JPS6378102A - Reflection preventing film for tellurium dioxide - Google Patents

Reflection preventing film for tellurium dioxide

Info

Publication number
JPS6378102A
JPS6378102A JP61224481A JP22448186A JPS6378102A JP S6378102 A JPS6378102 A JP S6378102A JP 61224481 A JP61224481 A JP 61224481A JP 22448186 A JP22448186 A JP 22448186A JP S6378102 A JPS6378102 A JP S6378102A
Authority
JP
Japan
Prior art keywords
film
substrate
teo2
light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61224481A
Other languages
Japanese (ja)
Inventor
Takashi Iwabuchi
岩渕 俊
Takeo Miyata
宮田 威男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61224481A priority Critical patent/JPS6378102A/en
Publication of JPS6378102A publication Critical patent/JPS6378102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled film having high light resisting power against laser ray, without giving change to optical characteristics by forming an aluminum oxide film and a silicon dioxide film in this order on the surface of a tellurium dioxide substrate. CONSTITUTION:The titled film is formed by laminating the aluminum oxide (Al2O3) film and the silicon dioxide (SiO2) film in this order on at least one surface of the tellurium dioxide (TeO2) substrate which is polished for an acoustooptic element. Thus, the TeO2 substrate of the acoustooptic element does not almost change the optical characteristics, and reflection loss is small, thereby taking out the laser ray with good efficiency, even in the case that the polarization state of the laser ray incident upon said TeO2 substrate is either ordinary ray incidence or extraordinary ray incidence. And, the titled film can be proof against the continuous irradiation of the laser ray.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、音響光学効果を利用した音響光学素子(光変
調素子、光偏向素子、音響光学フィルターなど)の素材
である二酸化テルル用反射防止膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an antireflection film for tellurium dioxide, which is a material for acousto-optic elements (light modulation elements, optical deflection elements, acousto-optic filters, etc.) that utilize the acousto-optic effect. It is something.

従メ塙術 最近、音響光学効果を利用した音響光学素子に二酸化テ
ルル結晶(以下TeO2と記す。)が用いられている。
Recently, tellurium dioxide crystals (hereinafter referred to as TeO2) have been used in acousto-optic elements that utilize the acousto-optic effect.

近年、可視域のレーザ光源は、短波長化と大出力化の傾
向にある。紫外部の吸収端が330 nmと短かいTe
 02は、レーザ光に対する耐久性も100 w/mm
2と大きい特徴を有している。そのためArイオンL/
−ザ(波長488mm)やHe −Cdレーザ(波長4
42mm)光等の光変調器や光偏向器用音響光学素子と
して盛んに利用されて来ている。さらに白色光源から任
意の単色光を得る音響光学フィルターとしても利用され
てきている。
In recent years, laser light sources in the visible range have tended to have shorter wavelengths and higher outputs. Te has a short ultraviolet absorption edge of 330 nm.
02 also has a durability against laser light of 100 w/mm.
It has two major features. Therefore, Ar ion L/
- laser (wavelength 488 mm) and He -Cd laser (wavelength 4
42 mm) has been widely used as an acousto-optic element for optical modulators and optical deflectors. Furthermore, it has been used as an acousto-optic filter to obtain arbitrary monochromatic light from a white light source.

しかし、TeO2は、光学的異方性を有しており結晶方
位(001)軸に対して入射する光の偏波面が垂直か水
平かによって常光線と異常光線とに別れる。さらに、こ
の時TeO2は、常光線に対しては常光線屈折率(以下
nQと記す。)を有し、また異常光線に対しては異常光
線屈折率(以下n6と記す。)とそれぞれ違った屈折率
を有している。
However, TeO2 has optical anisotropy and is divided into ordinary rays and extraordinary rays depending on whether the plane of polarization of the light incident on the crystal orientation (001) axis is perpendicular or horizontal. Furthermore, at this time, TeO2 has an ordinary ray refractive index (hereinafter referred to as nQ) for ordinary rays, and an extraordinary ray refractive index (hereinafter referred to as n6) for extraordinary rays. It has a refractive index.

