JPS63279103A - Minute displacement measuring microscope - Google Patents

Minute displacement measuring microscope

Info

Publication number
JPS63279103A
JPS63279103A JP11534687A JP11534687A JPS63279103A JP S63279103 A JPS63279103 A JP S63279103A JP 11534687 A JP11534687 A JP 11534687A JP 11534687 A JP11534687 A JP 11534687A JP S63279103 A JPS63279103 A JP S63279103A
Authority
JP
Japan
Prior art keywords
optical system
objective lens
reflected
displacement measuring
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11534687A
Other languages
Japanese (ja)
Other versions
JPH0781820B2 (en
Inventor
Kiyozo Koshiishi
越石 喜代三
Eiichi Sato
栄一 佐藤
Sadao Shigetomi
重富 貞夫
Chiaki Sato
千秋 佐藤
Akitoshi Toda
戸田 明敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11534687A priority Critical patent/JPH0781820B2/en
Priority to US07/191,606 priority patent/US4971445A/en
Priority to EP88107513A priority patent/EP0297254A1/en
Publication of JPS63279103A publication Critical patent/JPS63279103A/en
Publication of JPH0781820B2 publication Critical patent/JPH0781820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To simply perform optical adjustment with high accuracy, by unifying an objective lens and a displacement measuring optical system as a single block structure and combining said structure with an observation optical system. CONSTITUTION:The laser beam emitted from a beam source 1 becomes parallel beam shaping apparatus 2 to be reflected by a beam splitter 6 while the reflected beam is further reflected by a semipermeable mirror 21 to pass through a 1/4 wavelength plate 7 and a fine spot for measuring displacement is projected on a specimen 9 by an objective lens 8. The reflected beam from the specimen 9 passes the objeive lens 8 and the 1/4 wavelength plate 7 and the laser beam reflected by the semipermeable mirror 21 is incident to the beam splitter 6 to be split into two beam and one of them is incident on critial angle prisms 15, 16 and projected on two-split photoreceptors 17, 18 by lenses 22, 23 to be photoelectrically converted. As mentioned above, by unifying the displacement measuring system containing the objective lens with a block 24, the shift of an optical axis is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学的手法により、非接触で測定対象物表面の
プロファイルを計測する微小変位測定顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a micro-displacement measuring microscope that measures the profile of a surface of a measurement object in a non-contact manner using an optical method.

〔従来の技術〕[Conventional technology]

光学的手法により、非接触で4111定対象物表面のプ
ロファイルを計測する手段については、すでに対物レン
ズの焦点ずれを利用する発明がなされており、特開昭5
9−90007号公報、特開昭60−38606号公報
等に開示されている。さらに前記発明を発展させたもの
として、測定対象物表面のプロファイルを計測する光学
系と、同一視野を観察する顕微光学系とを備え、両光学
系の対物レンズを含む部分の光軸を同軸にして、41す
定対象を観察しながらその表面プロファイルを計測する
趣旨の発明が特開昭62−36502号公報に開示され
ている。
Regarding the means of measuring the profile of the surface of a 4111 constant object by an optical method in a non-contact manner, an invention that utilizes the focal shift of an objective lens has already been made, and was disclosed in Japanese Patent Laid-Open No. 5
It is disclosed in JP-A No. 9-90007, Japanese Patent Application Laid-Open No. 60-38606, and the like. A further development of the invention is to include an optical system that measures the profile of the surface of the object to be measured and a microscopic optical system that observes the same field of view, with the optical axes of the parts of both optical systems including the objective lens being coaxial. An invention for measuring the surface profile of an object while observing it is disclosed in Japanese Patent Laid-Open No. 62-36502.

第4図はその原理を示す光学系の一例で、1は直線偏光
を出力するレーザー光源、2はビームエクスパンダ、3
は絞り、4,6.14はビームスプリッタ、5は照明系
、5 aはランプ、5b。
Figure 4 is an example of an optical system showing the principle, where 1 is a laser light source that outputs linearly polarized light, 2 is a beam expander, and 3 is a laser light source that outputs linearly polarized light.
4, 6.14 is a beam splitter, 5 is an illumination system, 5a is a lamp, 5b.

