JPS637687A - Semiconductor laser wavelength stabilizer - Google Patents

Semiconductor laser wavelength stabilizer

Info

Publication number
JPS637687A
JPS637687A JP61149777A JP14977786A JPS637687A JP S637687 A JPS637687 A JP S637687A JP 61149777 A JP61149777 A JP 61149777A JP 14977786 A JP14977786 A JP 14977786A JP S637687 A JPS637687 A JP S637687A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
output
section
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61149777A
Other languages
Japanese (ja)
Other versions
JPH0459797B2 (en
Inventor
Koji Akiyama
浩二 秋山
Hideto Iwaoka
秀人 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61149777A priority Critical patent/JPS637687A/en
Priority to GB8627744A priority patent/GB2187592B/en
Priority to US06/937,359 priority patent/US4833681A/en
Priority to US06/942,448 priority patent/US4893353A/en
Priority to US06/943,670 priority patent/US4856899A/en
Priority to DE3643569A priority patent/DE3643569C2/en
Priority to DE3643629A priority patent/DE3643629C2/en
Priority to GB8630374A priority patent/GB2185619B/en
Priority to DE3643553A priority patent/DE3643553C2/en
Priority to GB8630375A priority patent/GB2185567B/en
Publication of JPS637687A publication Critical patent/JPS637687A/en
Priority to US07/293,020 priority patent/US4912526A/en
Publication of JPH0459797B2 publication Critical patent/JPH0459797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1303Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell

Abstract

PURPOSE:To miniaturize a semiconductor laser while stabilizing oscillation frequency by a method wherein a transmitted light from an absobing part enclosing a reference material which absorbs light of specific wavelength is converted to an electric signal, and the semiconductor laser is controlled corresponding to the electric signal obtained. CONSTITUTION:An outgoing light from a photowaveguide 32 enters into a photoabsorber 2 to enclose a reference material (Cs in this invention) photoabsorbing in specified wavelength while another outgoing light from the photoabsorber 2 enters into a photodetector PD 2. Any output electric signal from the photodetector PD 2 enters into a controller 2. This controller 2 is provided with a lockin amp circuit LA 2 wherein an output from the photodetector PD2 is connected to input, a current circuit CT3, a signal transmitting circuit (oscillation circuit) SG3 in frequency fm wherein one of output becomes a reference signal input of lockin amp LA2 and the second signal transmitting circuit (oscillating circuit) SG4 in frequency fn wherein an output modulated by another output from the signal transmitting circuit SG3 is connected to an acoustic optical modulator UM2. Through these procedures, a semiconductor laser can be integrated into one chip to be miniaturized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体レーザの波長を原子や分子の吸収線に
制御して安定化する半導体レーザ波長安定化装置の特性
等の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in the characteristics of a semiconductor laser wavelength stabilizing device that stabilizes the wavelength of a semiconductor laser by controlling it to the absorption line of atoms or molecules.

(従来の技術) 第11図は本出願人による特願昭61−11894号明
118書に記載された半導体レーザ波長安定化装置の先
行技術を示す構成ブロック図である。
(Prior Art) FIG. 11 is a block diagram illustrating a prior art of a semiconductor laser wavelength stabilizing device described in Japanese Patent Application No. 118-11898 filed by the present applicant.

LDlは半導体レーザ、PE1はこの半導体レーザLD
1.を冷却または加熱するベルチェ素子、CT1はこの
ベルチェ素子PEIを駆動して前記半導体レーザLD1
の温度を一定に制御する温度制御手段、TBlはこれら
を格納して温度変動を減少させる恒温槽、BSlは前記
半導体レーザLD1の出力光を2方向に分離するビーム
スプリフタ、tJIVMはこのビームスプリッタBS1
の一方の出射光を入射し変調手段を構成する音響光学変
調器、CLlはこの音響光学変調器UM1の回折光出力
を入射し特定の波長の光を吸収する標準物質(ここでは
Cs)を封入した吸収セル、PDlはこの吸収セルCL
Iの透過光を入射する光検出器、A1はこの光検出器P
D1の出力電気信号を入力する増幅器、LAlはこの増
幅器A1の電気出力を入力するロックインアンプ、CT
2はこのロックインアンプLA1の出力を入力し前記半
導体レーザLDIの電流を制御する制御手段を構成する
PIDコントローラ、SWlは前記音響光学変調器UM
1にその一端が接続するスイッチ、SG1はその出力で
前記スイッチSW1が周波数fm(例えば2kHz)で
オンオフする信号発生器、SG2は前記スイッチSW1
の他端に接続する周波数fo  (例えば80MHz>
の第2の信号発生器である。
LDl is a semiconductor laser, PE1 is this semiconductor laser LD
1. A Bertier element CT1 for cooling or heating the semiconductor laser LD1 drives the Bertier element PEI to cool or heat the semiconductor laser LD1.
TBl is a constant temperature bath that stores these to reduce temperature fluctuations, BSl is a beam splitter that separates the output light of the semiconductor laser LD1 into two directions, and tJIVM is this beam splitter. BS1
An acousto-optic modulator, CL1, which receives the output light from one of the acousto-optic modulators and constitutes a modulation means, receives the diffracted light output of the acousto-optic modulator UM1 and encloses a standard material (here, Cs) that absorbs light of a specific wavelength. The absorption cell PDl is this absorption cell CL
A1 is a photodetector into which the transmitted light of I is incident, and A1 is this photodetector P.
An amplifier that inputs the output electrical signal of D1, LA1 a lock-in amplifier that inputs the electrical output of this amplifier A1, and CT
2 is a PID controller that inputs the output of this lock-in amplifier LA1 and constitutes a control means for controlling the current of the semiconductor laser LDI, and SWl is the acousto-optic modulator UM.
1, SG1 is a signal generator whose output turns the switch SW1 on and off at a frequency fm (for example, 2kHz), and SG2 is the switch SW1.
Frequency fo connected to the other end (e.g. 80MHz>
is the second signal generator.