つまり、Te 02は、屈折率が入射する光の偏波面に
よってnoからneまで変化し、入射する光が常光か異
常光かさらにはランダム光かによって分光光学特性が大
きく変化することになる。
In other words, the refractive index of Te 02 changes from no to ne depending on the polarization plane of the incident light, and the spectral optical characteristics change greatly depending on whether the incident light is ordinary light, extraordinary light, or random light.

TeO2が光変調器・偏向器や音響光学フィルターに盛
んに使用されるに至り、その透過率向上と常光や異常光
等入射する光の偏波面によって分光光学特性が変化しな
いことを目的とした反射防止膜の要望が高まってきた。
TeO2 has come to be widely used in optical modulators, deflectors, and acousto-optic filters, and is used for reflection purposes to improve its transmittance and to prevent spectral optical characteristics from changing depending on the polarization plane of incident light, such as ordinary light or extraordinary light. Demand for protective films has increased.

従来、TeO2用反射防止膜には、赤外域から紫外域ま
での広範囲に亘り光学的に透明で反射防止膜として製作
が容易な弗化マグネシウム(以下MgF2と記す。)が
用いられている。
Conventionally, magnesium fluoride (hereinafter referred to as MgF2) has been used as an antireflection film for TeO2 because it is optically transparent over a wide range from the infrared region to the ultraviolet region and is easy to manufacture as an antireflection film.

発明が解決しようとする問題点 しかしながら、TeO2は、入射する光の偏波面によっ
て屈折率がnoからn6まで変化(例えば波長633 
nmの時no = 2.26、rle=2.41)する
性質を有しているため、屈折率1.38のMgF2膜で
は、入射する光の偏波面によって光学特性が大きく変化
する等の問題は、改善されなかった。例えは、MgF2
膜の反射防止膜を形成したTeO2基板に、可視光レー
ザで代表的なHe−Neレーザ(e長632.8nm)
の光が入射した場合、片面での反射損失は、常光線入射
で0.7%あり、また異常光線入射時では1.3%(二
も成り常光線入射時の約2倍も大きくなっており反射損
失に大きな変化を生じていた。
Problems to be Solved by the Invention However, the refractive index of TeO2 changes from no to n6 depending on the polarization plane of the incident light (for example, the wavelength of 633
(n = 2.26, rle = 2.41), therefore, a MgF2 film with a refractive index of 1.38 has problems such as its optical properties changing greatly depending on the polarization plane of the incident light. was not improved. For example, MgF2
A He-Ne laser (e length 632.8 nm), which is a typical visible light laser, is applied to a TeO2 substrate on which an antireflection film is formed.
When the light of This caused a large change in reflection loss.