5dはレンズ、5cは絞り、6aは偏光ビームスブリッ
ト面、7は1/4波長板、8は対物レンズ、9は試料、
10は結像レンズ、11はプリズム、12は接眼レンズ
、13は観察照明光カットフィルタ、15.16は臨界
角プリズム、17.18は二分割受光素子、19は載物
台、20は載物台を上下動させるためのツマミである。
5d is a lens, 5c is an aperture, 6a is a polarized beam splitting surface, 7 is a quarter wavelength plate, 8 is an objective lens, 9 is a sample,
10 is an imaging lens, 11 is a prism, 12 is an eyepiece, 13 is an observation illumination light cut filter, 15.16 is a critical angle prism, 17.18 is a two-split light receiving element, 19 is a stage, and 20 is a stage This is a knob for moving the table up and down.

レーザー光源1から発せられたレーザー光は、ビームエ
クスパンダ2によりビーム径が拡大され、かつ平行光と
なり、絞り3を経てビームスプリッタ4に入射する。
A laser beam emitted from a laser light source 1 has its beam diameter expanded by a beam expander 2, becomes a parallel beam, and enters a beam splitter 4 through an aperture 3.

一方ランプ5a、  レンズ5b、絞り5c、  レン
ズ5dにより構成される観察用照明系5からの光はビー
ムスプリッタ4に入射し、レーザー光と一つになってビ
ームスプリッタ6に入射する。ビームスプリッタ6によ
り観察光軸に入射したレーザー光と照明光は偏光ビーム
スブリット面5a。
On the other hand, light from an observation illumination system 5 composed of a lamp 5a, a lens 5b, an aperture 5c, and a lens 5d enters a beam splitter 4, and enters a beam splitter 6 together with the laser light. The laser beam and illumination light incident on the observation optical axis by the beam splitter 6 form a polarized beam splitting surface 5a.

1/4波長板7を通り対物レンズ8に入射する。The light passes through the quarter-wave plate 7 and enters the objective lens 8 .

なお1/4波長板7を通る時、レーザー光は直線偏光か
ら円偏光に変換される。また、照明光は対物レンズ8に
より視野全体を照明し、レーザー光は試料9上に変位測
定用の微小スポットを投影する。
Note that when passing through the quarter-wave plate 7, the laser beam is converted from linearly polarized light to circularly polarized light. Further, the illumination light illuminates the entire field of view through the objective lens 8, and the laser light projects a minute spot for displacement measurement onto the sample 9.

試料9から反射した照明光は対物レンズ8゜1/4波長
板7.ビームスプリッタ6を通り、結像レンズ10.プ
リズム1.1により接眼レンズ12の視野絞り面に結像
する。
The illumination light reflected from the sample 9 is passed through an objective lens 8° and a 1/4 wavelength plate 7. After passing through the beam splitter 6, the image forming lens 10. An image is formed by the prism 1.1 on the field stop plane of the eyepiece 12.

一方、レーザー光の試料反射光は対物レンズ8で集光さ
れ、1/4波長板7を通ることにより入射時と90°振
動面が回転した直線偏光となって、偏光ビームスブリッ
ト面6aに入る。レーザー光はこの面6aで反射して観
察照明光カットフィルター13を通り、ビームスプリッ
タ14で部分された後、一方は臨界角プリズム15に、
他方は臨界角プリズム16に入射し、それぞれ二分割受
光素子17.18に入る。これ以降の変位測定の原理は
特開昭59−90007号公報、特開昭60−3860
6号公報等に詳しく記載されているので省略する。
On the other hand, the sample reflected light of the laser beam is condensed by the objective lens 8, passes through the quarter-wave plate 7, becomes linearly polarized light whose vibration plane is rotated by 90 degrees from the time of incidence, and enters the polarized beam splitting surface 6a. . The laser beam is reflected by this surface 6a, passes through the observation illumination light cut filter 13, and is split into parts by the beam splitter 14, one of which is sent to the critical angle prism 15.
The other light enters the critical angle prism 16 and enters the two-split light receiving elements 17 and 18, respectively. The principle of displacement measurement from this point on is disclosed in Japanese Patent Application Laid-open Nos. 59-90007 and 60-3860.
Since it is described in detail in Publication No. 6, etc., it will be omitted here.