上記のような溝或の半導体レーデ波長安定化装置の動作
を次に説明する。半導体レーザLD1は恒温槽TBl内
で温度検出信号を入力する制御手段CT1によりベルチ
ェ素子PE1を介して一定温度に制御されている。半導
体レーザLD1の出力光はビームスプリッタBS1で2
方向に分離され、反射光りよ外部への出力光となり透過
光は音響光学変調器U〜11に入射する。スイッチSW
1がオンの時音響光学変調器IJM1は信号発生器SG
2の周波数f0の出力で駆動されるので、周波数ν0の
入射光の大部分は回折して周波数(ドツプラ)シフトを
受け、1次回折光として周波数νO+ f □の光が吸
収セルCL1に入射する。スイッチSW1がオフのとき
は入射光は全て0次回折光として周波数し0で吸収セル
CL1に入射する。
The operation of the grooved semiconductor radar wavelength stabilizing device as described above will now be described. The semiconductor laser LD1 is controlled to a constant temperature by a control means CT1 which inputs a temperature detection signal in a constant temperature bath TBl via a Vertier element PE1. The output light of the semiconductor laser LD1 is split into two by the beam splitter BS1.
The reflected light becomes output light to the outside, and the transmitted light enters the acousto-optic modulators U to 11. switch SW
1 is on, the acousto-optic modulator IJM1 is the signal generator SG
2, most of the incident light with frequency ν0 is diffracted and undergoes a frequency (Doppler) shift, and light with frequency νO+f□ enters absorption cell CL1 as first-order diffracted light. When the switch SW1 is off, all the incident light has a frequency of 0-order diffracted light and enters the absorption cell CL1 at a frequency of 0.

スイッチSW1は信号発生器SG1の周波数f電のクロ
ックで駆動されるので、吸収セルCL1に入射する光は
変調周波数f電、変調深さfOの周波数変調を受けるこ
とになる。吸収セルCL1にこの変調光が入射すると、
第12図の動作説明図に示すように、Cs原子の吸収信
号の箇所でのみ透過光量が変調を受けるので、出力に信
号が現れる。この信号を光検出器PD1で電気信号に変
換し増幅器A1を介してロックインアンプし八1におい
て周波数f電で同期整流すれば、第13図の周波数特性
曲線図に示すような1次微分波形が得られる。PrDコ
ントローラCT2により半導体レーザLD1の電流を制
御して、ロックインアンプLA1の出力°を前記1次微
分波形の中心にロック(制御O>すれば半導体レーザの
出力光はシ5−fo/2の安定な周波数となる。ここで
νSはC5原子の吸収の中心周波数を示す。
Since the switch SW1 is driven by the clock of the signal generator SG1 at the frequency f, the light incident on the absorption cell CL1 is subjected to frequency modulation at the modulation frequency f and the modulation depth fO. When this modulated light enters the absorption cell CL1,
As shown in the operation explanatory diagram of FIG. 12, since the amount of transmitted light is modulated only at the location of the absorption signal of the Cs atoms, a signal appears in the output. If this signal is converted into an electric signal by the photodetector PD1, locked-in amplified by the amplifier A1, and synchronously rectified at the frequency f at 81, a first-order differential waveform as shown in the frequency characteristic curve diagram in Fig. 13 is obtained. is obtained. The current of the semiconductor laser LD1 is controlled by the PrD controller CT2, and the output of the lock-in amplifier LA1 is locked to the center of the first-order differential waveform (control O>, then the output light of the semiconductor laser becomes 5-fo/2). This becomes a stable frequency. Here, νS indicates the center frequency of absorption of C5 atoms.

