JPS6379073A - Semiconductor type acceleration sensor - Google Patents

Semiconductor type acceleration sensor

Info

Publication number
JPS6379073A
JPS6379073A JP61225437A JP22543786A JPS6379073A JP S6379073 A JPS6379073 A JP S6379073A JP 61225437 A JP61225437 A JP 61225437A JP 22543786 A JP22543786 A JP 22543786A JP S6379073 A JPS6379073 A JP S6379073A
Authority
JP
Japan
Prior art keywords
free end
pedestal
displacement
acceleration sensor
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61225437A
Other languages
Japanese (ja)
Other versions
JPH0711535B2 (en
Inventor
Chiaki Mizuno
千昭 水野
Masato Imai
正人 今井
Toshitaka Yamada
山田 利貴
Hirohito Shiotani
塩谷 博仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61225437A priority Critical patent/JPH0711535B2/en
Priority to EP87113466A priority patent/EP0261555B1/en
Priority to EP19910112438 priority patent/EP0454190A3/en
Priority to EP19910112458 priority patent/EP0456285A3/en
Priority to DE8787113466T priority patent/DE3780242T2/en
Priority to US07/098,050 priority patent/US4829822A/en
Priority to KR1019870010447A priority patent/KR900005635B1/en
Publication of JPS6379073A publication Critical patent/JPS6379073A/en
Publication of JPH0711535B2 publication Critical patent/JPH0711535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To prevent the damage of a vibrator due to excessive displacement, by constituting the title sensor so that the free end of the vibrator is limited in its displacement to a pedestal side corresponding to the depth of the recessed part formed to a pedestal. CONSTITUTION:A cantilever 4a composed of an N-type silicon single crystal plate is constituted of a membrane like diaphragm part 7, a free end 1, a guard part 4a1 arranged in order to protect the free end 1 and a support 8. A recessed past 6a1 having a predetermined depth is formed to the surface 6a opposed to the lever 4a of a pedestal 6 and the depth of the recessed part 6a1 determines the max. value of the displacement of the free end 1. That is, when strong impact is applied to semiconductor type acceleration sensor, the displacement of the free end 1 in a downward direction (on the side of the pedestal 6) is forcibly stopped at the point of time when the free end 1 contacts with the bottom part of the recessed part 6a1 and, therefore, the damage of the lever 4a due to excessive displacement can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、振動子及びダンピング液をそのパッケージ内
に備えた半導体式加速度センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor acceleration sensor that includes a vibrator and a damping liquid in its package.

〔従来の技術〕[Conventional technology]

従来、振動や加速度等を検知するのに一般的に用いられ
ている構造としては、半導体基板に半導体歪ゲージの形
成される薄肉状のダイヤフラム部を形成し、一方の厚肉
部である支持体を固定し、他方の厚肉部を自由端として
、半導体歪ゲージの抵抗値変化に応じて被測定力を検知
するカンチレバー型の半導体式加速度センサ等が知られ
ている。
Conventionally, the structure generally used to detect vibrations, acceleration, etc. is to form a thin diaphragm part on a semiconductor substrate, on which a semiconductor strain gauge is formed, and one thick part, which is a support. A cantilever-type semiconductor acceleration sensor is known that detects a force to be measured according to a change in the resistance value of a semiconductor strain gauge by fixing the sensor and using the other thick part as a free end.