さらに、近年レーザ光の短波長化が進み、使用される光
源に、Arレーザ(波長488nm)やHe−Cdレー
ザ(波長442nm)等が盛んに使われるように成って
きている。それに伴ない、TeO2のn、)やne (
例えば442 nmの時no = 2.38、n6=2
.55)自身も大きくなり、第8図に示すように、例え
ば波長442nmのHe−Cdレーザ光がMgF2膜の
反射防止膜を形成したTe 02基板に入射した場合、
常光線入射(図中n□の線)と異常光線(図中n6の線
)入射による片面での反射損失は、図中矢印で示すよう
にそれぞれ1.2%と2.1%と成り、波長632.8
 nm光の時と比べ常光線と異常光線入射時の光学特性
の変化は約1%とさらに大きく成っている。また、反射
損失の値もHe−Neレーザ光入射時に比べ約2倍に増
加している。さらに、使用されるレーザ装置も年々大出
力化の傾向にあるため、MgF2膜の吸湿性によりレー
ザ光照射に伴ない吸収熱が増大することで照射する部分
のMgF2膜が劣化し透過率が大きく低下してしまうと
いう問題を有していた。
Furthermore, in recent years, the wavelength of laser light has progressed to become shorter, and Ar lasers (wavelength: 488 nm), He-Cd lasers (wavelength: 442 nm), and the like have come to be widely used as light sources. Along with this, n, ) and ne ( of TeO2
For example, at 442 nm no = 2.38, n6 = 2
.. 55) As shown in Fig. 8, when a He-Cd laser beam with a wavelength of 442 nm is incident on a Te 02 substrate on which an anti-reflection film of MgF2 film is formed,
The reflection losses on one side due to the incidence of ordinary rays (line n□ in the figure) and extraordinary rays (line n6 in the figure) are 1.2% and 2.1%, respectively, as shown by the arrows in the figure. Wavelength 632.8
Compared to the case of nm light, the change in optical characteristics when ordinary rays and extraordinary rays are incident is about 1%, which is even larger. Further, the value of reflection loss also increases approximately twice compared to when the He--Ne laser beam is incident. Furthermore, as the laser equipment used also tends to have higher output year by year, the hygroscopicity of the MgF2 film increases the amount of heat absorbed during laser beam irradiation, which deteriorates the MgF2 film in the irradiated area and increases the transmittance. There was a problem in that it decreased.

本発明は、上記問題点を解決するもので、入射するレー
ザ光の偏光面が変化しても光学特性の変化がほとんど無
く、しかもレーザ光照射に対しても耐久性の有る二酸化
テルル用反射防止膜を提供することを目的とするもので
ある。
The present invention solves the above problems, and is an anti-reflection film for tellurium dioxide that has almost no change in optical properties even if the polarization plane of the incident laser light changes, and is durable against laser light irradiation. The purpose is to provide a membrane.

問題点を解決するための手段 本発明は、音響光学素子として研磨仕上げされたTeO
2基板の少なくとも一表面上に、酸化アルミニウム(以
下Az2 o3と記す)膜を、次に二酸化ケイ素(以下
5i02と記す)膜を重ねて形成することにより上記目
的を達成するものである。
Means for Solving the Problems The present invention uses polished TeO as an acousto-optic element.
The above object is achieved by overlappingly forming an aluminum oxide (hereinafter referred to as Az2O3) film and then a silicon dioxide (hereinafter referred to as 5i02) film on at least one surface of two substrates.

作    用 本発明は、上記構成により音響光学素子であるTeO2
基板に入射するレーザ光等光の偏光状態が常光線入射ま
たは、異常光線入射になっても光学特性の変化がほとん
ど無く、さら(二反射損失も少なく効率良くレーザ光を
取り出すことが出来て、しかもレーザ光の連続照射にも
耐えるようにしたものである。
Function The present invention provides an acousto-optic element TeO2 with the above configuration.
Even when the polarization state of light such as a laser beam that enters the substrate becomes ordinary or extraordinary light, there is almost no change in the optical properties, and the laser light can be efficiently extracted with low reflection loss. Furthermore, it is designed to withstand continuous irradiation with laser light.

実施例 以下に本発明のArイオンレーザ光(波長488nm)
に於ける実施例を図面を用いて説明する。
Examples Below are examples of Ar ion laser light (wavelength 488 nm) of the present invention.
An example will be described with reference to the drawings.

第1図は、TeO2基板上の本発明による一表面上に形
成した二層反射防止膜の構造図である。図中3は、両面
が光学研磨された波長488 nmでn□が2.33、
neが2.49なるTe 02基板である。
FIG. 1 is a structural diagram of a two-layer anti-reflection coating formed on one surface of a TeO2 substrate according to the present invention. 3 in the figure has a wavelength of 488 nm and n□ of 2.33, both sides of which are optically polished.
It is a Te 02 substrate with ne of 2.49.

lは、屈折率n1が163なるAI!203膜であり光
学的厚みn1d1= 77.27 nmである。
l is AI with a refractive index n1 of 163! 203 film and has an optical thickness n1d1=77.27 nm.