また、特開昭62−36502号公報には上記臨界角プ
リズムを用いた方法の他に非点収差法を用いた方法に関
しても記載されており、測定対象を観察しながらその表
面プロファイルを計測しようという目的を原理的には達
成している。
Furthermore, in addition to the above-mentioned method using a critical angle prism, JP-A No. 62-36502 also describes a method using an astigmatism method, which attempts to measure the surface profile of an object while observing it. In principle, this goal has been achieved.

なお、以上に掲げた微小変位検出法を、以下の説明では
、焦点ズレ検出法と呼ぶことにする。
Note that the minute displacement detection method described above will be referred to as a focus shift detection method in the following explanation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来例においては、変位4111定光学系と観察光
学系とが対物レンズを共有して光軸を同軸に構成してい
るために、鏡体の振動が直接変位測定・光学系にノイズ
として悪影響を及ぼすことと、光学的調整が難しく熟練
を要すること、さらにはプロファイル情報の収集機能と
して融通性を持たせ難11等の問題がある。
In the above conventional example, since the displacement 4111 constant optical system and the observation optical system share an objective lens and configure their optical axes to be coaxial, the vibration of the mirror body directly affects the displacement measurement/optical system as noise. There are other problems, such as the fact that the optical adjustment is difficult and requires skill, and it is difficult to provide flexibility as a profile information collection function.

そこで本発明は、光学的調整を簡単かつ高精度に行なう
ことができ、振動にも強い微小変位測定顕微鏡を提供す
ることを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a micro-displacement measuring microscope that can easily and accurately perform optical adjustment and is resistant to vibrations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し目的を達成するために、次
のような手段を講じた。すなわち、変位測定光学系と観
察光学系とを備え、両光学系の対物レンズを含む部分の
光軸を同軸にして成る微小変位測定顕微鏡において、対
物レンズと変位測定光学系とをブロック構造体として一
体化し、これを観察光学系と組合せるようにした。
In order to solve the above-mentioned problems and achieve the object, the present invention takes the following measures. That is, in a minute displacement measuring microscope that is equipped with a displacement measuring optical system and an observation optical system, and the optical axes of the parts including the objective lenses of both optical systems are coaxial, the objective lens and the displacement measuring optical system are constructed as a block structure. This was integrated and combined with the observation optical system.

〔作用〕[Effect]

このような手段を講じたことにより、光学的調整が簡単
になり、しかも変位測定光学系を低重心となし得るため
に外部振動などに対する安定性が増す。
By taking such measures, optical adjustment becomes simple, and the displacement measuring optical system can be made to have a low center of gravity, thereby increasing stability against external vibrations and the like.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す図であり、1′は直線
偏光を出力する光源、2′はビーム形状整形装置、21
.25は半透鏡、22.23はレンズ、24.35はブ
ロック構造体、26はレーザー光減光フィルタ、27.
28はXY移動ステージ、29.30はXY移動ステー
ジ駆動源、31はピニオン、32はラック、33は微動
駆動装置、34は微動装置である。なお、第4図と同一
部分には同一符号を付しである。なお光源1′としては
、本発明の如く、測定感度が非常に高く、振動を嫌い、
小型化を必要とする装置においては半導体レーザーを使
用することが望ましい。
FIG. 1 is a diagram showing an embodiment of the present invention, in which 1' is a light source that outputs linearly polarized light, 2' is a beam shape shaping device, and 21
.. 25 is a semi-transparent mirror, 22.23 is a lens, 24.35 is a block structure, 26 is a laser beam attenuation filter, 27.
28 is an XY moving stage, 29.30 is an XY moving stage drive source, 31 is a pinion, 32 is a rack, 33 is a fine movement drive device, and 34 is a fine movement device. Note that the same parts as in FIG. 4 are given the same reference numerals. Note that the light source 1', as in the present invention, has very high measurement sensitivity, dislikes vibration,
It is desirable to use semiconductor lasers in devices that require miniaturization.

