JPS6378524A - Optical exposure device - Google Patents

Optical exposure device

Info

Publication number
JPS6378524A
JPS6378524A JP61222641A JP22264186A JPS6378524A JP S6378524 A JPS6378524 A JP S6378524A JP 61222641 A JP61222641 A JP 61222641A JP 22264186 A JP22264186 A JP 22264186A JP S6378524 A JPS6378524 A JP S6378524A
Authority
JP
Japan
Prior art keywords
lens system
wafer
reticle
exposure beams
box body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61222641A
Other languages
Japanese (ja)
Inventor
Minoru Hirose
実 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61222641A priority Critical patent/JPS6378524A/en
Publication of JPS6378524A publication Critical patent/JPS6378524A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To obtain high resolving power by evacuating a reducing lens system through which exposure beams passing through a reticle are reduced and the original picture pattern of the reticle is projected onto a wafer. CONSTITUTION:A reticle 3 is irradiated with exposure beams emitted from a light source 1 through a condenser lens 2, and exposure beams are transmitted and projected to a reducing lens system 4. The reducing lens system 4 consists of a plurality of reducing lenses, etc., and is housed in a box body 5. Since the inside of the box body 5 is evacuated previously, exposure beams do not generate light scattering by gas particles in the reducing lens system 4 (the box body 5), and are hardly subject to the effect of the change of external environment even when external environment varies. Exposure beams in which an original picture pattern is reduced by the reducing lens system 4 are extracted to the outside of the box body 5 and projected to a wafer 6 on a wafer stage through a window. The reduced original picture pattern is trans ferred every time the wafer 6 is fed in standard size by an XY stage.

Description

【発明の詳細な説明】 〔概要〕 本発明は光学露光装置において、 縮小レンズ系を真空にすることにより、温度や気圧等の
外部環境による屈折率の変化を防止し、また気体粒子に
よる光散乱によって生じるコントラストの低下を防ぐよ
うにしたものである。
[Detailed Description of the Invention] [Summary] The present invention provides an optical exposure apparatus that uses a reduction lens system in a vacuum to prevent changes in the refractive index due to external environments such as temperature and atmospheric pressure, and to prevent light scattering by gas particles. This is designed to prevent a decrease in contrast caused by

〔産業上の利用分野〕[Industrial application field]

本発明は光学露光装置に係り、特に紫外光によりウェー
ハ上へのパターン転写形成を行なう光学露光装置に関す
る。
The present invention relates to an optical exposure apparatus, and more particularly to an optical exposure apparatus that transfers a pattern onto a wafer using ultraviolet light.

ウェーハ上へのパータン転写形成工程は、製造する半導
体素子の性能に大きな影響を与える重要な工程である。
The step of forming a pattern transfer onto a wafer is an important step that greatly affects the performance of manufactured semiconductor devices.

このため、この工程に使用される光学露光装置は高解像
力のものが要求される。
Therefore, the optical exposure apparatus used in this process is required to have high resolution.

(従来の技術〕 従来より紫外光を用いて、ウェーハ上に微細なパターン
を形成する光学露光装置が知られている。
(Prior Art) Optical exposure apparatuses that form fine patterns on wafers using ultraviolet light are conventionally known.

この光学露光装置は所定の倍率で拡大製作されているレ
チクルの原画パターンを縮小レンズで縮小し、その光線
をウェーハ上に投影して原画パターンを転写する。
This optical exposure apparatus reduces the original pattern of a reticle, which has been enlarged at a predetermined magnification, using a reduction lens, and projects the resulting light beam onto a wafer to transfer the original pattern.

この光学露光装置によれば、フォトマスク上のパターン
配列位置誤差やウェーハの伸縮に影響されずに位置合わ
せを高精度で行なえ、ウェーハ上に微細なパターンを高
精度に形成することができる。
According to this optical exposure apparatus, alignment can be performed with high precision without being affected by pattern arrangement position errors on the photomask or expansion and contraction of the wafer, and fine patterns can be formed on the wafer with high precision.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光学露光装置はその光学系及び光路が大気中に存
在するため、湿度や気圧の影響を受は易い。それゆえ屈
折率等も外部環境の変化に伴い、一定(安定)しないと
いう問題点があった。
Since the conventional optical exposure apparatus has its optical system and optical path in the atmosphere, it is easily affected by humidity and atmospheric pressure. Therefore, there is a problem that the refractive index and the like are not constant (stable) due to changes in the external environment.

また、露光光はその光路において気体粒子による光散乱
を生じ、ウェーハ上における露光部と非露光部との光強
度差(コントラスト)を低下させ、そのために解像力も
低下してしまうという問題点があった。
In addition, the exposure light causes light scattering by gas particles in its optical path, reducing the difference in light intensity (contrast) between exposed and non-exposed areas on the wafer, which also causes a reduction in resolution. Ta.

本発明は上記の点に鑑みて創作されたもので、6解伝力
を15ることが可能な光学露光装置を提供することを目
的とする。
The present invention was created in view of the above points, and an object of the present invention is to provide an optical exposure apparatus capable of increasing the power of 6 resolution to 15.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光学露光装置は、レチクルを通過した露光光線
を縮小してウェーハ上にレチクルの原画パターンを投影
する縮小レンズ系を真空にするよう構成したものである
The optical exposure apparatus of the present invention is configured to create a vacuum in a reduction lens system that reduces the exposure light beam that has passed through the reticle and projects the original pattern of the reticle onto the wafer.

〔作用) 縮小レンズ系を通過する露光光線は、縮小レンズ系が真
空であることから、気体粒子との光散乱を生ずることは
なく、温度や気圧等の外部環境の変化は縮小レンズ系に
おいては極力少は難くなる。
[Function] The exposure light beam passing through the reduction lens system does not cause light scattering with gas particles because the reduction lens system is in a vacuum, and changes in the external environment such as temperature and pressure are not affected by the reduction lens system. It will be difficult to minimize the amount as much as possible.

〔実癌例〕[Actual cancer case]

図は本発明の一実施例の構成図を示す。図中、光源1よ
り放射された露光光線(例えばg線)はコンデンリレン
ズ2を通してレチクル3に照射される。
The figure shows a configuration diagram of an embodiment of the present invention. In the figure, exposure light (for example, g-ray) emitted from a light source 1 is irradiated onto a reticle 3 through a condenser lens 2 .

レチクル3は例えば10倍の大きさで製作された原画パ
ターンで、レチクル3を透過した露光光線は縮小レンズ
系4に入射される。縮小レンズ系4は複数の縮小レンズ
等からなり、筺体5内に収納されである。この筐体5内
は真空とされである。
The reticle 3 is an original image pattern manufactured, for example, 10 times the size, and the exposure light beam transmitted through the reticle 3 is incident on the reduction lens system 4. The reduction lens system 4 consists of a plurality of reduction lenses, etc., and is housed in a housing 5. The inside of this housing 5 is kept in a vacuum.

このため、縮小レンズ系4(筐体5)内においては、露
光光は気体粒子による光散乱を生じることはなく、また
外部環境が変化してもその影響を殆ど受けることはない
Therefore, within the reduction lens system 4 (casing 5), the exposure light is not scattered by gas particles, and is hardly affected by changes in the external environment.

この縮小レンズ系4により原画パターンを1/10に縮
小された露光光は、筐体5の外部へ取り出されて窓(図
示せず)を通してウェーハステージ上のウェーハ6に照
射される。ウェーハ6は、XYステージ(図示せず)に
より定寸送りされる毎に上記の縮小された原画パターン
が転写される。
The exposure light whose original image pattern has been reduced to 1/10 by the reduction lens system 4 is taken out of the housing 5 and irradiated onto the wafer 6 on the wafer stage through a window (not shown). Each time the wafer 6 is fed by a fixed distance by an XY stage (not shown), the reduced original pattern is transferred onto the wafer 6 .