2は、屈折率n2が1.45なる5i02膜であり光学
的厚みn2d2 = 56.65 nmである。上記の
それぞれの光学的膜厚は、三層反射防止膜に関するアプ
ライド・オプテイクス第16巻第10号2722頁に示
されるムンヤールの関係式(Mouchar t ;A
pplied 0ptics VoL 16. No、
 10 P2722)を満足し、さらに三層目の膜厚が
零になる様に決定した。
2 is a 5i02 film having a refractive index n2 of 1.45 and an optical thickness n2d2 = 56.65 nm. Each of the above optical film thicknesses can be determined using the Munchar relational formula (Mouchar t;A
pplied 0ptics VoL 16. No,
10 P2722), and the thickness of the third layer was determined to be zero.

第2図は、Te 02基板上に本実施例によるArイオ
ンレーザ(λ=488nm)用に形成した反射防止膜の
波長依存性を示したものである。図中矢印n□の線は、
TeO2基板に常光線が入射した場合であり、また矢印
n6の線は、異常光線が入射した場合の反射率の波長依
存性を示したものである。波長488 nmでの反射率
は0.1%以下“であり、しかもTeO2基板の屈折率
がn□からn6まで変化しても中心波長である4 88
 nmでの反射率は、図中矢印で示すように両者が重な
り合ってしまう程変化がなく良好な結果が得られた。
FIG. 2 shows the wavelength dependence of an antireflection film formed on a Te 02 substrate for an Ar ion laser (λ=488 nm) according to this example. The line indicated by the arrow n□ in the figure is
This is the case when ordinary rays are incident on the TeO2 substrate, and the line indicated by arrow n6 shows the wavelength dependence of the reflectance when extraordinary rays are incident. The reflectance at a wavelength of 488 nm is 0.1% or less, and even if the refractive index of the TeO2 substrate changes from n□ to n6, it remains at the center wavelength 488
As shown by the arrow in the figure, the reflectance in nm did not change so much that the two overlapped with each other, and good results were obtained.

第3図、第4図にそれぞれ第一層目のAl2O5膜1、
第二層目の5i02膜2の光学的膜厚n1diの設定値
を中心に対して10%増減した場合の反射率の波長依存
性を示した。
Figures 3 and 4 show the first layer of Al2O5 film 1,
The wavelength dependence of the reflectance is shown when the optical thickness n1di of the second layer 5i02 film 2 is increased or decreased by 10% with respect to the set value.

第3図は、二層目の5i02膜2の光学的厚みを56.
65nmとし、TeO2基板3に密着する一層目のA#
zOs膜1の光学的厚みを変化させた場合で、A120
3膜1の光学的厚みは、69.54 nm−85,00
nmの範囲において、波長488nmでの反射率が0.
17%と良好であった。
FIG. 3 shows the optical thickness of the second layer 5i02 film 2 of 56.
The first layer A# has a thickness of 65 nm and is in close contact with the TeO2 substrate 3.
When the optical thickness of the zOs film 1 is changed, A120
3 The optical thickness of film 1 is 69.54 nm - 85,00
In the nm range, the reflectance at a wavelength of 488 nm is 0.
It was a good 17%.

第4因は、Te 02基板3に密着する一層目のAJl
’203膜1の光学的厚みを77.27nmとし、Al
t203膜l上に形成される二層目の5i02膜2の光
学的厚みを変化させた場合で、5i02膜2の光学的厚
みは、50.98nm〜62.31nm の範囲におい
て、波長488 nmでの反射率が0.1%程度と良好
な結果を得た。
The fourth factor is the AJL of the first layer that is in close contact with the Te 02 substrate 3.
'203 film 1 has an optical thickness of 77.27 nm, and Al
When the optical thickness of the second layer 5i02 film 2 formed on the t203 film l is changed, the optical thickness of the 5i02 film 2 is in the range of 50.98 nm to 62.31 nm at a wavelength of 488 nm. Good results were obtained with a reflectance of about 0.1%.

