JPS6378055A - Micropattern detector - Google Patents

Micropattern detector

Info

Publication number
JPS6378055A
JPS6378055A JP22084586A JP22084586A JPS6378055A JP S6378055 A JPS6378055 A JP S6378055A JP 22084586 A JP22084586 A JP 22084586A JP 22084586 A JP22084586 A JP 22084586A JP S6378055 A JPS6378055 A JP S6378055A
Authority
JP
Japan
Prior art keywords
objective lens
piezo element
hole
lens
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22084586A
Other languages
Japanese (ja)
Inventor
Satoshi Iwata
敏 岩田
Moritoshi Ando
護俊 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22084586A priority Critical patent/JPS6378055A/en
Publication of JPS6378055A publication Critical patent/JPS6378055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To enable fine adjustment with high accuracy by mounting an objective lens to a piezo element provided with a through-hole in such a manner that the optical axis passes the through-hole. CONSTITUTION:The piezo element 8 is constituted of an outer peripheral part 8b which is piezo element and a movable part 8c consisting of a metal, etc., and is further provided with the through-hole 8a along a movable direction (axial direction) in the central part of a movable part 8c. The objective lens 4 is fixed via a coupling member 9 to the bottom end of the element 8 in such a manner that the center line of the through-hole 8a and the optical axis of the lens 4 align to each other. An incident beam Li on the lens 4 and an exit beam Lo therefrom are thereby passed as they are through the through-hole 8a without being hindered by the element 8. The element 8 is driven in the above-mentioned manner, by which the fine adjustment of the lens 4 coiciding exactly with the slight movement thereof with high accuracy is permitted.

Description

【発明の詳細な説明】 〔概  要〕 本発明は、微小パターンを対物レンズを介して高倍率で
検知する微小パターン検知装置において、透光孔を設け
たピエゾ素子に、光軸が上記透光孔を通るように上記対
物レンズを取付けたことにより、対物レンズの高精度な
微調整を可能にしたものである。
[Detailed Description of the Invention] [Summary] The present invention provides a micropattern detection device that detects micropatterns at high magnification through an objective lens, in which a piezo element provided with a light-transmitting hole has an optical axis aligned with the light-transmitting hole. By attaching the objective lens so as to pass through the hole, it is possible to finely adjust the objective lens with high precision.

〔産業上の利用分野〕[Industrial application field]

本発明は、例えばICの配線パターン等の微小パターン
を光学的に高倍率で検知する微小パターン検知装置、特
にはその検知光学系における対物レンズの焦点調整手段
の改良に関する。
The present invention relates to a micropattern detection device that optically detects a micropattern such as an IC wiring pattern at high magnification, and particularly to an improvement in the focus adjustment means of an objective lens in the detection optical system.

近年、IC等の高密度化に伴い、使用される配線パター
ンもミクロン単位まで微細化してきており、それを高精
度で検知するための装置の必要性が年々高まっている。
In recent years, as the density of ICs and the like has increased, the wiring patterns used have also become finer down to the micron level, and the need for devices that can detect them with high precision is increasing year by year.

〔従来の技術〕[Conventional technology]

従来の微小パターン検知装置は、レーザ等から出力され
た光ビームを高倍率の対物レンズを介して被検知対象上
に照射し、その反射光を上記対物レンズを介してCCD
センサ等で検知して、これを信号処理することにより、
上記被検査対象上の微細パターンを検知し得るようにな
っている。
A conventional micropattern detection device irradiates a light beam output from a laser or the like onto an object to be detected through a high-magnification objective lens, and transmits the reflected light to a CCD via the objective lens.
By detecting it with a sensor etc. and processing it as a signal,
The fine pattern on the object to be inspected can be detected.

更に、上記微細パターン上に焦点を合わせるために、上
記対物レンズの微調整機構が設けられている。このよう
な微調整機構としては、外部から伸長した腕状の部材の
一端で対物レンズを支持するとともに、上記部材の他端
をピエゾ素子を介して固定し、このピエゾ素子を対物レ
ンズの光軸方向に駆動することにより、上記腕状の部材
を介して対物レンズの位置をH2N整するようにしたも
のがある。
Further, a fine adjustment mechanism for the objective lens is provided in order to focus on the fine pattern. In such a fine adjustment mechanism, the objective lens is supported by one end of an arm-shaped member extending from the outside, and the other end of said member is fixed via a piezo element, and this piezo element is aligned with the optical axis of the objective lens. There is one in which the position of the objective lens is adjusted to H2N via the arm-shaped member by driving in the direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の対物レンズ微調整機構では、ピエゾ素子の動
きが必らず腕状の部材を介して対物レンズに伝達される
ため、上記部材自体の傾きや長さ等の微小な変化までも
が対物レンズに伝達される。
In the conventional objective lens fine adjustment mechanism described above, the movement of the piezo element is necessarily transmitted to the objective lens via the arm-shaped member, so even minute changes such as the inclination and length of the member itself are reflected in the objective lens. transmitted to the lens.

そのため、対物レンズの動きをピエゾ素子の動きに完全
に一致させることができず、高J′n度な微調整が困難
であるという問題点があった。
Therefore, there is a problem in that the movement of the objective lens cannot be perfectly matched with the movement of the piezo element, making it difficult to make fine adjustments with a high J'n degree.

本発明は、上記問題点に迄み、対物レンズの高精度な微
調整を可能にする微小パターン検知装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to overcome the above-mentioned problems and provide a micropattern detection device that enables highly accurate fine adjustment of an objective lens.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、可動方向に沿って透光孔を設けたピエゾ素子
に対して、対物レンズをその光軸が上記透光孔を通過す
るように固定し、上記ピエゾ素子の駆動により対物レン
ズの微調整を行う対物レンズ微調整手段を設けたことを
特徴とする。
In the present invention, an objective lens is fixed to a piezo element having a light transmission hole along a movable direction so that its optical axis passes through the light transmission hole, and the objective lens is moved by driving the piezo element. The present invention is characterized in that an objective lens fine adjustment means for performing adjustment is provided.

〔作   用〕[For production]

上記のように対物レンズの光軸がピエゾ素子の透光孔を
通るように両者を互いに固定すれば、上記光軸とピエゾ
素子の可動方向とは常に一致し、しかも両者の移動量も
一致する。従って、このような状態で上記ピエゾ素子を
駆動すれば、その動きに完全に一致した、対物レンズの
高精度な微調整が可能となる。
If they are fixed to each other so that the optical axis of the objective lens passes through the transparent hole of the piezo element as described above, the optical axis and the moving direction of the piezo element will always match, and the amount of movement of both will also match. . Therefore, by driving the piezo element in such a state, it is possible to finely adjust the objective lens with high accuracy, completely matching the movement of the piezo element.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

本実施例は、レーザ1、ミラー2、ビームスプリッタ3
および対物レンズ4からなる照明系と、対物レンズ4、
ビームスプリッタ3およびCCDセンサ5からなる検知
系と、信号処理系としてのCPU6と、モニタ用の出カ
ニニット7とを備えている。更に、上記対物レンズ4の
Hmm平手段して、透光孔8aを設けたピエゾ素子8を
有しており、このピエゾ素子8に対物レンズ4が固定さ
れている。
In this embodiment, a laser 1, a mirror 2, a beam splitter 3
and an illumination system consisting of an objective lens 4, an objective lens 4,
It includes a detection system consisting of a beam splitter 3 and a CCD sensor 5, a CPU 6 as a signal processing system, and an output unit 7 for monitoring. Furthermore, the Hmm flatness of the objective lens 4 includes a piezo element 8 provided with a transparent hole 8a, and the objective lens 4 is fixed to this piezo element 8.

上記ピエゾ素子8および対物レンズ4の構成を、具体的
に第2図(al、(tl)に示す。同図(alは拡大斜
視図であり、同図(blは一部断面を有する拡大正面図
である。
The configuration of the piezo element 8 and the objective lens 4 is specifically shown in FIG. 2 (al, tl). It is a diagram.

同図(a)に示されるように、ピエゾ素子8は、ピエゾ
本体である外周部8bと、金属等でできた中央の可動部
8Cとから構成されており、更に、上記可動部8cの中
心部に可動方向(軸方向)に沿って上記透光孔8aが設
けられている。この透光孔8aは、対物レンズ4に対す
る入射、出射ビーム径以上の径を持ち、単に中空であっ
てもよく、また何らかの透明物質で充たされていてもよ
い。
As shown in FIG. 8A, the piezo element 8 is composed of an outer peripheral portion 8b which is a piezo main body, and a central movable portion 8C made of metal or the like. The transparent hole 8a is provided along the movable direction (axial direction). The light-transmitting hole 8a has a diameter larger than the diameter of the incident and output beams with respect to the objective lens 4, and may be simply hollow, or may be filled with some kind of transparent material.

