as in Example 1. Table 3 shows the measurement results of the oxygen concentration and dew point inside the bag after sealing. Example 8 Using pellets of ethylene-vinyl acetate copolymer (“ELVAX” 420 manufactured by Mitsui Polychemical Co., Ltd.), melt extrusion was carried out in the same manner as in Example 7,
A sheet with a thickness of 30μ was produced. Extrusion temperature is 220
℃. This sheet was laminated with the same palladium-coated film used in Example 7, and pressed between two iron plates heated to 120°C at a pressure of 2 kg/cm 2 to obtain a laminated film. . Using 100 cm 2 of this laminated film, the oxygen removal effect and dew point were measured in the same manner as in Example 1. Table 3 shows the measurement results of the oxygen concentration and dew point inside the bag after sealing. Example 9 A sheet with a thickness of 35 μm was obtained in the same manner as in Example 7 except that polybutene resin (M1600 manufactured by Mitsui Petrochemicals Co., Ltd.) was used and the extrusion temperature was 180°C. This was adhered to a palladium-coated film in the same manner as in Example 7 at an adhesion temperature of 90°C to obtain a laminated film. Using 100 cm 2 of this laminated film, the oxygen removal effect and dew point were measured in the same manner as in Example 1. The measurement results are shown in Table 3. Example 10 In the same manner as in Example 7, ethylene-ethyl acrylate copolymer (A-
702) was extruded at an extrusion temperature of 200°C to obtain a sheet with a thickness of 40μ. On the other hand, a film was obtained in which 10 −4 mol/m 2 of palladium was attached by sputtering on a biaxially stretched polyethylene terephthalate film having a thickness of 25 μm using the same method as in Example 1. Next, 1 g of an ethyl acetate solution of a urethane adhesive (a mixture of 5 parts of "Takerak" A-385 and 1 part of "Takenate" A-10 manufactured by Takeda Pharmaceutical Co., Ltd.) in ethyl acetate was applied to the film as adhesive solid content. /m 2 and dried. This adhesive surface and the sheet of the ethylene-ethyl acrylate copolymer were overlapped and heated to 50°C.
A laminated film was obtained by pressing the book's nip rolls together at a linear pressure of 2 kg/cm. This laminated film is 3
After storing at 40℃ for 1 day, cut into 100cm2 pieces.
The oxygen removal effect and dew point were measured in the same manner as in Example 1. The results are shown in Table 3. Example 11 The same method as in Example 10 was used except that poly 4-methyl 1-pentene resin (RT-18 manufactured by Mitsui Petrochemical Co., Ltd.) was used and the extrusion temperature was 280°C.
I got a sheet of Next, using the palladium-attached film and urethane adhesive used in Example 10, Example 10 was prepared.
It was adhered to the above thin layer sheet in the same manner as in No. 10 to obtain a laminated film. Using 100 cm 2 of this laminated film, the oxygen removal effect and dew point were measured in the same manner as in Example 1.
The measurement results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 基体と、該基体上に真空析出された触媒物質
の薄層と、該触媒物質薄層上に積層されたガス選
択透過性物質の薄層とから成る包装材料であつ
て、上記触媒物質はパラジウムで構成され、上記
ガス選択透過性物質は下記の群から選ばれた少な
くとも1種の有機重合体で構成されて成る包装材
料。 低密度ポリエチレン、高密度ポリエチレン、ポ
リプロピレン、エチレン―プロピレン共重合物、
エチレン―酢酸ビニル共重合物、エチレン―エチ
ルアクリレート共重合物、ポリブテン―1、アイ
オノマー、ポリ4―メチル1―ペンテンまたはポ
リブタジエン。
[Scope of Claims] 1. A packaging material comprising a substrate, a thin layer of a catalytic material deposited in vacuum on the substrate, and a thin layer of a gas selectively permeable material laminated on the thin layer of the catalytic material. In the packaging material, the catalytic material is made of palladium, and the gas selectively permeable material is made of at least one organic polymer selected from the following group. Low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer,
Ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polybutene-1, ionomer, poly4-methyl-1-pentene or polybutadiene.
JP11753186A 1986-05-23 1986-05-23 Packaging material Granted JPS61293846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11753186A JPS61293846A (en) 1986-05-23 1986-05-23 Packaging material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11753186A JPS61293846A (en) 1986-05-23 1986-05-23 Packaging material

Publications (2)

Publication Number Publication Date
JPS61293846A JPS61293846A (en) 1986-12-24
JPS637942B2 true JPS637942B2 (en) 1988-02-19

Family

ID=14714094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11753186A Granted JPS61293846A (en) 1986-05-23 1986-05-23 Packaging material

Country Status (1)

Country Link
JP (1) JPS61293846A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603050B2 (en) * 2015-06-11 2019-11-06 株式会社 伊藤園 Method for producing packaged food and drink and method for suppressing quality deterioration of packaged food and drink
JP6603251B2 (en) * 2017-02-13 2019-11-06 株式会社 伊藤園 Method for inhibiting oxidative degradation of lipids
JP2019176752A (en) * 2018-03-30 2019-10-17 水素健康医学ラボ株式会社 Production methods of matured coffee bean, roasted coffee bean and coffee drink

Also Published As

Publication number Publication date
JPS61293846A (en) 1986-12-24

Similar Documents

Publication Publication Date Title
EP0964046B1 (en) Oxygen absorbing composition, oxygen absorbing resin and preserving method
US20090324142A1 (en) Packaging material and bag for packaging of medicinal product
EP0888719A2 (en) Oxygen-absorbing component, oxygen-absorbent package and oxygen-absorbing multilayerd body containing same
JPH04359033A (en) Composite film and production thereof
JP3496427B2 (en) Oxygen-absorbing resin composition and packaging material, multilayer packaging material, package, or packaging method using the same
JPS637942B2 (en)
JPS6034455B2 (en) packaging material
JP2000141535A (en) Laminated body
JPS5946865B2 (en) packaging goods
JP3282567B2 (en) Laminate for packaging containing activated oxygen absorber
JP2000343648A (en) Low elution packaging material
JPS604778B2 (en) Packaging materials with oxygen scavenging effects
JPH08310565A (en) Deoxidation packaging method using drying agent in combination
JPH0867939A (en) Aluminum alloy and magnesium alloy
JP2740010B2 (en) Organic laminated metal body with deoxidation function
JP3654945B2 (en) Packaging material for heat sterilization
JP2007151461A (en) Packaged food and method for preventing color fading of food
JPH07257595A (en) Gas-barrier packaging bag
JPH0430757A (en) Wrapping material for food containing l-menthol
JP4164738B2 (en) Gas barrier film
JPS6211640A (en) Sheet-shaped material having perfume resistance
JP2000050850A (en) Deoxidizer composition and preservation using the same
JPS63319141A (en) Film for packaging food
JP2004188902A (en) Gas barrier laminated packaging material
JP2024015584A (en) High gloss thermal fusion barrier film, laminated material using high gloss thermal fusion barrier film, and bag-like container using laminated material