上記のような半導体式加速度センサは金属線歪計と比較
して歪感度出力が大きいという長所がある反面、破壊強
度が低く、衝撃に弱いという欠点がある。そこで従来で
はそのような欠点を補う為に、自由端の変位を制限すべ
く機械的ストッパーを設けている。例えば、“A B 
atch −F abri−cated S 1lic
on Accelerometer″IEEE T r
ansac−tions On Electron D
evices、 Vol、 ED−26+N112. 
December 1979に示されている半導体式加
速度センサにおいては、カンチレバーの自由端は2つの
ガラスによってはさまれ、気密封止されており、そのガ
ラスの各々にはカンチレバーの変位を制限すべく凹部が
形成されている。すなわち、半導体式加速度センサに衝
撃が加わった場合に、自由端の変位はガラスに形成され
た凹部の底部に自由端が接触した時点で強制的に止める
ようにして過度の変位によるカンチレバーの破損を防止
している。
The semiconductor acceleration sensor described above has the advantage of having a large strain sensitivity output compared to a metal wire strain meter, but has the disadvantage of having low breaking strength and being susceptible to impact. Conventionally, in order to compensate for such drawbacks, a mechanical stopper is provided to limit the displacement of the free end. For example, “A B
atch-F abri-cated S 1lic
on Accelerometer"IEEE T r
ansac-tions On Electron D
evices, Vol, ED-26+N112.
In the semiconductor acceleration sensor shown in December 1979, the free end of the cantilever is sandwiched between two glasses and hermetically sealed, and each glass has a recess formed to limit the displacement of the cantilever. has been done. In other words, when a shock is applied to the semiconductor acceleration sensor, the displacement of the free end is forcibly stopped when the free end contacts the bottom of the recess formed in the glass, thereby preventing damage to the cantilever due to excessive displacement. It is prevented.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、カンチレバー型の半導体式加速度センサにお
いては、そのカンチレバーの形状で特性がほぼ決定され
ており、カンチレバー自身の共振周波数域(通常、35
0〜400Hz程度)ではその他の周波数域における出
力の数十倍の出力が出てしまう。そこで、例えば自動車
の加速度等を検出しようとする場合には、低周波数域(
通常、1011z程度以下)しか必要としないので、共
振周波数域を含む比較的高い周波数域をカットする為に
、シリコンオイル等のダンピング液中にカンチレバーを
配置する事で粘性抵抗力による減衰作用を利用してダン
ピング液を機械的なハイカットフィルタとして用いてい
る。
By the way, the characteristics of a cantilever type semiconductor acceleration sensor are almost determined by the shape of the cantilever, and the resonance frequency range of the cantilever itself (usually 35
(approximately 0 to 400 Hz), the output is several tens of times higher than the output in other frequency ranges. Therefore, for example, when trying to detect the acceleration of a car, etc., the low frequency range (
Normally, only about 1011z or less) is required, so in order to cut relatively high frequency ranges including the resonance frequency range, a cantilever is placed in a damping liquid such as silicone oil to utilize the damping effect due to viscous resistance force. The damping liquid is used as a mechanical high-cut filter.

ここで、従来の半導体式加速度センサは、カンチレバー
の周囲の媒質が気体である場合には問題はないが、上述
したような目的でその媒質を液体であるダンピング液と
した場合、つまり、2つのガラスにより密封した中にダ
ンピング液を封入した場合を想定すると、自由端の変位
に応じてダンピング液が各々のガラスに形成された凹部
を行き来するわけだが、その流路は自由端の周囲に形成
されたギャップだけとなっている。従って、ダンピング
液はギヤツブを通過する際に抵抗力を受ける事になり、
その実効粘度はダンピング液自身が有するダンピングフ
ァクターよりはるかに大きな値となり、半導体式加速度
センサの周波数応答性が悪化する。
Here, there is no problem with conventional semiconductor acceleration sensors when the medium surrounding the cantilever is gas, but when the medium is a liquid damping liquid for the purpose described above, in other words, when the medium surrounding the cantilever is a gas, Assuming that the damping liquid is sealed in a sealed glass, the damping liquid will move back and forth between the recesses formed in each glass according to the displacement of the free end, but the flow path will be formed around the free end. There is only one gap. Therefore, the damping fluid will be subjected to a resistance force when passing through the gear.
The effective viscosity thereof is much larger than the damping factor of the damping liquid itself, which deteriorates the frequency response of the semiconductor acceleration sensor.

そこで本発明は、上記の点に鑑みなされたものであって
、振動子及びダンピング液をそのパッケージ内に備え、
周波数応答性の優れた半導体式加速度センサを提供する
事を目的としている。
Therefore, the present invention has been made in view of the above points, and includes a vibrator and a damping liquid in its package,
The purpose is to provide a semiconductor acceleration sensor with excellent frequency response.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本出願の第1発明では、そ
の一部を台座に固定し、他部を自由端とした振動子と、
ダンピング液とをパッケージ内に備えた半導体式加速度
センサにおいて、前記台座は前記自由端の変位を制限す
べく所定深さの凹部を前記自由端に相対する面に有して
おり、且つ、該凹部を前記台座とその他の面のうち少な
くとも一つの面に達するように形成した事を特徴とする
半導体式加速度センサを採用している。
In order to achieve the above object, the first invention of the present application provides a vibrator, a part of which is fixed to a pedestal and the other part is a free end;
In a semiconductor acceleration sensor including a damping liquid in a package, the pedestal has a recess of a predetermined depth on a surface facing the free end to limit displacement of the free end, and the recess The present invention employs a semiconductor acceleration sensor characterized in that the semiconductor acceleration sensor is formed so as to reach at least one surface of the base and other surfaces.