第5図に、Al2O3膜1.5i02膜2の光学的厚み
が同時に10%増加した場合と10%減少した場合の反
射率の波長依存性を示した。波長488nmでの反射率
は、0.46%程度となるので、 両面反射防止膜の場
合の全反射率は約0.9%となり実用上杵される限界を
示す。
FIG. 5 shows the wavelength dependence of the reflectance when the optical thickness of the Al2O3 film 1.5i02 film 2 is simultaneously increased by 10% and decreased by 10%. Since the reflectance at a wavelength of 488 nm is about 0.46%, the total reflectance in the case of a double-sided anti-reflection coating is about 0.9%, which is the practical limit.

この図からも明らかな様に本実施例によるArイオンレ
ーザ光に対するTe 02用反射防止膜の光学的厚みと
しては、一層目のAJ203膜lが69.54nm〜8
5.00 nm、二層目の5i02膜2が50.98n
m〜62.31 nmの範囲にあることが好適である。
As is clear from this figure, the optical thickness of the antireflection film for Te 02 against Ar ion laser light according to this example is 69.54 nm to 8 nm for the first layer AJ203 film l.
5.00 nm, second layer 5i02 film 2 is 50.98n
The range is preferably from m to 62.31 nm.

第6図は、本発明に於ける第2の実施例で、一層目のA
l2O3膜1の光学的厚みを73.63nm、二層目の
5i02膜2の光学的厚みを53.98nmとし、中心
波長を465 nmとすることで短波長レーザの代表的
なArイオンレーザ(λ=488nm)とHe−Cdレ
ーザ(λ=442nm)の両レーザ光に対して反射防止
効果を持たせた時の反射率の波長依存性を示す。この図
からも明らかの様に、波長442 nmと488 nm
での反射率は、それぞれ0.15%程度と良好である。
FIG. 6 shows a second embodiment of the present invention, in which the first layer A
By setting the optical thickness of the 12O3 film 1 to 73.63 nm, the optical thickness of the second layer 5i02 film 2 to 53.98 nm, and setting the center wavelength to 465 nm, the optical thickness of the Ar ion laser (λ The wavelength dependence of the reflectance when an antireflection effect is provided to both laser beams of a He-Cd laser (λ=488 nm) and a He-Cd laser (λ=442 nm) is shown. As is clear from this figure, the wavelengths are 442 nm and 488 nm.
The reflectance in each case is good at about 0.15%.

さらに入射するレーザ光が常光線(図中n□の線)でも
異常光線(図中n6の線)でも反射率にはほとんど変化
が無く、両レーザ光に対して充分な反射防止効果の有る
反射防止膜が容易に出来た。
Furthermore, there is almost no change in reflectance whether the incident laser beam is an ordinary ray (line n□ in the figure) or an extraordinary ray (line n6 in the figure), and there is a sufficient reflection prevention effect for both laser beams. A preventive film was easily formed.

第7図は、TeO2基板3(8mmX10mmX2mm
t)上(=、本実施例による反射防止膜(Al2O3/
5iO2)を両面に形成した材料と従来技術のMgF2
膜を両面に形成した試料のHe −Cd  レーザ光に
よる耐光力テストの結果を示したものである。
Figure 7 shows a TeO2 substrate 3 (8mm x 10mm x 2mm
t) on (=, anti-reflection film according to this example (Al2O3/
5iO2) formed on both sides and conventional technology MgF2
This figure shows the results of a light resistance test using a He-Cd laser beam of a sample with a film formed on both sides.