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、縮小レンズ系において露
光光が光散乱することがないため、つ工−ハ上において
露光部と非露光部とのコントラストを従来に比し向上す
ることができ、また外部環境の変化を殆ど受けないため
、外部環境の変化による屈折率の変化を防止することが
でき、以上から高解像力が得られると共に、歩留り、信
頼性を向上することができ、今後のレーザー露光装置に
も適用でき、VLSl、ULSl、VHLSIの製造に
好適である等の特長を有するものである。
As described above, according to the present invention, since the exposure light is not scattered in the reduction lens system, the contrast between the exposed area and the non-exposed area on the tool can be improved compared to the conventional method. In addition, since it is almost unaffected by changes in the external environment, changes in the refractive index due to changes in the external environment can be prevented.As a result, high resolution can be obtained, and yield and reliability can be improved. It has features such as being applicable to laser exposure equipment and suitable for manufacturing VLSI, ULSI, and VHLSI.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の構成を示す図である。 図において、 1は光源、 3はレチクル、 4は縮小レンズ系、 6はウェーハである。 The figure is a diagram showing the configuration of an embodiment of the present invention. In the figure, 1 is a light source, 3 is the reticle, 4 is a reduction lens system, 6 is a wafer.

Claims (1)

【特許請求の範囲】 露光光線によりウェーハ上にパターンを投影転写する光
学露光装置において、 レチクルを通過した露光光線を縮小してウェーハ上に該
レチクルの原画パターンを投影する縮小レンズ系(4)
を真空にする構造としたことを特徴とする光学露光装置
[Scope of Claims] In an optical exposure apparatus that projects and transfers a pattern onto a wafer using exposure light, a reduction lens system (4) that reduces the exposure light that has passed through a reticle and projects the original pattern of the reticle onto the wafer.
An optical exposure apparatus characterized by having a structure that creates a vacuum.
JP61222641A 1986-09-20 1986-09-20 Optical exposure device Pending JPS6378524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222641A JPS6378524A (en) 1986-09-20 1986-09-20 Optical exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222641A JPS6378524A (en) 1986-09-20 1986-09-20 Optical exposure device

Publications (1)

Publication Number Publication Date
JPS6378524A true JPS6378524A (en) 1988-04-08

Family

ID=16785638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222641A Pending JPS6378524A (en) 1986-09-20 1986-09-20 Optical exposure device

Country Status (1)

Country Link
JP (1) JPS6378524A (en)

Similar Documents

Publication Publication Date Title
JP2893778B2 (en) Exposure equipment
US7248336B2 (en) Method and system for improving focus accuracy in a lithography system
JP3610175B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JP3292022B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
US20050085085A1 (en) Composite patterning with trenches
US4498009A (en) Optical lithographic system having a dynamic coherent optical system
JP2006301303A (en) Device and method for inspecting foreign matter, exposing device, and method for manufacturing device
JPH0636993A (en) Aligner and manufacture of semiconductor element
JP3187581B2 (en) X-ray apparatus, X-ray exposure apparatus, and semiconductor device manufacturing method
JPS6378524A (en) Optical exposure device
JP3368017B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
Mayer et al. A new step-by-step aligner for very large scale integration (VLSI) production
US7463336B2 (en) Device manufacturing method and apparatus with applied electric field
US20040009431A1 (en) Method of exposing semiconductor device
JPS63197333A (en) Pattern formation and device therefor
US20050122492A1 (en) Exposing method, exposing apparatus and device manufacturing method utilizing them
JPS6378525A (en) Optical exposure device
EP0341983B1 (en) Exposure system
JPS60177625A (en) Projection exposure device
US20230266255A1 (en) Monolithic particle inspection device
Bossung et al. Optical advances in projection photolithography
JP2005347572A (en) Exposure device
JP2001023891A (en) Stage device, aligner, and manufacture of device
JPH04314321A (en) Aligner
JPS6216526A (en) Projection exposure apparatus