又、第2発明では、その一部を台座に固定し、他部を自
由端とした振動子と、ダンピング液とをパッケージ内に
備えた半導体式加速度センサにおいて、 前記台座は前記自由端の該台座側への変位を制限すべく
所定深さの凹部を前記自由端に相対する面に有しており
、且つ、該凹部を前記台座のその他の面のうち少なくと
も一つの面に達するように形成してあり、更に、前記自
由端の前記台座側とは逆の方向への変位を制限すべく該
自由端と所定間隔をもって形成したストッパーとを備え
る事を特徴とする半導体式加速度センサを採用している
Further, in a second aspect of the invention, in a semiconductor acceleration sensor comprising a vibrator with a part fixed to a pedestal and the other part a free end, and a damping liquid in a package, the pedestal is fixed to the free end. A recess of a predetermined depth is provided on a surface facing the free end in order to limit displacement toward the pedestal, and the recess is formed to reach at least one of the other surfaces of the pedestal. and a stopper formed at a predetermined distance from the free end to limit displacement of the free end in a direction opposite to the pedestal side. ing.

〔作用〕[Effect]

そして本発明によると、振動子の自由端は台座に形成さ
れた凹部の深さに応じてその台座側への変位を制限され
る。又、ダンピング液は自由端が変位する際に、凹部が
自由端に相対する面取外のその他の面に達している事か
ら、その凹部を通り、凹部とその外部とをほとんど抵抗
を受けずに自由に行き来できる。
According to the present invention, the displacement of the free end of the vibrator toward the pedestal is restricted depending on the depth of the recess formed in the pedestal. In addition, when the free end is displaced, the damping liquid passes through the recess and connects the recess and the outside with almost no resistance because the recess reaches the other surface outside the chamfer that faces the free end. You can come and go freely.

又、台座側とは逆の方向に自由端と所定間隔をもってス
トッパーを形成する事により、半の方向への自由端の変
位も制限される。
Furthermore, by forming a stopper at a predetermined distance from the free end in the direction opposite to the pedestal side, displacement of the free end in the half direction is also restricted.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例を用いて説明する。 Hereinafter, the present invention will be explained using embodiments shown in the drawings.

第1図は本発明の一実施例の全体の斜視図であり、パッ
ケージの気密封止前を表している。図において、100
はコバール等の金属より成るステムであり、その外周で
ある溶接部101をのぞいて、後述する台座6、ストッ
パー200等を搭載する凸部がプレス加工等により形成
されており、又、外部との電気接続をする為に例えば4
つの貫通孔が存在しており、その貫通孔に硬質ガラス5
00を溶着する事により介在してリード端子400が固
定されている。リード端子400とステム100とは硬
質ガラス500により電気的に絶縁されており、又、硬
質ガラス500は気密性良く介在している。
FIG. 1 is an overall perspective view of an embodiment of the present invention, showing the package before it is hermetically sealed. In the figure, 100
is a stem made of metal such as Kovar, and except for the welded part 101 on its outer periphery, a convex part on which a pedestal 6, a stopper 200, etc., which will be described later, is mounted is formed by press working, etc. For example, 4 to make electrical connections.
There are two through holes, and the hard glass 5 is inserted into the through holes.
A lead terminal 400 is interposed and fixed by welding 00. The lead terminal 400 and the stem 100 are electrically insulated by a hard glass 500, and the hard glass 500 is interposed with good airtightness.