このような構成の半導体レーザ波長安定化装置によれば
、レーザの発掘周波数が変調されていないので、瞬時的
にも非常に安定な光源となる。
According to the semiconductor laser wavelength stabilizing device having such a configuration, since the excavation frequency of the laser is not modulated, it becomes an extremely stable light source even instantaneously.

(発明が解決しようとする問題点) しかしながら、上記のような構成の半導体レーザ波長安
定化装置は各要素が単体部品で構成されているので、構
成が複雑で大型となってしまうという短所がある。
(Problems to be Solved by the Invention) However, each element of the semiconductor laser wavelength stabilization device having the above configuration is composed of a single component, so it has the disadvantage that the configuration is complicated and large. .

本発明はこのような問題点を解決するためになされたも
ので、発振周波数が安定な半導体レーザ波長安定化装置
を小型化して実現することを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to miniaturize and realize a semiconductor laser wavelength stabilizing device with a stable oscillation frequency.

(問題点を解決するための手段) 本発明は標準物質の吸収スペクトル線に半導体レーザの
波長を制御して波長を安定化する半導体レーザ波長安定
化装置に係るもので、その特徴とするところは半導体レ
ーザの出力光に関連する光を光導波路を介して入射し特
定の波長で吸収を起こす標準物質を封入した吸収部と、
この吸収部の透過光を電気信号に変操する光検出部と、
この光検出部の出力電気信号に関連する電気信号に対応
して前記半導体レーザの電流または温度を制御する利り
0部とを同一基板上に設けた点にある。゛(実施例) 以下本発明を図面を用いて詳しく説明する。
(Means for Solving the Problems) The present invention relates to a semiconductor laser wavelength stabilization device that stabilizes the wavelength by controlling the wavelength of a semiconductor laser according to the absorption spectrum line of a standard substance. an absorption section that includes a standard substance that enters light related to the output light of the semiconductor laser through an optical waveguide and causes absorption at a specific wavelength;
a light detection section that converts the transmitted light of the absorption section into an electrical signal;
The advantage of the present invention is that the current or temperature of the semiconductor laser is controlled in response to an electrical signal related to the output electrical signal of the photodetector, and a part that controls the current or temperature of the semiconductor laser is provided on the same substrate. (Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す構成ブロック図である
。1は例えばGaAs等からなる光集積回路(光IC>
基板で、以下この光IC基板1上に形成されるものを説
明すると、LD2は半導体レーザ部、31はこの半導体
レーザ部の出力光を入射する光導波路、UM2はこの光
導波路31の出射光を入射する音響光学変調部(超音波
光変調部)、32はこの音響光学変調部UM2の出力光
を入射する光導波路、CL 2はこの光導波路32の出
射光を入射し特定の波長の光を吸収する標準物質(ここ
ではCs)を封入した吸収部、PD2はこの吸収部CL
2の出射光を入射する受光部、2はこの受光部PD2の
出力電気信号を入力する制御部である。制御部2におい
て、L△2はこの受光部PD2の出力が入力に接続する
ロックインアンプ回路、CT3はこのロックインアンプ
回路L△2の出力が入力に接続しその出力が前記半導体
レーザ部LD2の注入電流入力に接続するPIDコント
ローラ回路等からなる電流制御回路、S03はその出力
の一方が前記ロックインアンプ回路LA2の参照信号入
力となる周波数fm(例えば2kH2)の信号発生回路
(発振回路)、SG4はこの信号発生回路SG3の出力
により変調され出力が前記音響光学変調部UM2に接続
する周波数fo  (例えば80MHz>の第2の信号
発生回路(発振回路)である。
FIG. 1 is a block diagram showing an embodiment of the present invention. 1 is an optical integrated circuit (optical IC>
The substrates formed on the optical IC substrate 1 will be explained below. LD2 is a semiconductor laser section, 31 is an optical waveguide into which the output light of this semiconductor laser section is input, and UM2 is an optical waveguide that receives the output light of this optical waveguide 31. The input acousto-optic modulator (ultrasonic light modulator) 32 is an optical waveguide into which the output light of this acousto-optic modulator UM2 is input, and CL2 is an optical waveguide into which the output light of this optical waveguide 32 is input and which outputs light of a specific wavelength. PD2 is an absorption part CL in which a standard substance to be absorbed (Cs in this case) is enclosed.
2 is a light receiving section into which the emitted light is input, and 2 is a control section into which an output electrical signal of this light receiving section PD2 is input. In the control section 2, L.DELTA.2 is a lock-in amplifier circuit whose input is connected to the output of the light receiving section PD2, and CT3 is a lock-in amplifier circuit whose input is connected to the output of this lock-in amplifier circuit L.DELTA.2, whose output is connected to the semiconductor laser section LD2. S03 is a signal generation circuit (oscillation circuit) having a frequency fm (for example, 2kHz), one of whose outputs is the reference signal input of the lock-in amplifier circuit LA2. , SG4 is a second signal generating circuit (oscillation circuit) having a frequency fo (for example, 80 MHz>) which is modulated by the output of the signal generating circuit SG3 and whose output is connected to the acousto-optic modulator UM2.