直線偏光を出力する光源1から発せられたレーザー光は
、シリトリガルレンズ等のビーム形状整形装置2により
円形断面かつ平行光となり、ビームスプリッタ6で反射
され、更に半透鏡21で反射されて1/4波長板7を通
り、対物レンズ8により試料9上に変位測定用の微小ス
ポットを投影する。なお、1/4波長板7を通る時のレ
ーザー光は直線偏光から円偏光に変換される。
Laser light emitted from a light source 1 that outputs linearly polarized light is turned into parallel light with a circular cross section by a beam shape shaping device 2 such as a silitrigal lens, reflected by a beam splitter 6, and further reflected by a semi-transparent mirror 21 to be 1/2 A minute spot for displacement measurement is projected onto a sample 9 by an objective lens 8 through a four-wavelength plate 7 . Note that the laser beam when passing through the quarter-wave plate 7 is converted from linearly polarized light to circularly polarized light.

試料9からの反射光は対物レンズ8.1/4波長板7を
通る。この時、レーザー光は入射時と90°振動面が回
転した直線偏光となる。半透鏡21で反射したレーザー
光は、ビームスプリッタ6に入射し、三方されて、一方
は臨界角プリズム15に、他方は臨界角プリズム16に
入射し、レンズ22.23により、それぞれ二分割受光
素子17.18上に縮小投影される。二分割受光素子1
7.18で光電変換された後の信号処理は特開昭59−
90007号公報、 特開昭60−38606号公報と
同様である。
The reflected light from the sample 9 passes through the objective lens 8 and the 1/4 wavelength plate 7. At this time, the laser beam becomes linearly polarized light whose vibration plane has been rotated by 90 degrees from that at the time of incidence. The laser beam reflected by the semi-transparent mirror 21 enters the beam splitter 6, is split into three directions, one enters the critical angle prism 15, the other enters the critical angle prism 16, and is split into two light receiving elements by lenses 22 and 23. 17. It is reduced and projected onto 18. Two-split light receiving element 1
The signal processing after photoelectric conversion in 7.18 was described in Japanese Patent Application Laid-Open No. 1983-
This is the same as JP-A No. 90007 and JP-A-60-38606.

本発明においては以上述べた変位1lll定用光学系諸
要素をブロック構造体24内に一体化して構成し、第2
図に示す如く単体として取扱えるようにしたことを第1
の特徴としている。なお、T32図においては第1図の
変位測定光学系における1/4波長板7の位置を実線で
示す7′の位置に変えた場合の例を示している。この例
のように観察光学系の光路中から1/4波長板7を除く
ことにより、顕微鏡像に混入するフレアーを除去でき、
鋭敏な像を得ることができる。
In the present invention, the various elements of the optical system for determining the displacement 1llll described above are integrated into the block structure 24, and the second
The first thing is that it can be handled as a single unit as shown in the figure.
It is a feature of Note that FIG. T32 shows an example in which the position of the quarter-wave plate 7 in the displacement measuring optical system of FIG. 1 is changed to the position 7' shown by the solid line. By removing the quarter-wave plate 7 from the optical path of the observation optical system as in this example, flare mixed into the microscope image can be removed.
A sharp image can be obtained.

観察用光学系は次のようになっている。ランプ5a、レ
ンズ5b、5d、絞り5cにより構成される照明系5か
らの光は、半透鏡25で反射された後、前記半透鏡21
を通りレーザー光と一つになって1/4波長板7を経て
、対物レンズ8により試料9の視野全体を照明する。
The observation optical system is as follows. Light from the illumination system 5 composed of a lamp 5a, lenses 5b, 5d, and an aperture 5c is reflected by a semi-transparent mirror 25, and then reflected by the semi-transparent mirror 21.
The beam passes through the 1/4 wavelength plate 7 and illuminates the entire field of view of the sample 9 through the objective lens 8.