次に、ステム100上に搭載され、カンチレバー4a及
び台座6により成るセンサエレメントについて第2図を
用いて詳細に説明する。まず、第2図+a)に示す上面
図、及びそのA−A線断面図である同図(b)において
、4aは例えばN型シリコン単結晶基板から成るカンチ
レバーであり、薄肉状のダイヤフラム部7、自由端l、
自由端1を保護する為に自由端lの周りに配置するガー
ド部4a+ 、支持体8とから成る。尚、自由端1とガ
ード部4a、との間隙4azを形成する為のスクライブ
はカンチレバー4aを両面エツチングする事により行わ
れ、例えば、カンチレバー4aのスクライブする箇所の
表面(第2図(1)lにおける上面)を予め溝堀エツチ
ングしておき、その後のダイヤフラム部7の形成時に裏
面よりエツチングを行う事でダイヤフラム部7の形成と
スクライブとを同時に行う。
Next, the sensor element mounted on the stem 100 and consisting of the cantilever 4a and the pedestal 6 will be described in detail using FIG. 2. First, in the top view shown in FIG. 2+a) and the cross-sectional view taken along the line A-A in FIG. , free end l,
It consists of a guard part 4a+ arranged around the free end 1 to protect the free end 1, and a support body 8. Incidentally, the scribing to form the gap 4az between the free end 1 and the guard portion 4a is performed by etching both sides of the cantilever 4a. The formation of the diaphragm part 7 and the scribing are performed simultaneously by performing trench etching on the upper surface of the wafer in advance, and then etching from the back surface during the formation of the diaphragm part 7.

支持体8及びガード部4a、の所定領域の表面には、N
i層等をめっき又は蒸着した下地層3bが形成されてお
り、同じく下地層3bの形成されている台座6と半田J
W5bを介して接着している。
The surfaces of predetermined areas of the support body 8 and the guard portion 4a are coated with N.
A base layer 3b is formed by plating or vapor depositing an i-layer, etc., and the base layer 6 and the solder J, on which the base layer 3b is also formed, are formed.
It is bonded via W5b.

ここで、本実施例の要部である台座6にはカンチレバー
4aが被測定加速度に応じて変位できるように、同図(
C)に示すようにカンチレバー4a+ と相対する面6
aに所定の深さの凹部6a+が形成されている。
Here, the pedestal 6, which is the main part of this embodiment, is equipped with a cantilever 4a (see FIG.
As shown in C), the surface 6 facing the cantilever 4a+
A recess 6a+ having a predetermined depth is formed in a.

又、凹部6a+は一方の端面6bから他方の端面6Cに
わたって形成されている。尚、台座6の材質としてはカ
ンチレバー4aとの熱膨張係数をあわせる為にシリコン
が望ましい。
Further, the recess 6a+ is formed from one end surface 6b to the other end surface 6C. The material of the pedestal 6 is preferably silicon in order to match the coefficient of thermal expansion with that of the cantilever 4a.

自由端1の一生面(接着面)2には複数箇所(図では7
箇所)に下地層3aが形成されており、その下地層3a
を介して負荷としての半田層5aを接着している。ここ
で、本例のように半田層5aを複数箇所に形成する事に
より半田の垂れ、片寄りを極力抑える事ができる。尚、
下地層3a及び半田層5aは、支持体8又はガード部4
. a Iの表面上に形成される下地層3b及び半田層
5bとそれぞれ同時に同じ工程で形成可能である。
There are multiple locations on the permanent surface (adhesive surface) 2 of the free end 1 (7 in the figure).
A base layer 3a is formed at the base layer 3a.
A solder layer 5a serving as a load is bonded via the solder layer 5a. Here, by forming the solder layer 5a at a plurality of locations as in this example, it is possible to suppress solder dripping and deviation as much as possible. still,
The base layer 3a and the solder layer 5a are connected to the support 8 or the guard part 4.
.. The base layer 3b and the solder layer 5b formed on the surface of aI can be formed at the same time and in the same process.