このような構成からなるピエゾ素子8の下端に、結合部
材9を介して対物レンズ4が固定されており、透光孔8
aの中心線と対物レンズ4の光軸とが一致するようにし
である。上記結合部材9は、環状の部材であって、第2
図(blに明らかなように、その内側に雌ねじ部9a、
9bを有し、これらがそれぞれピエゾ素子8の可動部8
cの下端部と対物レンズ4の上端部とに形成された雄ね
じ部8d、4aに螺合することにより、上記可動部8c
と対物レンズ4とを互いに固定させている。このような
構成では、対物レンズ4に対する入射ビームL8および
出射ビームL0は、ピエゾ素子8によって妨げられるこ
となく、その透光孔8aをそのまま通過する。なお、ピ
エゾ素子8の外周部8bは、外部から伸長した支持部1
0によって安定して支持されている。
The objective lens 4 is fixed to the lower end of the piezo element 8 having such a configuration via a coupling member 9, and the light transmitting hole 8
The center line of a is made to coincide with the optical axis of the objective lens 4. The coupling member 9 is an annular member, and the second
As shown in the figure (bl), there is a female threaded part 9a on the inside.
9b, and these are the movable parts 8 of the piezo element 8, respectively.
The movable part 8c is screwed into the male screw parts 8d and 4a formed at the lower end of the objective lens 4 and the upper end of the objective lens 4.
and objective lens 4 are fixed to each other. In such a configuration, the incident beam L8 and the outgoing beam L0 to the objective lens 4 are not obstructed by the piezo element 8 and pass through the transparent hole 8a thereof as they are. Note that the outer peripheral portion 8b of the piezo element 8 is connected to the support portion 1 extending from the outside.
It is stably supported by 0.

上述したように、ピエゾ素子8に対して、その中心にあ
る透光孔8a内に対物レンズ4の光軸(すなわち、照明
系および検知系の光軸)を合わせるように対物レンズ4
を固定したので、上記光軸とピエゾ素子8の可動方向と
は常に一致し、しかも移動量も一致する。従って、この
ような状態でピエゾ素子8を駆動することにより、その
微小な動きに完全に一致した、対物レンズ4の高精度な
微調整(例えば、100人単位の微調整)が可能になる
。なお、ピエゾ素子8の駆動は、第1図に示したCPU
6からのフォーカス信号Sに基づいて行われる。
As described above, the objective lens 4 is aligned with the piezo element 8 so that the optical axis of the objective lens 4 (that is, the optical axis of the illumination system and the detection system) is aligned with the transparent hole 8a located at the center of the piezo element 8.
Since it is fixed, the optical axis and the movable direction of the piezo element 8 always match, and the amount of movement also matches. Therefore, by driving the piezo element 8 in such a state, it is possible to perform highly accurate fine adjustment of the objective lens 4 (for example, fine adjustment in units of 100 people) that perfectly matches the minute movements. The piezo element 8 is driven by the CPU shown in FIG.
This is performed based on the focus signal S from 6.

以上のような微調整手段を備えた本実施例で微小パター
ン検知を行うには、第1図において、まずレーザ1から
出力されたレーザ光を、ミラー2、ビームスプリッタ3
および透光孔8aを介して、対物レンズ4によって微小
パターンP上に照射する。次に、その反射光を、再度対
物レンズ4、透光孔8aおよびビームスプリッタ3を介
してCCDセンサ5で検知する。この検知信号をCPU
6に取り込み、出カニニット7でパターンの検知画像を
モニタする。それとともに、上記検知信号に基づく上述
したフォーカス信号Sでピエゾ素子8を駆動することに
より、対物レンズ4の微小な焦点調整をフィードバンク
をかけて行う。なお、対物レンズ4を粗調整するには、
第2図(b)に示した支持部10を、不図示のステップ
モータ等により対物レンズ4の光軸方向に移動させるよ
うにすればよく、これも上記フォーカス信号Sでフィー
ドバンクをかけて行えばよい。
In order to detect a minute pattern in this embodiment equipped with the above-mentioned fine adjustment means, in FIG.
Then, the light is irradiated onto the micro pattern P by the objective lens 4 through the transparent hole 8a. Next, the reflected light is detected again by the CCD sensor 5 via the objective lens 4, the transparent hole 8a, and the beam splitter 3. This detection signal is sent to the CPU
6, and monitor the detected pattern image with the output unit 7. At the same time, by driving the piezo element 8 with the focus signal S described above based on the detection signal, fine focus adjustment of the objective lens 4 is performed by applying a feedbank. In addition, to roughly adjust the objective lens 4,
The support part 10 shown in FIG. 2(b) may be moved in the optical axis direction of the objective lens 4 by a step motor (not shown), etc., and this is also performed by applying a feedbank using the focus signal S. That's fine.

なお、上記実施例では対物レンズ4をピエゾ素子8に固
定するための手段として結合部材9を用いたが、両者が
互いに固定されるのであればどのような手段であっても
よく、例えば両者を接着材等で直接固定してもよい。
In the above embodiment, the coupling member 9 was used as a means for fixing the objective lens 4 to the piezo element 8, but any means may be used as long as the two are fixed to each other. It may also be directly fixed with an adhesive or the like.