試料9からの反射光は対物レンズ8.1/4波長板7.
半透鏡21,25.  レーザー光減光フィルタ26を
通り、結像レンズ10.プリズム11により接眼レンズ
12の視野絞り面に結像する。
The reflected light from the sample 9 is passed through the objective lens 8.1/4 wavelength plate 7.
Semi-transparent mirror 21, 25. The laser beam passes through the attenuation filter 26 and passes through the imaging lens 10. An image is formed by the prism 11 on the field stop surface of the eyepiece lens 12.

XY移動ステージ27.28は試料9を載せる台であり
、XY移動ステージ駆動源29.30によってX方向ま
たはY方向に移動させることができるようになっている
。かくして試料9とその面に焦点を結んだレーザー光を
相対的に走査させ得るものとなっている。
The XY movement stage 27.28 is a table on which the sample 9 is placed, and can be moved in the X direction or the Y direction by an XY movement stage drive source 29.30. In this way, the laser beam focused on the sample 9 and its surface can be scanned relative to each other.

本実施例によれば次のような作用効果を奏する。According to this embodiment, the following effects are achieved.

焦点ズレ検出法は極めて高感度な表面計測法であり、そ
の感度は対物レンズの焦点深度の範囲をはるかに越え、
ナノメートルのオーダーに達するので、わずかな光軸ズ
レも精度上悪影響を及ぼす上?二、変位測定光学系の焦
点位置の設定、振動除去が重要なポイントとなる。この
ため一般によく知られている顕微鏡の構成法では所要機
能を実現することが困難である。しかるに本装置では対
物レンズ8を含む変位測定光学系をブロック構造体24
に一体化させたことにより、光軸ズレを防ぐことができ
る上、観察像の焦点を合せた後で、更に細かく変位測定
光学系の焦点位置を調節できる。
The defocus detection method is an extremely sensitive surface measurement method, and its sensitivity far exceeds the depth of focus of the objective lens.
Since it reaches the order of nanometers, even the slightest deviation of the optical axis has a negative effect on accuracy. Second, setting the focal position of the displacement measurement optical system and eliminating vibrations are important points. For this reason, it is difficult to realize the required functions using generally well-known microscope construction methods. However, in this device, the displacement measurement optical system including the objective lens 8 is mounted on the block structure 24.
By integrating the displacement measurement optical system with the optical system, it is possible to prevent optical axis deviation, and after the observation image is focused, the focal position of the displacement measurement optical system can be adjusted more finely.

またブロック構造体35とは、別体構成であるので、変
位測定光学系の重心位置を低く設定することができる。
Furthermore, since it is configured separately from the block structure 35, the center of gravity of the displacement measuring optical system can be set low.

このため外部振動等の影響を受は難い等の効果がある。Therefore, it has the advantage of being less susceptible to external vibrations and the like.

換言すれば、本発明の第2の特徴は、観察光学系のうち
、照明光学系と接眼光学系と試料台部とをブロック構造
体35内に一体化して構成し、対物レンズを含む変位Δ
1す足先学系と分離した点にある。
In other words, the second feature of the present invention is that, of the observation optical system, the illumination optical system, the eyepiece optical system, and the sample stage are integrated into the block structure 35, and the displacement Δ including the objective lens is
1) It is separated from the advanced science system.

なお−軸可動性の微動装置34としては、弾性変形を利
用した緩衝効果のある構造が望ましい。
Note that it is desirable that the axially movable fine movement device 34 have a structure that utilizes elastic deformation to provide a buffering effect.

第3図はその具体例を示す斜視図である。図示の如く、
微動装置34は、ブロック構造体24(本図では不図示
)とラック32を連結するための装置であって、Z軸方
向に対する位置軸可動性をもたせたものとなっている。
FIG. 3 is a perspective view showing a specific example thereof. As shown,
The fine movement device 34 is a device for connecting the block structure 24 (not shown in this figure) and the rack 32, and has positional axis movability in the Z-axis direction.