又、ダイヤフラム部7内あるいはダイヤフラム部7上(
図は前者)に公知の半導体加工技4+j、例えば、ボロ
ン等のP型不純物を熱拡散又はイオン注入する事により
ダイヤプラム部7内に導入し、形成した4個の半導体歪
ゲージ9が存在しており、P型不純物を高濃度で導入し
て形成した配線層lla、及びA1蒸着膜等から成る配
線部材11bにより各々の半導体歪ゲージ9は互いに電
気的接続されておりフルブリッジを構成している。尚、
10はシリコン酸化膜等の保護膜であり、又、配線部材
11bのパッド部とリード端子400とはワイヤ線30
0をワイヤボンディングする事により電気接続している
Also, inside the diaphragm part 7 or on the diaphragm part 7 (
The figure shows four semiconductor strain gauges 9 formed by introducing a P-type impurity such as boron into the diaphragm part 7 by thermal diffusion or ion implantation using a known semiconductor processing technique 4+j. The semiconductor strain gauges 9 are electrically connected to each other by a wiring layer lla formed by introducing P-type impurities at a high concentration and a wiring member 11b made of an A1 vapor deposited film, etc., forming a full bridge. There is. still,
10 is a protective film such as a silicon oxide film, and the pad portion of the wiring member 11b and the lead terminal 400 are connected to the wire wire 30.
Electrical connection is made by wire bonding 0.

そして、上記のセンサエレメントは、自由端1に加速度
を加えるとダイヤフラム部7に歪を生じ、加速度の大き
さに応じて半導体歪ゲージ9の砥抗値が変化し、ブリッ
ジ回路に予め電圧を印加しておくことによりブリッジ出
力として不平衡電圧を生じ、その電圧値に応じて被検出
加速度を検知するものであり、半田によりステム100
に台座6を接着する事により固定される。
In the sensor element described above, when acceleration is applied to the free end 1, strain is generated in the diaphragm portion 7, and the abrasive resistance value of the semiconductor strain gauge 9 changes depending on the magnitude of the acceleration, and a voltage is applied to the bridge circuit in advance. By doing so, an unbalanced voltage is generated as a bridge output, and the acceleration to be detected is detected according to the voltage value.
It is fixed by gluing the pedestal 6 to the pedestal 6.

第1図において200はストッパーであり、その形状は
第3図の斜視図に示すように、ステム100に垂直な2
つの板材201.202と、ステム100に平行、言い
換えるとカンチレバー4aに平行な板材203とが互い
に垂直に組み合わさった形となっており、板材203の
下面203aと、カンチレバー4aの上面とは所定の間
隔を有するように調整されている。尚、その材質は例え
ばコバール等から成り、又、半田によりステム100に
接着している。
In FIG. 1, 200 is a stopper whose shape is perpendicular to the stem 100, as shown in the perspective view of FIG.
The two plates 201 and 202 and the plate 203 parallel to the stem 100, in other words, parallel to the cantilever 4a, are assembled perpendicularly to each other, and the lower surface 203a of the plate 203 and the upper surface of the cantilever 4a are arranged in a predetermined manner. It is adjusted to have an interval. The material thereof is, for example, Kovar, and it is bonded to the stem 100 with solder.

次に、600はコバール等の金属より成るシェルであり
、ステム100の溶接部101に相対する位置に同じく
溶接部601を有し、その他の部分はプレス加工により
凹部が形成され箱形となっている。又、シェル600に
は気密封止後にダンピング液を注入する為の穴602及
びその際に空気を逃がす為の穴603が形成されている
。そして、その気密封止は溶接部601と溶接部101
とを接触させて機械的な圧力を加えつつ、シェル600
とステム100間に通電する事により両者を溶接して行
われる。その後、第6図の第1図における溶接後のB−
B線断面図に示すように、例えば吐出先が針状の注入器
900を穴602に差し込み、例えばシリコンオイル等
のダンピング液700を一定量、例えば全容積の70〜
80%程度注入し、そして、穴602及び603を半田
により封止する。尚、第6図において800はパッケー
ジ内に残った空気であり、604はダンピング液700
の波立ちを抑制する隔壁である。
Next, 600 is a shell made of metal such as Kovar, which also has a welded part 601 at a position opposite to the welded part 101 of the stem 100, and the other parts are box-shaped with depressions formed by press working. There is. Further, the shell 600 is formed with a hole 602 for injecting a damping liquid after hermetically sealing and a hole 603 for letting air escape at that time. The hermetic seal is made between the welded portion 601 and the welded portion 101.
While applying mechanical pressure by contacting the shell 600
This is done by welding the two together by applying electricity between the stem 100 and the stem 100. After that, B- after welding in FIG. 1 of FIG.
As shown in the cross-sectional view taken along line B, a syringe 900 with a needle-shaped discharge tip is inserted into the hole 602, and a certain amount of damping liquid 700 such as silicone oil is applied, for example, 70 to 70% of the total volume.
After about 80% injection, the holes 602 and 603 are sealed with solder. In addition, in FIG. 6, 800 is the air remaining in the package, and 604 is the damping liquid 700.
It is a partition wall that suppresses the ripples of the water.