上記の構成の装置の動作は第11図の半導体レーザ波長
安定化装置と同様である。
The operation of the device having the above configuration is similar to that of the semiconductor laser wavelength stabilizing device shown in FIG.

このような構成の半導体レーザ波長安定化装置によれば
、1チツプにmv4できるので、小型かつ量産可能で調
整が楽という特長を有する。
According to the semiconductor laser wavelength stabilizing device having such a configuration, since mv4 can be implemented in one chip, it has the advantage of being compact, mass-producible, and easy to adjust.

また音響光学変調器UM2の回折効率が変化しても、変
調に寄与しない光の成分(O次回折光)が増えて信号強
度が下がるのみで、中心波長には影響しない。
Further, even if the diffraction efficiency of the acousto-optic modulator UM2 changes, the light component (O-order diffracted light) that does not contribute to modulation increases, and the signal intensity only decreases, and the center wavelength is not affected.

なお上記の実施例ではロックインアンプLA2の参照周
波数として変調周波* f 策を用いたがその整数倍の
周波数としてもよい。
In the above embodiment, the modulation frequency *f was used as the reference frequency of the lock-in amplifier LA2, but a frequency that is an integral multiple of the modulation frequency *f may be used.

また吸収セルCL2の標準物質としては、Csのほかに
例えばRb、NHs、H2Oなどを用いてもよい。
In addition to Cs, for example, Rb, NHs, H2O, etc. may be used as a standard substance for the absorption cell CL2.

また上記の実施例では変調手段として音響光学変調器を
用いているが、これに限らず、例えば電気光学素子を用
いた位相変調器を用いてもよい。
Further, in the above embodiment, an acousto-optic modulator is used as the modulation means, but the present invention is not limited to this, and a phase modulator using an electro-optic element may be used, for example.

これには例えば縦型変調器、横型変調器、進行波形変調
器などがある(Amnon  Yarif:光エレクト
ロニクスの基礎(丸善>、 p247〜p253)。
These include, for example, vertical modulators, horizontal modulators, traveling waveform modulators, etc. (Amnon Yarif: Fundamentals of Optoelectronics (Maruzen), p. 247-p. 253).

また−上記の実施例では制御部の出力で半導体レーザの
電流を制御しているが、これに限らず半導体レーザの温
度を制御してもよい。
Further, in the above embodiment, the current of the semiconductor laser is controlled by the output of the control section, but the present invention is not limited to this, and the temperature of the semiconductor laser may be controlled.

第2図は第1図装置の各構成要素の具体的な実現方法を
示す表である。例えば電気回路部分はシリコン基板の場
合はモノリシック構成になるが、他の場合はハイブリッ
ド構成となる。以下具体例を用いてさらに詳しく説明す
る。
FIG. 2 is a table showing a concrete implementation method of each component of the apparatus shown in FIG. For example, if the electrical circuit part is a silicon substrate, it will have a monolithic structure, but in other cases, it will have a hybrid structure. This will be explained in more detail below using specific examples.

第3図は第1図装置において、半導体レーザLD2を光
IC基板1上にモノリシックで実現した具体例を示す要
部斜視図である。
FIG. 3 is a perspective view of a main part showing a specific example in which the semiconductor laser LD2 is monolithically realized on the optical IC substrate 1 in the apparatus shown in FIG.

第4図および第5図は第1図装置において、半導体レー
ザLD2を外付けしてハイブリッド構成とした具体例を
示す要部斜視図および要部断面図である(科学新聞社「
光通信要覧J 4991501を参照)。第4図は光I
C基板1に形成された導波路31の端面に半導体レーザ
LD2の出力を直接照射する構成、第5図はプリズムP
Rを介して半導体レーザLD2の出力光を導波路31に
導入する構成となっている。
4 and 5 are a perspective view and a sectional view of a main part showing a specific example of a hybrid configuration in which a semiconductor laser LD2 is externally attached to the apparatus shown in FIG.
(See Optical Communication Handbook J 4991501). Figure 4 shows light I.
A configuration in which the end face of the waveguide 31 formed on the C substrate 1 is directly irradiated with the output of the semiconductor laser LD2, FIG.
The configuration is such that the output light of the semiconductor laser LD2 is introduced into the waveguide 31 via R.

第6図は第1図装置において、吸収部OL2が光IC!
!板1表図1表面チング等で設けた凹部にガラスコーテ
ィングまたは熱酸化によりガラス模4を形成し、標準物
質を入れた侵ガラス板5を融着して密閉した構成のもの
の具体例を示す断面図である。
FIG. 6 shows that in the device shown in FIG. 1, the absorption section OL2 is an optical IC!
! Plate 1 Table Figure 1 A cross section showing a specific example of a structure in which a glass pattern 4 is formed by glass coating or thermal oxidation in a recess made by surface tinting, etc., and a glass erodible plate 5 containing a standard substance is fused and sealed. It is a diagram.