He−Cdv−ザの出力は、37mW、レーザ光のビー
ム径はレンズを用いて26μmに絞り、パワー密度を7
0 w/mz12 (−設定し、試料に連続照射した時
の透過率の経時変化を示している。この図から明らかの
様に(A#Ox/5iO2)膜は、He −Cdレーザ
光を連続12時間以上照射しても透過率の経時変化は、
2.5%程度でありMg F2膜の17%の変化に対し
て約1/7に透過率の経時変化を少なくすることが出来
る。
The output of the He-Cdv-za is 37 mW, the beam diameter of the laser beam is focused to 26 μm using a lens, and the power density is 7 mW.
0 w/mz12 (-) and shows the change in transmittance over time when the sample is continuously irradiated.As is clear from this figure, the (A#Ox/5iO2) film is Even after irradiation for 12 hours or more, the transmittance changes over time.
The change in transmittance over time can be reduced to about 1/7 of the 17% change in the MgF2 film, which is about 2.5%.

発明の効果 以上のように本発明は、TeO2基板の少なくとも一表
面上に、A#205膜、次に5i02膜を重ねて形成し
たTe 02用反射防止膜を提供するもので、Te 0
2基板に入射するレーザ光等の光源の偏波面が常光線、
異常光線あるいはランダム偏光に変化しても光学特性の
変化がほとんど無く、さらにレーザ光に対しても高い耐
光力な有する反射防止膜ができ、その効果は大きい。
Effects of the Invention As described above, the present invention provides an antireflection film for Te 02 formed by stacking an A#205 film and then a 5i02 film on at least one surface of a TeO2 substrate.
2. The plane of polarization of the light source such as a laser beam that enters the substrate is the ordinary ray,
The anti-reflection coating has a great effect, with almost no change in optical properties even when the light changes to extraordinary rays or randomly polarized light, and which has high light resistance even to laser light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例におけるTeO2用反射防止
膜を説明するための断面図、第2図はTeO2基板の一
表面上に(A#203/5iO2)膜を形成し、常光線
と異常光線を入射させた場合の反射率の波長依存性を示
す図、第3図は一層目のA4203膜の光学的膜厚を設
定値より10%増減した場合の反射率の波長依存性を示
す図、第4図は二層目の5i02膜の光学的膜厚を設定
値より10%増減した場合の反射率の波長依存性を示す
図、第5図はA1205膜と5i02膜を同時に設定値
より10%増減した場合の反射率依存性を示す図、第6
図は本発明におけるArイオンレーザ光とHe−Cdレ
ーザ光に対する反射率の波長依存性を示す因、第7図は
TeO2基板上の両面に本実施における反射防止(A1
203/S i 02 )膜と従来技術のMgF2膜を
He−Cdレーザ光を用いた時の透過率の経時及化を示
す図、第8図は、TeO2基板に一表面上(=従来技術
のMgFz膜を形成し、常光線と異常光線を入射させた
場合の反射率の波長依存性を示した図である。 1 =・AJ205膜、2−8iO2膜、3− TeO
2基板。 第 1 図 第 2 図 傅丑 (nyy+ジ 第3図 成長(tryn) 第 4 図 潰張 (カm2 第5図 狼ス (層す 第6図 倦畏(77祠 第7図 時間(h朧rs)
FIG. 1 is a cross-sectional view for explaining an antireflection film for TeO2 in an example of the present invention, and FIG. 2 shows an (A#203/5iO2) film formed on one surface of a TeO2 substrate, and Figure 3 shows the wavelength dependence of reflectance when an extraordinary ray is incident. Figure 3 shows the wavelength dependence of reflectance when the optical thickness of the first layer A4203 film is increased or decreased by 10% from the set value. Figure 4 shows the wavelength dependence of reflectance when the optical thickness of the second layer 5i02 film is increased or decreased by 10% from the set value, and Figure 5 shows the wavelength dependence of the reflectance when the optical thickness of the second layer 5i02 film is increased or decreased by 10% from the set value. Figure 6 shows reflectance dependence when increased or decreased by 10%.
The figure shows the wavelength dependence of the reflectance for Ar ion laser light and He-Cd laser light in the present invention. Figure 7 shows the reflection prevention (A1
203/S i 02 ) film and the prior art MgF2 film using He-Cd laser light. It is a diagram showing the wavelength dependence of reflectance when a MgFz film is formed and ordinary rays and extraordinary rays are incident. 1 = AJ205 film, 2-8iO2 film, 3-TeO
2 boards. Figure 1 Figure 2 Figure 2 (nyy + Ji Figure 3 Growth (tryn) Figure 4 Destruction (ka m2 Figure 5 Wolf (Layer) Figure 6 Figure 7 Time (h Oboros) )