また、上述した対物レンズ4の微調整および粗調整は、
検知信号系からのフィードバックループによってオート
フォーカスをかけることにより行うこともできる。
Further, the fine adjustment and coarse adjustment of the objective lens 4 described above are as follows.
This can also be done by applying autofocus using a feedback loop from the detection signal system.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、対物レンズの高精度な微調整が可能と
なり、よって微細なパターンに対しても正確な焦点合わ
せを行うことができ、精度の良い微小パターン検知が実
現できる。
According to the present invention, it is possible to finely adjust the objective lens with high precision, and therefore, accurate focusing can be performed even on a minute pattern, and accurate detection of a minute pattern can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略構成図、第2図(
a)、(b)はそれぞれ同実施例の主要部を示す拡大斜
視図、一部断面拡大正面図である。 4・・・対物レンズ、 8・・・ピエゾ素子、 8a・・・透光孔、 9・・・結合部材。
Figure 1 is a schematic configuration diagram showing an embodiment of the present invention, Figure 2 (
a) and (b) are an enlarged perspective view and a partially sectional enlarged front view showing the main parts of the same embodiment, respectively. 4...Objective lens, 8...Piezo element, 8a...Transparent hole, 9...Coupling member.

Claims (1)

【特許請求の範囲】 1)微小パターンを対物レンズ(4)を介して検知する
微小パターン検知装置において、 可動方向に沿って透光孔(8a)を設けたピエゾ素子(
8)に対して前記対物レンズをその光軸が前記透光孔を
通過するように固定し、前記ピエゾ素子の駆動により前
記対物レンズの微調整を行う対物レンズ微調整手段を設
けたことを特徴とする微小パターン検知装置。 2)前記透光孔は前記ピエゾ素子の中心部に設けられて
いることを特徴とする特許請求の範囲第1項記載の微小
パターン検知装置。 3)前記透光孔は前記対物レンズに対する入射ビーム径
および出射ビーム径以上の径を有することを特徴とする
特許請求の範囲第1項または第2項記載の微小パターン
検知装置。
[Claims] 1) In a micropattern detection device that detects micropatterns through an objective lens (4), a piezo element (
In contrast to 8), the objective lens is fixed such that its optical axis passes through the transparent hole, and an objective lens fine adjustment means is provided for finely adjusting the objective lens by driving the piezo element. Micro pattern detection device. 2) The micro pattern detection device according to claim 1, wherein the light transmitting hole is provided in the center of the piezo element. 3) The micro pattern detection device according to claim 1 or 2, wherein the light-transmitting hole has a diameter larger than the diameter of the incident beam and the diameter of the output beam with respect to the objective lens.
JP22084586A 1986-09-20 1986-09-20 Micropattern detector Pending JPS6378055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22084586A JPS6378055A (en) 1986-09-20 1986-09-20 Micropattern detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22084586A JPS6378055A (en) 1986-09-20 1986-09-20 Micropattern detector

Publications (1)

Publication Number Publication Date
JPS6378055A true JPS6378055A (en) 1988-04-08

Family

ID=16757443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22084586A Pending JPS6378055A (en) 1986-09-20 1986-09-20 Micropattern detector

Country Status (1)

Country Link
JP (1) JPS6378055A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060224A (en) * 2012-09-14 2014-04-03 Disco Abrasive Syst Ltd Processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060224A (en) * 2012-09-14 2014-04-03 Disco Abrasive Syst Ltd Processing device

Similar Documents

Publication Publication Date Title
US4615621A (en) Auto-focus alignment and measurement system and method
US5548403A (en) Phase shifting diffraction interferometer
US5198872A (en) Apparatus for detecting the wavelength of laser light
EP0406413A1 (en) Scanning type tunnel microscope
JPH02118609A (en) Automatically focusing method and apparatus for microscope
US4580900A (en) Auto focus alignment and measurement system and method
JPS59113407A (en) Apparatus for forming focus of light on surface
KR940002356B1 (en) Method and apparatus for noncontact automatic focusing
US5101226A (en) Distance and tilt sensing apparatus
US6504611B2 (en) Two stage optical alignment device and method of aligning optical components
US10620420B2 (en) Optical system for use with microscope
US4625103A (en) Automatic focusing device in microscope system
JPS6378055A (en) Micropattern detector
JP2003050109A (en) Surface shape measuring device and measuring method
JP2000056232A (en) Microscope
JPS6070407A (en) Method and mechanism for observing optical fiber core
JPS6370110A (en) Distance measuring apparatus
ATE152337T1 (en) RANGE METER FOR EYE OPTICAL DEVICES WITH SCANNING BEAM
JPH04168776A (en) Optical axis alignment device
JPH10239014A (en) Focal point detecting device and inspecting device
JPS63279103A (en) Minute displacement measuring microscope
JP2000266513A (en) Optical waveguide type position detecting sensor
JPH0521318A (en) Autofocusing mechanism
JPS58158618A (en) Automatic focus adjusting device
SU1543308A1 (en) Device for measuring absolute coefficients of mirror reflection