第7図は第1図装置において、吸収部CL2の他の具体
例を示す断面図で、GaAsやしtNbo3等からなる
基&1上に導波路32を設け、この導波路32を通過す
る半導体レーザからの出力光を導波路32上の蓋51に
封入された標準物質により、エバネセント効果で吸収す
るように構成している。第6図の構成に比べ、製作が楽
という利点がある。
FIG. 7 is a sectional view showing another specific example of the absorption section CL2 in the apparatus shown in FIG. The standard substance sealed in the lid 51 above the waveguide 32 absorbs the output light from the waveguide 32 by an evanescent effect. Compared to the configuration shown in FIG. 6, this has the advantage of being easier to manufacture.

上記の各具体例で光検出部はモノリシックまたはハイブ
リッド構成とすることができる〈前記「光通信要覧J 
433/434を参照)。
In each of the above specific examples, the photodetector can have a monolithic or hybrid configuration (see "Optical Communication Handbook J
433/434).

第8因は第1図装置をざらに狭スペクトル化した半導体
レーザ波長安定化装置の第2の実施例を示す構成平面図
である。半導体レーザLD2の出力光の一部を分岐させ
る光分岐部OBIと、この光分岐部OB1の分岐出力光
を入射するファブリ・ペロー・エタロンからなる光共振
部FP1と、この光共振部FP1の出力光を入射する第
2の光検出部PD3と、この光検出部PD3の電気出力
を増幅して半導体レーザし02の注入電流に帰還する広
帯域増幅部A2とを光IC!i!板1上に追加して設け
たもので、ここで広帯域増幅部A2は(第8図で簡略化
して示される)制御部21内に設けられている。光共振
部FP1の共振曲線(の中心周波数からずれた位置)を
半導体レーザLD2の発振波長に合せ、半導体レーザL
D2の出力光に含まれる位相ノイズをti幅変調信号に
変換した後光検出器PD3で検出し、その電気出力を半
導体レーザ光のスペクトル幅以上の帯域を有する広帯域
増幅器A2を介して半導体レーザしD2の駆動電流(注
入電流)に負帰還することにより、半導体レーザLD2
の位相ノイズを抑制し、狭スペクトル化を図ったもので
ある。(参考:古田島他;信学技報、0QE84−13
0.(1984))第9図は第8図装置において、光I
C基板1上に設けるファブリ・ペロー・共振器FP1の
具体例を示す要部斜視図(第9図(A)(B))および
要部平面図(第9図(C))である。第9図(A>は基
板1上に設けた導波路61の一部に穴7を設け、この穴
7の対向する2面81に反射膜コーティングを行って共
振器を構成したもの、第9図(B)は基板1上に導波路
として2つのりッジ(尾根)部62を直列に離して設け
、このリッジ部62の対向する端面82に反射膜を形成
して共振器を構成したもの、第9図(C)は?4板1上
に設けた導波路63の一部に高屈折率材料をドープして
共振部83を構成したものを示している。
The eighth factor is a structural plan view showing a second embodiment of the semiconductor laser wavelength stabilizing device, which is a roughly narrower spectrum version of the device shown in FIG. An optical resonator FP1 consisting of an optical branching unit OBI that branches part of the output light of the semiconductor laser LD2, a Fabry-Perot etalon into which the branched output light of the optical branching unit OB1 enters, and an output of the optical resonator FP1. A second photodetector PD3 into which light is incident, and a broadband amplifier A2 which amplifies the electrical output of the photodetector PD3 and returns it to the injected current of the semiconductor laser 02 are connected to an optical IC! i! It is additionally provided on the board 1, where the wideband amplification section A2 is provided within the control section 21 (shown in a simplified manner in FIG. 8). The resonance curve of the optical resonator FP1 (position shifted from the center frequency) is aligned with the oscillation wavelength of the semiconductor laser LD2, and the semiconductor laser L
After converting the phase noise contained in the output light of D2 into a ti width modulation signal, it is detected by a photodetector PD3, and the electrical output is transmitted to a semiconductor laser via a broadband amplifier A2 having a band wider than the spectral width of the semiconductor laser light. By providing negative feedback to the drive current (injected current) of D2, the semiconductor laser LD2
This suppresses phase noise and narrows the spectrum. (Reference: Furutashima et al.; IEICE Technical Report, 0QE84-13
0. (1984)) Figure 9 shows the light I
9A and 9B are a perspective view of a main part (FIGS. 9A and 9B) and a plan view of a main part (FIG. 9C) showing a specific example of a Fabry-Perot resonator FP1 provided on a C substrate 1. FIG. 9 (A> shows a resonator constructed by providing a hole 7 in a part of the waveguide 61 provided on the substrate 1 and coating two opposing surfaces 81 of the hole 7 with a reflective film. Figure (B) shows a resonator in which two ridge portions 62 are provided as waveguides on a substrate 1 in series and separated from each other, and reflective films are formed on opposing end surfaces 82 of the ridge portions 62. , FIG. 9(C) shows a structure in which a part of the waveguide 63 provided on the ?4 plate 1 is doped with a high refractive index material to form a resonant part 83.

第10図は第9図(C)装置において、光共振部FP1
の共振周波数をv4節する手段の具体例を示す要部構成
斜視図で、基板1上の共振部83の両側に電極9を設け
、この画電極9間に印加される電流により共振部83の
屈折率を変えて共振部83の実効的な共振器長を変化、
させるものである。
FIG. 10 shows the optical resonator part FP1 in the device shown in FIG. 9(C).
This is a perspective view of a main part configuration showing a specific example of a means for adjusting the resonant frequency to the v4 node. changing the effective resonator length of the resonant section 83 by changing the refractive index;
It is something that makes you

共振周波数を調節する他の手段としては、基板上の光共
振部FP1の近傍にヒータ用薄膜抵抗を形成し、熱膨張
で共@3艮を変化させる方式がある。
Another method for adjusting the resonant frequency is to form a heater thin film resistor near the optical resonator FP1 on the substrate and change the resonance frequency by thermal expansion.

また第10図(C)と同様の構成で高屈折率材料として
強誘電体をドープし、印加電界により屈折率を変化させ
る方式もある。
There is also a method in which a ferroelectric material is doped as a high refractive index material in a structure similar to that shown in FIG. 10(C), and the refractive index is changed by an applied electric field.

また半導体レーザLD2および光共振部FP1を所定の
温度に制御する場合にそれぞれ7a模抵抗等をヒータと
して用いるが、両方のヒータが互いに干渉しないように
できるだけ遠ざけることが好ましい。
Further, when controlling the semiconductor laser LD2 and the optical resonator FP1 to a predetermined temperature, a resistor 7a or the like is used as a heater, but it is preferable that both heaters are placed as far away as possible so as not to interfere with each other.

なお上記の各実施例では、半導体レーザの波長を原子や
分子の吸収線に制御する方法として線形吸収法を用いて
いるが、その代わりに音響光学変調器UM2の出射光の
一部をポンプ光として吸収部CL2に入射し、他の一部
を反対の方向から細い光束でプローブ光として吸収部C
L2に入射して飽和吸収信号を轡る飽和吸収法(堀、角
田、北野、藪崎、小用二二飽和吸収分光を用いた半導体
レーザの周波数安定化、信学技報0QE82−116)
を用いれば、より安定な半導体レーザ波長安定化iui
を実現することができる。
In each of the above embodiments, the linear absorption method is used to control the wavelength of the semiconductor laser to the absorption line of atoms or molecules, but instead, a part of the light emitted from the acousto-optic modulator UM2 is converted into pump light. The other part enters the absorption part CL2 as a probe light from the opposite direction as a thin beam of light.
Saturation absorption method in which the saturated absorption signal is detected by entering L2 (Hori, Tsunoda, Kitano, Yabusaki, Frequency stabilization of semiconductor lasers using small 22 saturation absorption spectroscopy, IEICE Technical Report 0QE82-116)
If you use more stable semiconductor laser wavelength stabilization IUI
can be realized.

(発明の効果) 以上述べたように本発明によれば、発振周波数が安定で
調整が楽な半導体レーザ波長安定化装置を小型化・集積
化して実現することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to miniaturize and integrate a semiconductor laser wavelength stabilizing device with a stable oscillation frequency and easy adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体レーザ波長安定化装置の一
実施例を示す構成斜視図、第2図は第1図装置の各構成
要素の具体的手段の概要を示す表、第3図〜第7図は第
1図装置の構成要素の具体例を説明するための図、第8
図は本発明の第2の実施例を示す構成平面図、第9図お
よび第10図は第8図装置の光共振部FP1の具体例を
示す図、第11図は半導体レーザ波長安定化装置の従来
例を示す構成ブロック図、第12図はこの第11図装置
の動作を説明するための動作説明図、第13図は第11
図装置の動作を説明するための特性曲I!図である。 1・・・基板、2・・・制卸部、31.32・・・導波
路、LD2・・・半導体レーザ、Cl3・・・吸収部、
PO2・・・光検出部。 第3図         尾4図 第5図         M6図 ] 月7図 尾8図 ヒビ1    ビUΔ
FIG. 1 is a structural perspective view showing an embodiment of a semiconductor laser wavelength stabilizing device according to the present invention, FIG. 2 is a table showing an outline of specific means for each component of the device in FIG. 1, and FIGS. FIG. 7 is a diagram for explaining a specific example of the components of the device shown in FIG.
The figure is a configuration plan view showing a second embodiment of the present invention, FIGS. 9 and 10 are diagrams showing a specific example of the optical resonator part FP1 of the device shown in FIG. 8, and FIG. 11 is a semiconductor laser wavelength stabilizing device. FIG. 12 is an operation explanatory diagram for explaining the operation of the device shown in FIG. 11, and FIG.
Characteristic song I to explain the operation of the device! It is a diagram. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Control part, 31.32... Waveguide, LD2... Semiconductor laser, Cl3... Absorption part,
PO2...light detection section. Figure 3 Tail 4 Figure 5 M6 Figure Moon 7 Figure Tail 8 Crack 1 Vi UΔ

Claims (8)

【特許請求の範囲】[Claims] (1)標準物質の吸収スペクトル線に半導体レーザの波
長を制御して波長を安定化する半導体レーザ波長安定化
装置において、 半導体レーザの出力光に関連する光を光導波路を介して
入射し特定の波長で吸収を起こす標準物質を封入した吸
収部と、 この吸収部の透過光を電気信号に変換する光検出部と、 この光検出部の出力電気信号に関連する電気信号に対応
して前記半導体レーザの電流または温度を制御する制御
部と を同一基板上に設けたことを特徴とする半導体レーザ波
長安定化装置。
(1) In a semiconductor laser wavelength stabilization device that stabilizes the wavelength by controlling the wavelength of a semiconductor laser to the absorption spectrum line of a standard material, light related to the output light of the semiconductor laser is input through an optical waveguide and a specific an absorption section enclosing a standard substance that causes absorption at a certain wavelength; a photodetection section that converts the transmitted light of the absorption section into an electrical signal; 1. A semiconductor laser wavelength stabilizing device, characterized in that a control section for controlling laser current or temperature is provided on the same substrate.
(2)標準物質としてRbまたはCsを用いた特許請求
の範囲第1項記載の半導体レーザ波長安定化装置。
(2) The semiconductor laser wavelength stabilizing device according to claim 1, which uses Rb or Cs as a standard substance.
(3)吸収部が基板表面に設けた凹部にガラスコーティ
ングまたは熱酸化によりガラス膜を形成し、標準物質を
入れてガラス板で密閉した構成の特許請求の範囲第1項
記載の半導体レーザ波長安定化装置。
(3) Wavelength stabilization of the semiconductor laser according to claim 1, in which the absorber has a structure in which a glass film is formed by glass coating or thermal oxidation in a recess provided on the substrate surface, a standard substance is placed therein, and the glass film is sealed with a glass plate. conversion device.
(4)吸収部がガラス基板上に導波路を設け、この導波
路上の標準物質によりエバネセント効果で半導体レーザ
の出力光に関連する光を吸収するように構成した特許請
求の範囲第1項記載の半導体レーザ波長安定化装置。
(4) Claim 1, wherein the absorption section is configured to include a waveguide on a glass substrate, and to absorb light related to the output light of the semiconductor laser by means of an evanescent effect using a standard substance on the waveguide. Semiconductor laser wavelength stabilization device.
(5)半導体レーザ出力を外部変調する変調手段と、制
御部においてこの変調手段の変調周波数に関連した周波
数で同期整流するロックインアンプとを備えた特許請求
の範囲第1項記載の半導体レーザ波長安定化装置。
(5) The semiconductor laser wavelength according to claim 1, comprising a modulation means for externally modulating the output of the semiconductor laser, and a lock-in amplifier that performs synchronous rectification at a frequency related to the modulation frequency of the modulation means in the control section. Stabilizer.
(6)変調手段として音響光学変調器を用いた特許請求
の範囲第5項記載の半導体レーザ波長安定化装置。
(6) A semiconductor laser wavelength stabilizing device according to claim 5, which uses an acousto-optic modulator as the modulation means.
(7)変調手段として電気光学素子からなる位相変調器
を用いた特許請求の範囲第5項記載の半導体レーザ波長
安定化装置。
(7) A semiconductor laser wavelength stabilizing device according to claim 5, which uses a phase modulator made of an electro-optical element as the modulation means.
(8)半導体レーザの出力光の一部を分岐させる光分岐
部と、この光分岐部の分岐出力光を入射する光共振部と
、この光共振部の出力光を入射する第2の光検出部と、
この光検出部の電気出力を増幅して半導体レーザの注入
電流に帰還する広帯域増幅部とを基板上に設けた特許請
求の範囲第1項記載の半導体レーザ波長安定化装置。
(8) An optical branching section that branches part of the output light of the semiconductor laser, an optical resonator that receives the branched output light of this optical branching section, and a second photodetector that receives the output light of this optical resonator. Department and
2. The semiconductor laser wavelength stabilizing device according to claim 1, further comprising a broadband amplifying section provided on the substrate for amplifying the electrical output of the photodetecting section and feeding it back to the injection current of the semiconductor laser.
JP61149777A 1985-12-20 1986-06-27 Semiconductor laser wavelength stabilizer Granted JPS637687A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP61149777A JPS637687A (en) 1986-06-27 1986-06-27 Semiconductor laser wavelength stabilizer
GB8627744A GB2187592B (en) 1985-12-26 1986-11-20 Semiconductor laser wavelength stabilizer
US06/937,359 US4833681A (en) 1985-12-26 1986-12-03 Semiconductor laser wavelength stabilizer
US06/942,448 US4893353A (en) 1985-12-20 1986-12-16 Optical frequency synthesizer/sweeper
US06/943,670 US4856899A (en) 1985-12-20 1986-12-18 Optical frequency analyzer using a local oscillator heterodyne detection of incident light
DE3643569A DE3643569C2 (en) 1985-12-20 1986-12-19 Optical frequency analyzer
DE3643629A DE3643629C2 (en) 1985-12-26 1986-12-19 Device for stabilizing the wavelength of a semiconductor laser
GB8630374A GB2185619B (en) 1985-12-20 1986-12-19 Optical frequency synthesizer/sweeper
DE3643553A DE3643553C2 (en) 1985-12-20 1986-12-19 Device for generating and wobbling optical frequencies
GB8630375A GB2185567B (en) 1985-12-20 1986-12-19 Optical frequency analyzer
US07/293,020 US4912526A (en) 1985-12-20 1989-01-03 Optical frequency synthesizer/sweeper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149777A JPS637687A (en) 1986-06-27 1986-06-27 Semiconductor laser wavelength stabilizer

Publications (2)

Publication Number Publication Date
JPS637687A true JPS637687A (en) 1988-01-13
JPH0459797B2 JPH0459797B2 (en) 1992-09-24

Family

ID=15482495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149777A Granted JPS637687A (en) 1985-12-20 1986-06-27 Semiconductor laser wavelength stabilizer

Country Status (1)

Country Link
JP (1) JPS637687A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299280A (en) * 1989-05-15 1990-12-11 Nippon Telegr & Teleph Corp <Ntt> Oscillation wavelength stabilized semiconductor laser device
EP2266171A1 (en) * 2008-03-18 2010-12-29 Alcatel-Lucent USA Inc. Self-calibrating integrated photonic circuit and method of control thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130088A (en) * 1984-07-23 1986-02-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS61123190A (en) * 1984-10-26 1986-06-11 Anritsu Corp Manufacture of fixed-output semiconductor laser element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130088A (en) * 1984-07-23 1986-02-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS61123190A (en) * 1984-10-26 1986-06-11 Anritsu Corp Manufacture of fixed-output semiconductor laser element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299280A (en) * 1989-05-15 1990-12-11 Nippon Telegr & Teleph Corp <Ntt> Oscillation wavelength stabilized semiconductor laser device
EP2266171A1 (en) * 2008-03-18 2010-12-29 Alcatel-Lucent USA Inc. Self-calibrating integrated photonic circuit and method of control thereof

Also Published As

Publication number Publication date
JPH0459797B2 (en) 1992-09-24

Similar Documents

Publication Publication Date Title
US4833681A (en) Semiconductor laser wavelength stabilizer
US4893353A (en) Optical frequency synthesizer/sweeper
US4856899A (en) Optical frequency analyzer using a local oscillator heterodyne detection of incident light
JPH10506724A (en) Tunable blue laser diode
US5384799A (en) Frequency stabilized laser with electronic tunable external cavity
JPS6254991A (en) Semiconductor laser
EP0411131B1 (en) Wavelength stabilized source of light
JPH04180038A (en) Generation device for higher harmonic wave
JP5065643B2 (en) Optical frequency stabilization light source and optical frequency stabilization device
US5265110A (en) Non-linear optical effect frequency conversion laser
JP3506304B2 (en) Light generating device and method of manufacturing the same
JPS637687A (en) Semiconductor laser wavelength stabilizer
JP3366160B2 (en) Harmonic output stabilization method and short wavelength laser light source using the same
JPH0459796B2 (en)
JPH0453014Y2 (en)
JPH02244782A (en) Frequency stabilized semiconductor laser driver
JPH0453015Y2 (en)
JP2021096367A (en) Optical resonator, optical modulator, optical frequency comb generator, optical oscillator, and production method for optical resonator and optical modulator
JPH0523513B2 (en)
JPH0523512B2 (en)
JPS63137494A (en) Frequency stabilizer for semiconductor laser
JP7100906B2 (en) Method for manufacturing optical resonators and light modulators
JPS62162382A (en) Highly-stabilized semiconductor laser light source
JPH04155878A (en) Frequency stabilizing device for semiconductor laser
JPH0482191B2 (en)