Claims (2)

【特許請求の範囲】[Claims] (1)二酸化テルル基板の少なくとも一表面上に、酸化
アルミニウム膜、二酸化ケイ素膜をこの順に形成したこ
とを特徴とする二酸化テルル用反射防止膜。
(1) An antireflection film for tellurium dioxide, characterized in that an aluminum oxide film and a silicon dioxide film are formed in this order on at least one surface of a tellurium dioxide substrate.
(2)一層目の酸化アルミニウム膜、二層目の二酸化ケ
イ素の光学的膜厚の値を、それぞれ69.54nm〜8
5.00nm、50.98nm〜62.31nmに選定
した特許請求の範囲第1項記載の二酸化テルル用反射防
止膜。
(2) The optical thickness values of the first layer of aluminum oxide film and the second layer of silicon dioxide are 69.54 nm to 8.
The antireflection film for tellurium dioxide according to claim 1, which has a wavelength of 5.00 nm and 50.98 nm to 62.31 nm.
JP61224481A 1986-09-22 1986-09-22 Reflection preventing film for tellurium dioxide Pending JPS6378102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224481A JPS6378102A (en) 1986-09-22 1986-09-22 Reflection preventing film for tellurium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224481A JPS6378102A (en) 1986-09-22 1986-09-22 Reflection preventing film for tellurium dioxide

Publications (1)

Publication Number Publication Date
JPS6378102A true JPS6378102A (en) 1988-04-08

Family

ID=16814472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224481A Pending JPS6378102A (en) 1986-09-22 1986-09-22 Reflection preventing film for tellurium dioxide

Country Status (1)

Country Link
JP (1) JPS6378102A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140746A (en) * 1975-05-30 1976-12-03 Nec Corp Optical element for surface destruction-proof
JPS52156643A (en) * 1976-06-23 1977-12-27 Nippon Chemical Ind Optical element of coated synthetic resin substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140746A (en) * 1975-05-30 1976-12-03 Nec Corp Optical element for surface destruction-proof
JPS52156643A (en) * 1976-06-23 1977-12-27 Nippon Chemical Ind Optical element of coated synthetic resin substrate

Similar Documents

Publication Publication Date Title
US4515441A (en) Dielectric polarizer for high average and high peak power operation
US6271968B1 (en) Cut-off filters
JPS5862604A (en) Polaroid element
JPH02182447A (en) Dielectric multilayer reflecting film
US3428388A (en) Layered structure ultraviolet polarizer
JPS6378102A (en) Reflection preventing film for tellurium dioxide
US5557466A (en) Two-wavelength antireflection film
JPS6028603A (en) Prism type beam splitter
JPS6378103A (en) Reflection preventing film for tellurium dioxide
JPS62123401A (en) Optical thin film for far ultraviolet rays
KR100266539B1 (en) Ktp antireflection film for a second harmonic generation
JPS6239801A (en) Semi-transparent mirror
JP2764440B2 (en) Anamorphic prism
CN212160134U (en) Polarization maintaining film for total reflection prism and total reflection prism
JPH07225316A (en) Polarization beam splitter
JPS63142302A (en) Optical thin film having high resistance to laser light
JPH02193104A (en) Beam splitter for infrared
JPS62127701A (en) Antireflection film
JPS63266402A (en) Antireflection film
JPS59104603A (en) Beam splitter
JPH08114702A (en) Multilayered antireflection film
JPS59137901A (en) Reflection preventive film
KR0131372B1 (en) Thin film disign method for optical pick-up using the phase compensation
JPH10154345A (en) Polarizing beam splitter
JPS6236604A (en) Antireflection film