そこで本実施例によると、台座6のカンチレバー4aと
相対する面6aに所定の深さの凹部6a+が形成されて
おり、その凹部6a+の深さは自由端1の変位の最大値
を決定する。つまり半導体式加速度センサに強い衝撃が
加わった場合に、自由端1の第1図中下方向(台座6側
)の変位は自由端が凹部5a、の底部に接触した時点で
強制的に止められるので、過度の変位によるカンチレバ
ー4aの破壊を防止できる。そして、凹部5a、が端面
6bから端面6Cにわたって形成されている事から、ダ
ンピング液700は自由端1の変位に応じて第1図に示
す逃げ口6dを通ってほとんど抵抗を受ける事なく自由
に行き来する事ができ、従って、ダンピング液700の
実効粘度はダンピング液自身の有するダンピングファク
ターのみによって与えられるので、カンチレバー4aの
周波数応答性は良くなる。
Therefore, according to this embodiment, a recess 6a+ of a predetermined depth is formed in the surface 6a of the pedestal 6 facing the cantilever 4a, and the depth of the recess 6a+ determines the maximum displacement of the free end 1. In other words, when a strong impact is applied to the semiconductor acceleration sensor, the downward displacement of the free end 1 in FIG. 1 (towards the pedestal 6) is forcibly stopped when the free end contacts the bottom of the recess 5a Therefore, destruction of the cantilever 4a due to excessive displacement can be prevented. Since the recess 5a is formed from the end surface 6b to the end surface 6C, the damping liquid 700 freely passes through the escape port 6d shown in FIG. 1 according to the displacement of the free end 1 with almost no resistance. Since the effective viscosity of the damping liquid 700 is given only by the damping factor of the damping liquid itself, the frequency response of the cantilever 4a is improved.

又、カンチレバー4aの上部にストッパー200が所定
の間隔をもって形成されているので、自由端1の第1図
中上方向への変位も制限され、カンチレバー4aの破壊
を確実に防止できる。又、ストッパー200は自由端1
の変位が最も大きい末端部分の変位を制限すべく、その
部分の上方だけに板材203が配置しているので、カン
チレバー4a上部はほぼ自由空間に等しく、ダンピング
液700の実効粘度を上げるような要素はなく、カンチ
レバー43の周波数応答性はより向上する。
Further, since the stoppers 200 are formed at the upper part of the cantilever 4a at a predetermined interval, the displacement of the free end 1 in the upward direction in FIG. 1 is also restricted, thereby reliably preventing the cantilever 4a from breaking. Also, the stopper 200 has the free end 1
In order to limit the displacement of the end portion where the displacement is the largest, the plate member 203 is placed only above that portion, so the upper part of the cantilever 4a is almost equal to free space, and there are no elements that increase the effective viscosity of the damping liquid 700. Therefore, the frequency response of the cantilever 43 is further improved.

尚、本発明は上記実施例に限定される事な(、その主旨
を逸脱しない限り例えば以下に示す如(種々変形可能で
ある。
It should be noted that the present invention is not limited to the above-mentioned embodiments (although various modifications can be made, for example, as shown below) without departing from the spirit thereof.

(1)台座6aの自由端1に相対する面に形成される凹
部は、その面取外の少なくとも一つの面に達していれば
良く、例えば、第4図(a)の斜視図に示すように端面
6Cだけに達していても良く、又、同図(b)の斜視図
に示すように自由端1に相対する面とその一辺を共有す
る4つの端面に達していてもよい。
(1) The recess formed on the surface facing the free end 1 of the pedestal 6a only needs to reach at least one surface outside the chamfer, for example, as shown in the perspective view of FIG. 4(a). It may reach only the end surface 6C, or it may reach four end surfaces that share one side of the surface facing the free end 1, as shown in the perspective view of FIG.

(2)ストッパー200は、自由端1からみて台座6側
とは逆の方向に所定の間隔をもって配置しておればよく
、その形状は第5図の斜視図に示すように、ステム10
0に垂直な板材201と、平行な板材203とによって
形成される鉤状のものであってもよく、また、台座6と
同様の形状であってもよい。
(2) The stopper 200 may be disposed at a predetermined interval in the direction opposite to the pedestal 6 side when viewed from the free end 1, and its shape is similar to that of the stem 10 as shown in the perspective view of FIG.
It may be a hook-shaped thing formed by a plate material 201 perpendicular to 0 and a parallel plate material 203, or it may have the same shape as the pedestal 6.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によると、振動子の自由端は
台座に形成された四部の深さに応じてその台座側への変
位が制限されるので、過度の変位による振動子の破損を
防止できる。又、ダンピング液はその凹部を通り凹部と
その外部とをほとんど抵抗を受けずに自由に行き来でき
るので、ダンピング液の実効粘度は上がる事がなく、従
って振動子の周波数応答性を向上できる。
As described above, according to the present invention, the displacement of the free end of the vibrator toward the pedestal is limited according to the depth of the four parts formed on the pedestal, so damage to the vibrator due to excessive displacement is prevented. It can be prevented. Further, since the damping liquid can pass through the recess and freely move between the recess and the outside with almost no resistance, the effective viscosity of the damping liquid does not increase, and therefore the frequency response of the vibrator can be improved.

又、台座側とは逆の方向に、自由端と所定間隔をもって
ストッパーを形成する事によって、その方向への自由端
の変位も制限され、より確実に振動子の破損を防止でき
るという効果がある。
Furthermore, by forming a stopper at a predetermined distance from the free end in the direction opposite to the pedestal side, the displacement of the free end in that direction is also restricted, which has the effect of more reliably preventing damage to the vibrator. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の気密封止前における全体の
斜視図、第2図fa)は第1図におけるセンサエレメン
トの上面図、第2図(b)は同図(alにおけるA−A
線断面図、第2図fc)は第1図における台座の斜視図
、第3図は第1図におけるストッパーの斜視図、第4図
(a)及び(b)は台座の形状の他の例を示す斜視図、
第5図はストッパーの形状の他の例を示す斜視図、第6
図は第1図における溶接後のB−B線断面図である。 4a・・・カンチレバー、6・・・台座、  6a、・
・・凹部。 100・・・ステム、200・・・ストッパー、600
・・・シェル、700・・・ダンピング液。
FIG. 1 is a perspective view of the entire embodiment of the present invention before hermetic sealing, FIG. 2 fa) is a top view of the sensor element in FIG. 1, and FIG. -A
Line sectional view, Figure 2 fc) is a perspective view of the pedestal in Figure 1, Figure 3 is a perspective view of the stopper in Figure 1, and Figures 4 (a) and (b) are other examples of the shape of the pedestal. A perspective view showing
Fig. 5 is a perspective view showing another example of the shape of the stopper;
The figure is a sectional view taken along the line B-B after welding in FIG. 1. 4a...cantilever, 6...pedestal, 6a,...
・Concavity. 100... Stem, 200... Stopper, 600
... Shell, 700... Damping fluid.

Claims (3)