すなわち、41.42はラック32の一側面に固定化さ
れたブロック支柱であり、このブロック支柱41.42
の上下両端にはバネ部材43.44が複数のビス45に
て固定されている。そして両ばね部材43.44間には
ブロック構造体24を取付けるための取付はブロック4
6が挟持されている。ばね部材43の上側面には微動駆
動装置33の変位端が当接している。かくして、微動駆
動装置33のエネルギーによりブロック構造体24をZ
軸方向に粗動させ得るものとなっている。
That is, 41.42 is a block support fixed to one side of the rack 32, and this block support 41.42
Spring members 43 and 44 are fixed to both upper and lower ends of the body with a plurality of screws 45. And between both spring members 43 and 44, a block 4 is installed to attach the block structure 24.
6 is being held. A displacement end of the fine movement drive device 33 is in contact with the upper surface of the spring member 43 . In this way, the energy of the fine movement drive device 33 moves the block structure 24 to Z.
It is capable of coarse movement in the axial direction.

以上の説明においては、臨界角プリズムを用いた場合に
ついて説明したが、特開昭62−36502号公報に記
載されているように非点収差法を用いた光学系について
も同様に本発明を適用できることは明らかであり、さら
にナイフェツジ法のような他の焦点ズレ検出法にも適用
できるものである。このほか、本発明の要旨を逸脱しな
い範囲で種々の変形実施も可能であるのは勿論である。
In the above explanation, the case where a critical angle prism is used has been explained, but the present invention can also be applied to an optical system using the astigmatism method as described in Japanese Patent Application Laid-Open No. 62-36502. It is obvious that this method can be used, and it can also be applied to other defocus detection methods such as the Knifezi method. In addition, it goes without saying that various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、対物レンズと変位7Illl定光学系
とをブロック構造体として一体化し、これを観察光学系
と組合せるようにしたので、光学的調整を簡単かつ高精
度に行なうことができ、振動にも強い微小変位測定顕微
鏡を提供することができる。
According to the present invention, the objective lens and the displacement constant optical system are integrated as a block structure, and this is combined with the observation optical system, so that optical adjustment can be performed easily and with high precision. It is possible to provide a micro-displacement measuring microscope that is resistant to vibrations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の一実施例を示す図で、第1図
は全体の構成を示す側面図、第2図はブロック構造体2
4のみを取出して示す図、第3図は微動装置34の斜視
図である。第4図は従来例を示す図である。 1.1′・・・直線偏光を出力するレーザー光源、2・
・・ビームエクスパンダ、2′・・・ビーム形状整形装
置、6・・・ビームスプリッタ、5・・・照明系、5a
・・・ランプ、5b、5d・・・レンズ、5c・・・絞
り、7・・・1/4波長板、8・・・対物レンズ、9・
・・試料、10・・・結像レンズ、11・・・プリズム
、12・・・接眼レンズ、15.16・・・臨界角プリ
ズム、17゜18・・・二分割受光素子、21.25・
・・半透鏡、22.23・・・レンズ、24.35・・
・ブロック構造体、26・・・レーザー光減光フィルタ
、27.28・・・XY移動ステージ、29.30・・
・XY移動ステージ駆動源、31・・・ビニオン、32
・・・ラック、33・・・微動駆動装置、34・・・微
動装置。 出願人代理人 弁理士 坪井 淳 第1図 第2図 第3図
1 to 3 are views showing one embodiment of the present invention, FIG. 1 is a side view showing the overall configuration, and FIG. 2 is a block structure 2.
FIG. 3 is a perspective view of the fine movement device 34. FIG. FIG. 4 is a diagram showing a conventional example. 1.1'... Laser light source that outputs linearly polarized light, 2.
... Beam expander, 2'... Beam shape shaping device, 6... Beam splitter, 5... Illumination system, 5a
...Lamp, 5b, 5d...Lens, 5c...Aperture, 7...1/4 wavelength plate, 8...Objective lens, 9...
... Sample, 10... Imaging lens, 11... Prism, 12... Eyepiece, 15.16... Critical angle prism, 17° 18... Two-split light receiving element, 21.25.
・・Semi-transparent mirror, 22.23・・Lens, 24.35・・
・Block structure, 26... Laser light attenuation filter, 27.28... XY movement stage, 29.30...
・XY moving stage drive source, 31...binion, 32
...Rack, 33...Fine movement drive device, 34...Fine movement device. Applicant's agent Patent attorney Jun Tsuboi Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)変位測定光学系と観察光学系とを備え、両光学系
の対物レンズを含む部分の光軸を同軸にして成る微小変
位測定顕微鏡において、前記対物レンズと前記変位測定
光学系とを単一のブロック構造体にて一体化したことを
特徴とする微小変位測定顕微鏡。
(1) In a minute displacement measuring microscope comprising a displacement measuring optical system and an observation optical system, with the optical axes of the parts of both optical systems including the objective lens being coaxial, the objective lens and the displacement measuring optical system are integrated into a single unit. A minute displacement measuring microscope characterized by being integrated into a single block structure.
(2)対物レンズと変位測定光学系とを一体化したブロ
ック構造体は、試料面に対して垂直方向に粗微動可能に
設けられたものである特許請求の範囲第1項記載の微小
変位測定顕微鏡。
(2) Micro displacement measurement according to claim 1, wherein the block structure that integrates the objective lens and the displacement measurement optical system is provided so as to be able to make coarse and fine movements in a direction perpendicular to the sample surface. microscope.
JP11534687A 1987-05-12 1987-05-12 Micro displacement measurement microscope Expired - Fee Related JPH0781820B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11534687A JPH0781820B2 (en) 1987-05-12 1987-05-12 Micro displacement measurement microscope
US07/191,606 US4971445A (en) 1987-05-12 1988-05-09 Fine surface profile measuring apparatus
EP88107513A EP0297254A1 (en) 1987-05-12 1988-05-10 Fine surface profile measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11534687A JPH0781820B2 (en) 1987-05-12 1987-05-12 Micro displacement measurement microscope

