JPS63197333A - Pattern formation and device therefor - Google Patents

Pattern formation and device therefor

Info

Publication number
JPS63197333A
JPS63197333A JP62028238A JP2823887A JPS63197333A JP S63197333 A JPS63197333 A JP S63197333A JP 62028238 A JP62028238 A JP 62028238A JP 2823887 A JP2823887 A JP 2823887A JP S63197333 A JPS63197333 A JP S63197333A
Authority
JP
Japan
Prior art keywords
electron beam
pattern
pattern forming
light exposure
beam lithography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62028238A
Other languages
Japanese (ja)
Inventor
Masahide Okumura
正秀 奥村
Sumio Hosaka
純男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62028238A priority Critical patent/JPS63197333A/en
Publication of JPS63197333A publication Critical patent/JPS63197333A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To form a fine pattern at high speed and with high precision by a method wherein each merit of an electron beam lithography means and a light exposing (transfer, projection and lithography) means is utilized to bear roles in common. CONSTITUTION:A light exposure ends instantaneously, but as a single stroke drawing technique is used for an electron beam lithography, it takes a long time to form a pattern. Accordingly, if fine patterns (electron beam lithography patterns) 1 and 2 only are lithographed with an electron beam, a pattern can be formed in a very short time and if a light exposure and an electron beam lithography are performed in parallel, a pattern can be formed in higher speed. For example, by using a combined device of a lithography equipment using a field emission type electron gun and a projection type exposing device, a pattern forming region is simultaneously lithographed and exposed at the same time as the pattern is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微細なパターン形成方法及び類似装置に係り、
特に、0.5μm以下の寸法を有するパターンを高速高
精度で形成するのに好適なパターン形成方法及び装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fine pattern forming method and a similar device,
In particular, the present invention relates to a pattern forming method and apparatus suitable for forming patterns having dimensions of 0.5 μm or less at high speed and with high accuracy.

〔従来の技術〕[Conventional technology]

従来、微細加工技術に関しては、「ソリッドステイトテ
クノロジー/ジューン(1985年)第119頁から第
126頁(Solid 5tate Technolo
gy/June (1985年)ppH9−126)J
に記載のように、0.5μm以下のパターンを有するL
SIのパターン形成の場合、X線等の露光技術が有望と
されている。しかし、光学系あるいはマスク等の問題が
山積しており、実用化には極めて困難な状況にある。
Conventionally, regarding microfabrication technology, "Solid State Technology/June (1985), pages 119 to 126 (Solid State Technology/June (1985)
gy/June (1985) ppH9-126)J
As described in , L with a pattern of 0.5 μm or less
In the case of SI pattern formation, exposure techniques such as X-rays are considered promising. However, there are many problems with the optical system and masks, making it extremely difficult to put this into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如き従来の技術では、0.5μm以下の寸法を有
するパターンを高速でかつ高精度に形成する点について
一長一短があり、たとえば電子線描画技術では量生能力
、光露光技術では微細パターン形成能力、高精度パター
ン形成能力に問題があった。
Conventional techniques such as those described above have advantages and disadvantages in forming patterns with dimensions of 0.5 μm or less at high speed and with high precision.For example, electron beam lithography technology has the ability to produce large quantities, while light exposure technology has the ability to form fine patterns. However, there was a problem with the ability to form high-precision patterns.

本発明の目的は0.5μm以下の寸法を有するパターン
を高速でかつ高精度に形成できる方法及び装置を得るこ
とにある。
An object of the present invention is to provide a method and apparatus capable of forming patterns having dimensions of 0.5 μm or less at high speed and with high accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、電子線描画手段及び光露光(転写。 The above purpose is an electron beam drawing means and light exposure (transfer).

投影、描画)手段を各々の長所を活すように役割分担し
てパターン形成することにより、達成される。
This is achieved by dividing the roles of the projection, drawing) means and forming patterns so as to take advantage of their respective strengths.

〔作用〕[Effect]

具体的には、各パターンのうちで個々のパターンの寸法
が所定とする任意の寸法より大きいパターンについては
全面あるいは輪郭を残して光露光する。さらに、電子線
描画手段により1寸法が上記の所定寸法以下のパターン
あるいは残された輪郭部を描画することにより、所歯の
全パターンを全て形成する。これにより、電子線描画技
術の欠点である量産性が低いという欠点を光露光技術で
取り除くとともに電子線描画技術の微細加工能力等を引
き出すことができる。また、電子線描画と光露光を同時
に行なえば量産性をさらに高めることができる。
Specifically, among the patterns, if the size of each pattern is larger than a predetermined arbitrary size, the entire surface or the outline of the pattern is left exposed. Furthermore, all patterns of the predetermined teeth are formed by drawing a pattern whose one dimension is equal to or less than the above-mentioned predetermined size or a remaining contour portion using an electron beam drawing means. As a result, the disadvantage of low mass productivity, which is a drawback of the electron beam lithography technique, can be eliminated by the light exposure technique, and the microfabrication ability of the electron beam lithography technique can be brought out. Moreover, if electron beam lithography and light exposure are performed simultaneously, mass productivity can be further improved.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図〜第3図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は本発明のパターン形成方法の一実施例の説明図
である0図のように、微細パターン1゜2及び1,2の
微細パターンより大きなパターン3が存在するパターン
を形成する場合、第1図(、)及び第1図(b)の2通
りの描画及び露光方法が実行でき、0.5μm以下とい
った微細な寸法を有するパターンを高速高精度で形成す
ることができる。
FIG. 1 is an explanatory diagram of an embodiment of the pattern forming method of the present invention. As shown in FIG. The two drawing and exposure methods shown in FIG. 1(,) and FIG. 1(b) can be performed, and patterns having minute dimensions of 0.5 μm or less can be formed at high speed and with high precision.

第1図(a) は微細パターン1,2を電子線描画手段
で、また、大きなパターン3を光露光手段で形成した具
体例である。通常、光露光は非常に短時間のうちに完了
するが、電子線描画は一筆書き手法を採用しているため
比較的長いパターン形成時間を必要とする。しかし、本
発明では図のように、微細パターン1,2のみを電子線
描画するので、従来より非常に短時間でパターン形成を
行なうことができる。また、光露光と電子線描画を並行
して行なえば、さらに高速なパターン形成が可能となる
FIG. 1(a) shows a specific example in which fine patterns 1 and 2 are formed by electron beam drawing means, and large pattern 3 is formed by light exposure means. Normally, light exposure is completed in a very short time, but since electron beam writing uses a single stroke technique, it requires a relatively long pattern formation time. However, in the present invention, as shown in the figure, only the fine patterns 1 and 2 are drawn with an electron beam, so that pattern formation can be performed in a much shorter time than in the past. Moreover, if light exposure and electron beam writing are performed in parallel, even faster pattern formation becomes possible.

第1図(b)は大きなパターンの内側のパターン5を光
露光手段で、その輪郭4と他の微細パターン1,2を電
子線描画手段でパターン形成した例である。これは、光
露光手段におけるm像度あるいは下地パターンとの重ね
合せ精度の劣化を防ぐことを目的とし、任意の領域での
2重露光を許すとともに、パターン周辺部を描画するこ
とによりパターンの解像度及び重ね合せ精度の向上を図
っている。
FIG. 1(b) shows an example in which a pattern 5 inside a large pattern is formed by a light exposure means, and its outline 4 and other fine patterns 1 and 2 are formed by an electron beam drawing means. The purpose of this is to prevent deterioration of the m-image resolution in the light exposure means or the overlay accuracy with the underlying pattern, and allows double exposure in any area, and also increases the resolution of the pattern by drawing the periphery of the pattern. The aim is to improve overlay accuracy.

第2及び3図は上記のパターン形成方法を実現するため
の具体的装置構成を示す実施例である。
FIGS. 2 and 3 are examples showing a specific apparatus configuration for realizing the above pattern forming method.

第2図はパターン形成すべき描画(露光)領域を同時に
描画及び露光することを可能としたパターン形成装置の
模式図である。第3図は同時ではないが、同一システム
内に光露光系と電子線描画系を有した場合である。この
場合は、電子線描画を実行してから、試料25を移動し
て、光露光手段により一括露光する例を示している。以
下、これらについて詳細に説明する。
FIG. 2 is a schematic diagram of a pattern forming apparatus that is capable of simultaneously drawing and exposing a drawing (exposure) area in which a pattern is to be formed. FIG. 3 shows a case in which a light exposure system and an electron beam lithography system are provided in the same system, although not simultaneously. In this case, an example is shown in which after performing electron beam lithography, the sample 25 is moved and exposed all at once by the light exposure means. These will be explained in detail below.

第2図は、電子線描画手段に電界放射型電子銃を用いた
描画装置、光露光手段に投影型露光装置を組み合せた実
施例を示す。図の如く、電界放射用チップ6、引き出し
電極7.加速f!!極8.コンデンサレンズ9.対物レ
ンズ10.偏向コイル11、静電偏向電極12で電子線
描画手段を楕成し、光源15.照明レンズ16.レティ
クル(転写パターン原画)あるいはマスク17.対物レ
ンズユニット22で光露光手段を構成し、これらを組み
合わせて試料室14内の移動台13に搭載した試料25
の同一領域に描画及び露光を可能にした例である。尚、
図の電子線描画手段では電子線23のブランキング機能
、マーク検出のための反射電子あるいは2次電子検出器
、試料の電子線入射方向の変位検出のための2変位検出
器や制御回路系などは省略している。また、光露光手段
ではレティクル17の微動機構、重ね合せのためのパタ
ーン検出や制御回路系など省略している。さらに、移動
台13はXY移動台あるいはxYz移動台で構成され、
移動台13上には試料25の他にレーザ干渉測長用ミラ
ーや電子線描画系の歪補正等のための標準試料等が搭載
されているが、ここでは省略している。また、上記のレ
ーザ干渉測長器や移動台駆動回路系なども省略している
FIG. 2 shows an embodiment in which a drawing apparatus using a field emission type electron gun is used as the electron beam drawing means, and a projection type exposure apparatus is used as the light exposure means. As shown in the figure, a field emission chip 6, an extraction electrode 7. Acceleration f! ! Extreme 8. Condenser lens9. Objective lens 10. A deflection coil 11 and an electrostatic deflection electrode 12 constitute an electron beam drawing means, and a light source 15. Lighting lens 16. Reticle (original transfer pattern) or mask 17. The objective lens unit 22 constitutes a light exposure means, and the sample 25 mounted on the movable table 13 in the sample chamber 14 by combining these units
This is an example in which drawing and exposure are possible in the same area. still,
The electron beam drawing means shown in the figure includes a blanking function for the electron beam 23, a backscattered electron or secondary electron detector for mark detection, a two-displacement detector for detecting displacement of the sample in the electron beam incident direction, and a control circuit system. is omitted. Further, in the light exposure means, a fine movement mechanism for the reticle 17, pattern detection for overlaying, a control circuit system, etc. are omitted. Furthermore, the moving table 13 is composed of an XY moving table or an xYz moving table,
In addition to the sample 25, a mirror for laser interferometric length measurement, a standard sample for correcting distortion of the electron beam lithography system, etc. are mounted on the moving table 13, but these are omitted here. Furthermore, the laser interferometric length measuring device, moving table drive circuit system, etc. mentioned above are also omitted.

図において、電子線描画系では電界放射用チップ6より
引き出された電子線23が引き出し1を極7、加速電極
8.コンデンサレンズ9でコンデンサレンズ9下にクロ
スオーバを形成し、対物レンズ10に導びかれる。その
後、電子I!23は対物レンズ10で試料25表面に微
小スポットを結像し、偏向コイル11と静電偏向電極1
2とにより所望の位置に偏向される。これと、ブランキ
ング機能とにより所望の位置にパターン描画が行なわれ
る。この場合、描画方法はベクタ走査が望ましい。一方
、光露光系では光源15を出射したUV(紫外)光16
が照明レンズ系16を経てレティクル17を照明する。
In the figure, in the electron beam lithography system, an electron beam 23 extracted from a field emission chip 6 connects an extraction electrode 1 to a pole 7, an accelerating electrode 8, and so on. The condenser lens 9 forms a crossover below the condenser lens 9 and is guided to the objective lens 10. After that, electronic I! 23 forms a minute spot on the surface of the sample 25 with an objective lens 10, and a deflection coil 11 and an electrostatic deflection electrode 1
2 to the desired position. With this and the blanking function, a pattern is drawn at a desired position. In this case, vector scanning is preferable as the drawing method. On the other hand, in the light exposure system, UV (ultraviolet) light 16 emitted from a light source 15
illuminates the reticle 17 via the illumination lens system 16.

その後、対物レンズユニット22により、レティクル1
7のパターンは等倍あるいは縮小して電子線描画フィー
ルドに露光される。この様にして、第ll3gに示した
パターン形成方法が実現される。第2図の実施例では、
電子線描画手段と光露光手段との結合に、光露光系の対
物レンズを図のような2つの部分に分け、それらをミラ
ー20で結合した異形の対物レンズユニット22を採用
している。この場合、レンズ群(A)21は出来るだけ
薄くなるように構成することが望しい。また、ミラー2
0とレンズ群(A)21の電子線通過領域には図のよう
な穴を開ける必要がある。電子線23の通過領域の近く
にはチャージアップ防止のためのネサガラスコーティン
グ等が形成される。さらに、光露光系の真空シールドは
対物レンズユニット22内のレンズ群(2)19とレテ
ィクル17との間に設置したのぞき窓18により行なっ
ているが、これは対物レンズユニット22内でも構わな
い。
After that, the objective lens unit 22 moves the reticle 1
The pattern No. 7 is exposed to the electron beam drawing field with the same size or reduced size. In this way, the pattern forming method shown in No. 113g is realized. In the embodiment of FIG. 2,
To connect the electron beam lithography means and the light exposure means, an irregularly shaped objective lens unit 22 is used in which the objective lens of the light exposure system is divided into two parts as shown in the figure, and these parts are joined by a mirror 20. In this case, it is desirable that the lens group (A) 21 be configured to be as thin as possible. Also, mirror 2
It is necessary to make holes as shown in the figure in the electron beam passing areas of the lens group (A) 21 and 0. Near the area through which the electron beam 23 passes, a Nesa glass coating or the like is formed to prevent charge-up. Further, although vacuum shielding of the light exposure system is performed by a peephole 18 installed between the lens group (2) 19 and the reticle 17 in the objective lens unit 22, this may also be done inside the objective lens unit 22.

第3図は試料25上の同一描画(露光)フィールド内を
別々にパターン形成する場合の具体例を示している。図
は、第2図で示した電子線描画手段に一括光露光手段を
組み合せた例を示している。
FIG. 3 shows a specific example in which patterns are formed separately within the same drawing (exposure) field on the sample 25. In FIG. The figure shows an example in which the electron beam drawing means shown in FIG. 2 is combined with a batch light exposure means.

これは、一括光露光法の方がより短時間で試料全体のパ
ターンが形成できるためである。図において、一括光露
光手段は試料室14を共通として電子線描画手段と並置
している。この一括光露光手段は光源15.照明レンズ
系27.マスク29及び対物レンズ26から構成されて
いる。尚、重ね合せ機能についてはここでは省略してい
る。第1図のパターン形成方法を実現するために、まず
、図の実線のように試料25を設置し、電子線描画によ
り第1図で示した如き微細パターン1,2゜4の形成の
み行なう、この場合、移動台13のステップアンドリピ
ート機能を用いて、試料25全面にパターンを形成する
。その後、破線の部分に試料25を移動して、残った大
きなパターン3゜5を形成する。この方法は、第2回の
具体例に比べて、若干形成時間が長くなるが、移動台の
移動時間と一括露光時間のみで、ごくわずかな時間増加
であるので、0.5μm以下の寸法を有した高速高精度
でのパターン形成に関して本実施例は従来技術より極め
て性能の良いものが得られる。上述のパターン形成手順
は電子線描画が先に行なわれたが、光露光から先に行な
うこともできる。また、−指光露光以外に縮小投影露光
方法を採用することもできる。
This is because the batch light exposure method allows the pattern of the entire sample to be formed in a shorter time. In the figure, the batch light exposure means is placed in parallel with the electron beam lithography means, with the sample chamber 14 in common. This batch light exposure means is a light source 15. Illumination lens system 27. It is composed of a mask 29 and an objective lens 26. Note that the superposition function is omitted here. In order to realize the pattern forming method shown in FIG. 1, first, a sample 25 is placed as shown by the solid line in the drawing, and only the fine patterns 1 and 2° 4 as shown in FIG. 1 are formed by electron beam lithography. In this case, a pattern is formed on the entire surface of the sample 25 using the step-and-repeat function of the moving stage 13. Thereafter, the sample 25 is moved to the area indicated by the broken line to form the remaining large pattern 3°5. This method takes a little longer to form than the second specific example, but since the time increase is only a small amount due to the movement time of the moving stage and the batch exposure time, it is possible to reduce the size of 0.5 μm or less. With regard to high-speed, high-precision pattern formation, this embodiment provides extremely better performance than the prior art. In the pattern forming procedure described above, electron beam lithography is performed first, but light exposure can also be performed first. Further, in addition to the -finger light exposure method, a reduction projection exposure method can also be employed.

一方、光露光法での使用波長はパターン形成を行なうレ
ジスト材料で決定される。電子線描画法で使用されるレ
ジスト材は電子線レジスト以外にディープ(Dasp)
 UV用レジスト、X線レジスト等があり、これに適合
した波長を選択する必要がある。即ち、光源としては、
水銀灯やキセノンランプ等の光源からエキシマレーザや
X線などを適用することが必要である。また、光露光法
以外に光・電子変換材料で構成したマスクを採用した一
括電子転写法の応用も考えられる。
On the other hand, the wavelength used in the light exposure method is determined by the resist material used to form the pattern. In addition to electron beam resist, the resist materials used in electron beam lithography are deep (Dasp).
There are UV resists, X-ray resists, etc., and it is necessary to select a wavelength that is compatible with these resists. That is, as a light source,
It is necessary to apply excimer laser, X-rays, etc. from a light source such as a mercury lamp or a xenon lamp. In addition to the light exposure method, it is also possible to apply a batch electronic transfer method that employs a mask made of a photo-electron conversion material.

さらに、第2,3図の試料室14は真空であるが、少な
くとも描画あるいは露光面近傍を特殊ガスで覆い、気相
成長法や化学エツチング法を利用して直接パターン形成
をすることもできる。
Furthermore, although the sample chamber 14 in FIGS. 2 and 3 is in a vacuum, it is also possible to cover at least the vicinity of the drawing or exposure surface with a special gas and directly form a pattern using vapor phase growth or chemical etching.

第2,3図は具体例の一部である0本例では微細スポッ
トを得るために電界放射型電子銃を用い。
Figures 2 and 3 are some concrete examples. In this example, a field emission type electron gun is used to obtain a fine spot.

ガウシアンビームを使用した。しかし、矩形ビームや可
変整形ビームを使用することも可能である。
A Gaussian beam was used. However, it is also possible to use rectangular beams or variable shaped beams.

また、光露光法には転写、1:1投影、縮小投影露光法
など述べたが、レーザ描画法などの応用も可能である。
Furthermore, although transfer, 1:1 projection, reduction projection exposure, and the like have been described as light exposure methods, it is also possible to apply laser drawing methods and the like.

第2図の例では同時描画、露光の場合を述べたが、同時
でなく、また、ステップアンドリピート機能を用い、第
3図の例の様に構成しても構オ)ない。また、第2図の
場合、対物レンズのミラー20やレンズ群(A)21.
に穴を開けずに、対物レンズユニット22を電子線光軸
に出し入れしても本発明を具体化することができる。
In the example of FIG. 2, a case of simultaneous drawing and exposure has been described, but it is also possible to use a step-and-repeat function and configure it as in the example of FIG. 3. In the case of FIG. 2, the mirror 20 of the objective lens and the lens group (A) 21.
The present invention can be implemented even if the objective lens unit 22 is moved in and out of the electron beam optical axis without making a hole.

尚1本実施例では同一システムの中でパターン形成をす
ることを述べたが、個々の手段、即ち。
In this embodiment, it has been described that pattern formation is performed within the same system, but individual means, ie.

個々の電子線描画装置と光露光装置とで試料のハンドリ
ング機能(人間を介することを含む)を通して同一レジ
スト上にパターン形成を行なっても本発明の方法を実施
することができる。
The method of the present invention can be carried out even if patterns are formed on the same resist using individual electron beam lithography devices and light exposure devices through sample handling functions (including human intervention).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子線描画法の有する高精度な微細パ
ターン形、成能力と光露光法の有する高速パターン形成
能力とを引き出すことができるので、0.5μm以下の
寸法を有する高精度なパターンを高速に形成できる。
According to the present invention, it is possible to utilize the high-precision fine pattern forming ability of the electron beam lithography method and the high-speed pattern forming ability of the light exposure method. Patterns can be formed at high speed.

具体的には最新鋭の電子線描画装置が0.1μmを最小
寸法とするLSIパターンを描画する場合、約1枚/ 
h rの処理時間であったが、本発明を利用することに
より、描画率を1/10以下に減少することができ、処
理能力も数倍に向上する。
Specifically, when the latest electron beam lithography equipment draws an LSI pattern with a minimum dimension of 0.1 μm, approximately 1/LSI pattern is drawn.
However, by using the present invention, the drawing rate can be reduced to 1/10 or less, and the processing capacity can be improved several times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本となるパターン形成方法の説明図
、第2図、第3図は本発明の実施例になる装置構成を示
す概略図である。 1.2.4・・・電子線描画パターン、3,5・・・光
露光パターン、6・・・電界放射用チップ、10・・・
対物レンズ、11・・・偏向コイル、12・・・静電偏
向電極、13・・・移動台、14・・・試料室、15・
・・光源、17・・・レティクル(マスク)、19・・
・レンズ群(2)、2o・・・ミラー、21・・・レン
ズ群(1)、22・・・対物レンズユニット、23・・
・電子線、24・・・UV光、25・・・試料、26・
・・対物レンズ、29・・・マスク。
FIG. 1 is an explanatory diagram of a pattern forming method which is the basis of the present invention, and FIGS. 2 and 3 are schematic diagrams showing an apparatus configuration according to an embodiment of the present invention. 1.2.4... Electron beam drawing pattern, 3, 5... Light exposure pattern, 6... Field emission chip, 10...
Objective lens, 11... Deflection coil, 12... Electrostatic deflection electrode, 13... Moving stage, 14... Sample chamber, 15...
...Light source, 17...Reticle (mask), 19...
・Lens group (2), 2o...mirror, 21...lens group (1), 22...objective lens unit, 23...
・Electron beam, 24...UV light, 25...sample, 26.
...Objective lens, 29...mask.

Claims (1)

【特許請求の範囲】 1、一部のパターンを電子線によるパターン形成手段で
、上記以外のパターンを光によるパターン形成手段で形
成することを特徴としたパターン形成方法。 2、電子線描画手段と、光露光手段と、上記二つの手段
を同時もしくはいずれか一者を選択的に動作せしめる手
段とを有することを特徴とするパターン形成装置。 3、電子線描画手段とレーザ描画手段とを結合したこと
を特徴とした第2項記載のパターン形成装置。 4、電子線描画手段として電界放射電子源を用いたこと
を特徴とした請求の範囲第2項記載のパターン形成装置
。 5、上記特許請求の範囲第1項記載の方法において、同
一フィールドを同時に電子線および光にて描画あるいは
転写、投影することを特徴とするパターン形成方法。 6、光源として、紫外線放射源、エキレマレーザ源ある
てはX線源を用いたことを特徴とした第2項記載のパタ
ーン形成装置。 7、形成するパターンの内部を光による転写、投影ある
いは描画手段で形成し、上記パターンの輪郭部分を電子
線描画手段で形成することを特徴とした第1項記載のパ
ターン形成方法。
[Scope of Claims] 1. A pattern forming method characterized in that part of the pattern is formed by an electron beam pattern forming means, and other patterns are formed by a light pattern forming means. 2. A pattern forming apparatus comprising an electron beam drawing means, a light exposure means, and a means for operating the above two means simultaneously or selectively. 3. The pattern forming apparatus according to item 2, characterized in that an electron beam drawing means and a laser drawing means are combined. 4. The pattern forming apparatus according to claim 2, wherein a field emission electron source is used as the electron beam writing means. 5. A pattern forming method according to claim 1, characterized in that the same field is simultaneously drawn, transferred, or projected using an electron beam and light. 6. The pattern forming apparatus according to item 2, wherein the light source is an ultraviolet radiation source, an electron laser source, or an X-ray source. 7. The pattern forming method according to item 1, wherein the inside of the pattern to be formed is formed by optical transfer, projection or drawing means, and the outline of the pattern is formed by electron beam drawing means.
JP62028238A 1987-02-12 1987-02-12 Pattern formation and device therefor Pending JPS63197333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028238A JPS63197333A (en) 1987-02-12 1987-02-12 Pattern formation and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028238A JPS63197333A (en) 1987-02-12 1987-02-12 Pattern formation and device therefor

Publications (1)

Publication Number Publication Date
JPS63197333A true JPS63197333A (en) 1988-08-16

Family

ID=12243013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028238A Pending JPS63197333A (en) 1987-02-12 1987-02-12 Pattern formation and device therefor

Country Status (1)

Country Link
JP (1) JPS63197333A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152199A (en) * 1991-11-27 1993-06-18 Nec Kansai Ltd Method for forming resist pattern
JPH06291017A (en) * 1992-04-17 1994-10-18 Canon Inc Semiconductor manufacturing device
EP0841681A2 (en) * 1996-11-07 1998-05-13 Nikon Corporation Exposure apparatus and exposure method
US6218056B1 (en) * 1999-03-30 2001-04-17 International Business Machines Corporation Method of making highly defined bilayer lift-off mask
EP1187171A2 (en) * 2000-09-07 2002-03-13 Ushio Denki Kabushiki Kaisya Processor and method for processing
WO2006129374A1 (en) * 2005-06-03 2006-12-07 Advantest Corporation Patterning method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152199A (en) * 1991-11-27 1993-06-18 Nec Kansai Ltd Method for forming resist pattern
JPH06291017A (en) * 1992-04-17 1994-10-18 Canon Inc Semiconductor manufacturing device
EP0841681A2 (en) * 1996-11-07 1998-05-13 Nikon Corporation Exposure apparatus and exposure method
EP0841681A3 (en) * 1996-11-07 1999-05-12 Nikon Corporation Exposure apparatus and exposure method
US6218056B1 (en) * 1999-03-30 2001-04-17 International Business Machines Corporation Method of making highly defined bilayer lift-off mask
EP1187171A2 (en) * 2000-09-07 2002-03-13 Ushio Denki Kabushiki Kaisya Processor and method for processing
EP1187171A3 (en) * 2000-09-07 2005-03-23 Ushio Denki Kabushiki Kaisya Processor and method for processing
WO2006129374A1 (en) * 2005-06-03 2006-12-07 Advantest Corporation Patterning method
JPWO2006129374A1 (en) * 2005-06-03 2008-12-25 株式会社アドバンテスト Patterning method
JP4533931B2 (en) * 2005-06-03 2010-09-01 株式会社アドバンテスト Patterning method

Similar Documents

Publication Publication Date Title
US5831272A (en) Low energy electron beam lithography
JP3689516B2 (en) Electron beam exposure system
US4169230A (en) Method of exposure by means of corpuscular beam shadow printing
JP3904765B2 (en) Lithographic apparatus
JPH02125609A (en) Semiconductor manufacturing equipment
JPH05206014A (en) Mask for lithography, designing and alignment of lithographic mask and sequential exposure system
JPS63197333A (en) Pattern formation and device therefor
US4227090A (en) Electron beam microfabrication apparatus and method
JPH065664B2 (en) Method and apparatus for manufacturing electronic lithography mask
JP2843249B2 (en) Method and apparatus for manufacturing a device
US3855023A (en) Manufacture of masks
US6680481B2 (en) Mark-detection methods and charged-particle-beam microlithography methods and apparatus comprising same
US5160845A (en) Alignment technique for masked ion beam lithography
Asai et al. 1: 4 demagnifying electron projection system
JPS622535A (en) Electron beam exposing device
JPH06236842A (en) Electron beam exposing device
EP0969325B1 (en) Lithographic projection apparatus
EP0965888A2 (en) Lithography apparatus
JP2789706B2 (en) Exposure equipment
JP2007048804A (en) Charged particle beam lithography apparatus and method of forming same
JPH04302132A (en) Scanning type projection electron beam exposure system and method
JP2000036459A (en) Lithography projecting device
JPS5915380B2 (en) Fine pattern transfer device
Ohta et al. New electron optical column with large field for nanometer e-beam lithography system
Ahmed Electron-beam lithography for microcircuit fabrication