【特許請求の範囲】[Claims] (1)その一部を台座に固定し、他部を自由端とした振
動子と、ダンピング液とをパッケージ内に備えた半導体
式加速度センサにおいて、 前記台座は前記自由端の変位を制限すべく所定深さの凹
部を前記自由端に相対する面に有しており、且つ、該凹
部を前記台座とその他の面のうち少なくとも一つの面に
達するように形成した事を特徴とする半導体式加速度セ
ンサ。
(1) In a semiconductor acceleration sensor that includes a vibrator with a part fixed to a pedestal and the other part as a free end, and a damping liquid in a package, the pedestal is configured to limit displacement of the free end. A semiconductor type acceleration device having a recessed portion of a predetermined depth on a surface facing the free end, and the recessed portion is formed to reach at least one of the pedestal and the other surface. sensor.
(2)その一部を台座に固定し、他部を自由端とした振
動子と、ダンピング液とをパッケージ内に備えた半導体
式加速度センサにおいて、 前記台座は前記自由端の該台座側への変位を制限すべく
所定深さの凹部を前記自由端に相対する面に有しており
、且つ、該凹部を前記台座のその他の面のうち少なくと
も一つの面に達するように形成してあり、更に、前記自
由端の前記台座側とは逆の方向への変位を制限すべく該
自由端と所定間隔をもって形成したストッパーとを備え
る事を特徴とする半導体式加速度センサ。
(2) In a semiconductor acceleration sensor that includes a vibrator with a part fixed to a pedestal and the other part as a free end, and a damping liquid in a package, the pedestal has the free end connected to the pedestal side. a recess of a predetermined depth is provided on a surface facing the free end in order to limit displacement, and the recess is formed to reach at least one of the other surfaces of the pedestal; The semiconductor acceleration sensor further includes a stopper formed at a predetermined distance from the free end to limit displacement of the free end in a direction opposite to the pedestal side.
(3)上記ストッパーは、その形状が鉤状のものである
特許請求の範囲第2項記載の半導体式加速度センサ。
(3) The semiconductor acceleration sensor according to claim 2, wherein the stopper has a hook-like shape.
JP61225437A 1986-09-22 1986-09-23 Semiconductor type acceleration sensor Expired - Lifetime JPH0711535B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61225437A JPH0711535B2 (en) 1986-09-23 1986-09-23 Semiconductor type acceleration sensor
EP87113466A EP0261555B1 (en) 1986-09-22 1987-09-15 Semiconductor accelerometer
EP19910112438 EP0454190A3 (en) 1986-09-22 1987-09-15 Semiconductor accelerometer
EP19910112458 EP0456285A3 (en) 1986-09-22 1987-09-15 Semiconductor accelerometer
DE8787113466T DE3780242T2 (en) 1986-09-22 1987-09-15 SEMICONDUCTOR ACCELEROMETER.
US07/098,050 US4829822A (en) 1986-09-22 1987-09-17 Semiconductor accelerometer
KR1019870010447A KR900005635B1 (en) 1986-09-22 1987-09-21 Semiconductor accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225437A JPH0711535B2 (en) 1986-09-23 1986-09-23 Semiconductor type acceleration sensor

Publications (2)

Publication Number Publication Date
JPS6379073A true JPS6379073A (en) 1988-04-09
JPH0711535B2 JPH0711535B2 (en) 1995-02-08

Family

ID=16829352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225437A Expired - Lifetime JPH0711535B2 (en) 1986-09-22 1986-09-23 Semiconductor type acceleration sensor

Country Status (1)

Country Link
JP (1) JPH0711535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231571A (en) * 1988-04-11 1990-09-13 Nippondenso Co Ltd High-sensitivity acceleration sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231571A (en) * 1988-04-11 1990-09-13 Nippondenso Co Ltd High-sensitivity acceleration sensor

Also Published As

Publication number Publication date
JPH0711535B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US8497557B2 (en) Semiconductor device
US5259247A (en) Sensor
US9242850B2 (en) Out-of-plane spacer defined electrode
KR20010082299A (en) Integral stress isolation apparatus and technique for semiconductor devices
JPH0533732B2 (en)
JP5206726B2 (en) Mechanical quantity detection device and manufacturing method thereof
JP2005249454A (en) Capacity type acceleration sensor
KR20010033947A (en) Micromechanical component
JPH0367177A (en) Semiconductor acceleration sensor
US10173887B2 (en) Epi-poly etch stop for out of plane spacer defined electrode
JPH0623780B2 (en) Method of manufacturing semiconductor acceleration sensor
JPH07183543A (en) Acceleration sensor
JPS6379073A (en) Semiconductor type acceleration sensor
JPS62145130A (en) Semiconductor pressure sensor
JPS6390774A (en) Semiconductor type acceleration sensor
JPS6388408A (en) Semiconductor type acceleration sensor
JP2786240B2 (en) Acceleration sensor
JP3173256B2 (en) Semiconductor acceleration sensor and method of manufacturing the same
JPH059746B2 (en)
CN113247857A (en) High-reliability MEMS pressure sensor structure and packaging method
JPH0875779A (en) Mechanical amount sensor and its manufacture
JPH01245164A (en) Manufacture of acceleration sensor
JPH05180868A (en) Electrostatic capacity variation type semiconductor acceleration sensor
JP2003090845A (en) Semiconductor acceleration sensor
JPH07294548A (en) Semiconductor sensor