Publications (2)

Publication Number Publication Date
JPS63279103A true JPS63279103A (en) 1988-11-16
JPH0781820B2 JPH0781820B2 (en) 1995-09-06

Family

ID=14660254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11534687A Expired - Fee Related JPH0781820B2 (en) 1987-05-12 1987-05-12 Micro displacement measurement microscope

Country Status (1)

Country Link
JP (1) JPH0781820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047116A (en) * 1998-07-29 2000-02-18 Olympus Optical Co Ltd Microscopic system
JP2011501142A (en) * 2007-10-16 2011-01-06 レニショー・ピーエルシー Optical sensor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047116A (en) * 1998-07-29 2000-02-18 Olympus Optical Co Ltd Microscopic system
JP2011501142A (en) * 2007-10-16 2011-01-06 レニショー・ピーエルシー Optical sensor device
US8736846B2 (en) 2007-10-16 2014-05-27 Werth Messtechnik Gmbh Optical sensor device

Also Published As

Publication number Publication date
JPH0781820B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
KR100225923B1 (en) Phase shifting diffraction interferometer
EP0406413A1 (en) Scanning type tunnel microscope
US8351028B2 (en) Measuring device for measuring a focused laser beam
US6084672A (en) Device for optically measuring an object using a laser interferometer
US4932781A (en) Gap measuring apparatus using interference fringes of reflected light
JPS63279103A (en) Minute displacement measuring microscope
JP2005062012A (en) Vibration-proof type interferometer device
US5416538A (en) Object-surface-shape measuring apparatus
JPH10111217A (en) Optical axis adjusting equipment for aspherical mirror
Stevens Zone-plate interferometers
JPS619614A (en) Microscope
US5657117A (en) Device for examining optical waveguides
JP2003148939A (en) Autocollimator provided with microscope, and instrument for measuring shape using the same
JP2000205998A (en) Reflection eccentricity measuring apparatus
JPH07311117A (en) Apparatus for measuring position of multiple lens
US8773759B2 (en) Microscope having an adjustment device for the focus range
JPH0345802B2 (en)
JPS6242327Y2 (en)
JP2005147703A (en) Device and method for measuring surface distance
JPS62106309A (en) Objective lens type micro-displacement meter
JPS61158310A (en) Microscope
JP2005140589A (en) Interferometer
JPS6244601A (en) Moving mount table device
JPH05332878A (en) Light receiving device of autocollimator
JPS63223510A (en) Surface shape measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees