JPS6376868A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS6376868A
JPS6376868A JP22126286A JP22126286A JPS6376868A JP S6376868 A JPS6376868 A JP S6376868A JP 22126286 A JP22126286 A JP 22126286A JP 22126286 A JP22126286 A JP 22126286A JP S6376868 A JPS6376868 A JP S6376868A
Authority
JP
Japan
Prior art keywords
gas
substrate
reactive gas
target
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22126286A
Other languages
Japanese (ja)
Inventor
Masaki Shinohara
正喜 篠原
Kunio Hata
畑 邦夫
Tomio Kume
久米 富美夫
Hiroaki Wakamatsu
若松 弘晃
Katsumi Kiuchi
木内 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22126286A priority Critical patent/JPS6376868A/en
Publication of JPS6376868A publication Critical patent/JPS6376868A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit easy formation of an intermediate sputtered material having uniform quality by providing a gas reaction accelerating mechanism having a reactive gas outflow port to a position except the area where a substrate and target face each other to effect the additional reaction of the sputtering material. CONSTITUTION:A gaseous mixture composed of an inert gas and reactive gas is introduced from a gas introducing pipe 30 into a vacuum vessel 21. The substrate 23 is rotated and glow discharge is started by supplying a high-frequency power between the target 25 and a substrate supporting body 22 to convert the reactive gas to plasma. The target 25 is thereby sputtered and an Fe3O4 film containing Fe molecule is formed on the surface of the substrate 23. The substrate supporting body 22 in this state is moved to the position where said body faces a discharge electrode 32 of the gas reaction accelerating mechanism 31, and the discharge is generated by impressing a prescribed voltage to the electrode. The gaseous atmosphere of a high-pressure is maintained at this time by controlling the flow rate of the reactive gas flowing out of a reactive gas outflow port 33 and the rate of the discharge from a discharge port 35. The reactive gas is converted to the plasma and brought into contact with the Fe3O4 film on the substrate 23 to react with the unoxidized Fe, by which Fe3O4 is formed.

Description

【発明の詳細な説明】 〔概 要〕 本発明は各種磁気記録媒体や半導体集積回路素子等の製
造に適用する反応性スパッタリング装置において、反応
性スパッタリング中におけるスパッタ物質の反応性ガス
との反応の制御を、ターゲット側と基板側に配置したガ
ス反応促進機構で行うようにして、均質な中間反応スパ
ッタ物質、例えばα−Fe203よりも低酸化度の均質
なFe304膜からなる中間酸化膜を容易に成膜し得る
ようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention is a reactive sputtering apparatus applied to the production of various magnetic recording media, semiconductor integrated circuit elements, etc. Control is performed by gas reaction accelerating mechanisms placed on the target side and the substrate side, thereby easily forming an intermediate oxide film consisting of a homogeneous intermediate reaction sputtering material, for example, a homogeneous Fe304 film with a lower oxidation degree than α-Fe203. It is designed so that it can be formed into a film.

〔産業上の利用分野〕[Industrial application field]

本発明は各種磁気記録媒体や半導体集積回路素子等の製
造に用いられるスパッタリング装置の改良に係り、特に
酸素等の反応性ガスを用いた反応性スパッタリング法に
より、所望の酸化度の薄膜を安定に形成する反応性スパ
ッタリング装置に関するものである。
The present invention relates to the improvement of sputtering equipment used in the manufacture of various magnetic recording media and semiconductor integrated circuit elements, and in particular, it is possible to stably form a thin film with a desired degree of oxidation by a reactive sputtering method using a reactive gas such as oxygen. The present invention relates to a reactive sputtering device for forming the present invention.

反応性スパッタリング法によって基板上にクーゲット物
質の酸化物、窒化物、炭化物、或いは硫化物などからな
る反応生成膜をからなる薄膜を被着形成するスパッタリ
ング装置は、今や磁気記録媒体や半導体素子の製造分野
において広く用いられており、種々の装置構成のものが
既に提案されている。
Sputtering equipment, which forms a thin film of a reaction product made of oxide, nitride, carbide, or sulfide of a Kugett material on a substrate by reactive sputtering, is now used in the manufacture of magnetic recording media and semiconductor devices. It is widely used in the field, and various device configurations have already been proposed.

一般にこのような反応性スパッタリング装置によって磁
気記録媒体のγ−Fe203Trn性膜を形成するため
の基になるα−Fe203膜を形成しているが、近来、
yFe203磁性膜の形成工程(α−Fe203膜−F
e304膜−r −Fe2 o3磁性膜)の効率化、低
コスト化のために、反応性スパッタリング法によりr 
−Fe203磁性膜を形成することは至難ではあるが、
せめてその前段階のFe304膜を容易に被着形成し得
る反応性スパッタリング装置が望まれている。
Generally, such a reactive sputtering device is used to form an α-Fe203 film, which is the basis for forming a γ-Fe203Trn film of a magnetic recording medium.
yFe203 magnetic film formation process (α-Fe203 film-F
In order to improve the efficiency and reduce the cost of the e304 film (r -Fe2 o3 magnetic film), the r
- Although it is extremely difficult to form a Fe203 magnetic film,
What is desired is a reactive sputtering apparatus that can at least easily deposit and form the Fe304 film in the preliminary stage.

〔従来の技術〕[Conventional technology]

従来の酸化物などからなる反応生成膜を形成する一般的
なE、応性スパッタリング装置は、第2図に示すように
排気装置2が付設された真空容器1内に、ターゲット3
が取付けられた水冷式のターゲット支持体4と、それに
対向して薄膜を形成すべき基板6を支持した基板支持体
5が回転機構7により回転可能に配置されている。
A conventional E-responsive sputtering apparatus for forming a reaction product film made of oxides, etc., has a target 3 in a vacuum chamber 1 equipped with an exhaust device 2, as shown in FIG.
A water-cooled target support 4 having a water-cooled target support 4 attached thereto, and a substrate support 5 opposing thereto supporting a substrate 6 on which a thin film is to be formed are rotatably arranged by a rotation mechanism 7.

しかして、前記基板6表面に例えば酸化膜を形成するに
は、前記真空容器1内を排気装置2によってI X 1
0= Torr程度の真空度に排気した後、該容器l内
にアルゴン(Ar)ガスからなる不活性ガスと酸素(0
2)ガスからなる反応性ガスとの混合ガスを10−4〜
10’Torr程度のガス圧に充満させた状態で、ター
ゲット3と基板支持体5間に高周波電源9より所定の高
周波電力を供給すると共に、ターゲット3上のシャッタ
ー8を開放にして放電を開始させる。
Therefore, in order to form, for example, an oxide film on the surface of the substrate 6, the inside of the vacuum container 1 is heated by the exhaust device 2 to
After evacuating to a degree of vacuum of approximately 0 Torr, an inert gas consisting of argon (Ar) gas and oxygen (0
2) Mixed gas with reactive gas consisting of gas from 10-4 to
In a state filled with gas pressure of about 10' Torr, a predetermined high frequency power is supplied between the target 3 and the substrate support 5 from the high frequency power source 9, and the shutter 8 on the target 3 is opened to start discharge. .

この際に生じる放電により発生したプラズマ中のガスイ
オンが電界により加速されて前記ターゲット3に衝突し
、その表面よりターゲット物質がスパッタされ、対向す
る前記基板6表面に反応性ガスと反応したターゲット物
質の酸化物からなる酸化膜を形成している。
Gas ions in the plasma generated by the discharge generated at this time are accelerated by the electric field and collide with the target 3, and the target material is sputtered from the surface of the target 3, and the target material that has reacted with the reactive gas is deposited on the opposing surface of the substrate 6. An oxide film is formed from the oxide of

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記したような従来の反応性スパッタリング装
置を用いてディスク基板上に直接的にγFe203磁性
膜を形成することは至難であることは周知であり、この
ため、該γ−Fe203磁性膜を形成するための基にな
るα−Fe203膜を先ず反応性スパッタリング法によ
って形成した後、該α−Fe203膜を還元雰囲気中で
熱処理を行ってFe304膜に変態させ、このFe30
4膜を更に酸化雰囲気中で熱処理することによってr 
 Fe2034fl性膜を形成している。
By the way, it is well known that it is extremely difficult to form a γ-Fe203 magnetic film directly on a disk substrate using the conventional reactive sputtering apparatus as described above. First, an α-Fe203 film, which is the basis for the film, is formed by a reactive sputtering method, and then the α-Fe203 film is heat-treated in a reducing atmosphere to transform into a Fe304 film.
By further heat-treating the 4 film in an oxidizing atmosphere,
A Fe2034fl film is formed.

ところが近来このような形成工程の効率化により反応性
スパッタリング法によりFe304膜を形成することが
試みられている。
However, in recent years, attempts have been made to form Fe304 films by reactive sputtering in order to improve the efficiency of such formation processes.

しかしながら、上記した従来の反応性スパッタリング装
置では、スパッタリング中の02ガスなどからなる反応
性ガスの反応の殆どがスパッタされるターゲット3表面
で行われており、反応性ガスとの反応が充分に行われる
とα−Fe203膜が形成される。また該反応を抑制す
ると未反応なFe粒子が混在したFe304膜が形成さ
れる。
However, in the conventional reactive sputtering apparatus described above, most of the reaction of the reactive gas such as 02 gas during sputtering occurs on the surface of the target 3 to be sputtered, and the reaction with the reactive gas is not sufficiently performed. When this is done, an α-Fe203 film is formed. Furthermore, when the reaction is suppressed, a Fe304 film containing unreacted Fe particles is formed.

従って、該ターゲット3表面の酸化反応状態を常にFe
304がスパッタされるようにガス雰囲気圧及び供給電
力等のスパッタ条件を安定に制御する必要があるが、そ
の制御範囲が極めて狭く容易でないことから、α−Fe
203よりも低酸化度の均質なFe304膜からなる中
間酸化膜を形成することが困難であった。
Therefore, the oxidation reaction state on the surface of the target 3 is always maintained at Fe
It is necessary to stably control the sputtering conditions such as gas atmosphere pressure and power supply so that α-Fe is sputtered, but the control range is extremely narrow and difficult.
It was difficult to form an intermediate oxide film consisting of a homogeneous Fe304 film with a lower oxidation degree than Fe303.

本発明は上記のような従来の実情に鑑み、反応性スパッ
タリング中におけるスパッタ物質の反応性ガスとの反応
の制御を、ターゲット側の他に基板側でも行うようにし
て、均質な中間反応スパッタ物質を容易に成膜し得る新
規な反応性スパッタリング装置を提供することを目的と
するものである。
In view of the above-mentioned conventional circumstances, the present invention controls the reaction of a sputtering material with a reactive gas during reactive sputtering on the substrate side as well as on the target side, thereby producing a homogeneous intermediate reactive sputtering material. The purpose of this invention is to provide a new reactive sputtering apparatus that can easily form a film.

〔問題点を解決するための手段、〕 本発明は上記目的を達成するため、真空容器内に回転可
能に配置された基板とターゲットとの対向領域を避けた
領域において、その基板面に近づけて放電電極と、その
周囲に反応性ガス流出口と、更にその外周にガス圧制御
用の排気口を備えた外囲部とからなるガス反応促進機構
を配置して、回転する基板面に反応性スパッタリングに
より被着されたスパッタ物質をガス反応促進機構により
更に反応性ガスと反応させる構成とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method to avoid the facing area between the substrate and the target, which are rotatably arranged in a vacuum container, by moving the substrate close to the surface of the substrate. A gas reaction promoting mechanism consisting of a discharge electrode, a reactive gas outlet around the discharge electrode, and an outer enclosure equipped with an exhaust port for gas pressure control is arranged around the discharge electrode, and a reactive gas is generated on the rotating substrate surface. The sputtered material deposited by sputtering is further reacted with a reactive gas by a gas reaction promotion mechanism.

〔作 用〕[For production]

本発明のスパッタリングli!では、反応性スパッタリ
ング中におけるスパッタ物質に対する反応性ガスの反応
が、ターゲット側と基板側との三箇所で制御することが
できるので、反応性スパッタリングの条件を制御して基
板面に中間反応スパッタ物質を被着した際に、該中間反
応スパッタ物質中に未反応スパッタ物質が混在すること
があっても、前記ガス反応促進機構において反応性ガス
との反応促進を行うことにより、咳未反応スパッタ物質
の混在のない均質な中間反応スパッタ物質を形成するこ
とが可能となる。
Sputtering li! of the present invention! The reaction of the reactive gas to the sputtering material during reactive sputtering can be controlled at three locations: on the target side and on the substrate side. Even if some unreacted sputtered material is present in the intermediate reactive sputtered material, the unreacted sputtered material can be removed by promoting the reaction with the reactive gas in the gas reaction promotion mechanism. It becomes possible to form a homogeneous intermediate reaction sputtering material without any mixture of.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係るスパッタリング装置の一実施例を
示す要部断面図である。
FIG. 1 is a sectional view of a main part of an embodiment of a sputtering apparatus according to the present invention.

図において、21は真空容器、22は薄膜を形成すべき
基板23が回転機構24により回転可能に支持した基板
支持体であり、該基板支持体22に対向して、図示のよ
うに例えばFeからなるターゲット25が支持されたタ
ーゲット支持体26がシャッタ27を介して配置されて
いる。
In the figure, 21 is a vacuum container, and 22 is a substrate support on which a substrate 23 on which a thin film is to be formed is rotatably supported by a rotating mechanism 24. A target support 26 supporting a target 25 is disposed with a shutter 27 in between.

28はアースシールド、29は排気装置に連結された排
気管、30はArからなる不活性ガスと例えば02から
なる反応性ガスとの混合ガスを供給する混合ガス導入管
である。
28 is an earth shield, 29 is an exhaust pipe connected to an exhaust device, and 30 is a mixed gas introduction pipe for supplying a mixed gas of an inert gas made of Ar and a reactive gas made of, for example, 02.

また31はガス反応促進機構であり、水冷式の放電電極
32と、その周囲に反応性ガスを流出させる反応性ガス
流出口33と、更にその外周に排気装置と連結された排
気口35を有する外囲部36とから構成され・前記基板
23面のターゲット25と対向する領域を避けた領域面
に近づけて配置されている。
Reference numeral 31 denotes a gas reaction promotion mechanism, which has a water-cooled discharge electrode 32, a reactive gas outlet 33 for discharging reactive gas around it, and an exhaust port 35 connected to an exhaust device on its outer periphery. The outer peripheral portion 36 is arranged close to the surface of the substrate 23, avoiding the region facing the target 25.

34は反応性ガスの4人と放電領域を限定するためのア
ースシールドである。
34 is an earth shield for limiting the four reactive gases and the discharge area.

さて、次にこのような構造のスパッタリング装置の動作
を、例えばディスク基板からなる基板23表面にFe3
04膜からなる中間酸化膜を形成する場合の例で説明す
る。
Now, the operation of the sputtering apparatus having such a structure will be explained below.
An example of forming an intermediate oxide film consisting of a 0.04 film will be described.

先ず真空容器21内をI X 1O−6Torr以下の
真空度に排気した後、混合ガス導入管30より計からな
る不活性ガスと例えば02からなる反応性ガスとの混合
ガスを5 X 1O−3Torr程度のガス圧となるよ
うに導入する。この時の計ガスと02ガスの混合比率は
流量比で4:l程度が適当である。
First, the inside of the vacuum container 21 is evacuated to a vacuum level of I X 1O-6 Torr or less, and then a mixed gas of an inert gas such as 02 and a reactive gas such as 02 is introduced through the mixed gas introduction pipe 30 at a pressure of 5 X 1O-3 Torr. Introduce the gas so that the gas pressure is at about the same level. At this time, a suitable mixing ratio of the meter gas and the 02 gas is approximately 4:l in terms of flow rate ratio.

このような状態で前記基板23を回転し、ターゲット2
5と基板支持体22間に高周波電源37より高周波電力
を供給すると共に、該ターゲット25上のシャッタ27
を開放にして、グロー放電を開始させる。
In this state, the substrate 23 is rotated and the target 2
5 and the substrate support 22 from the high frequency power source 37, and the shutter 27 on the target 25.
Open to start glow discharge.

この放電により反応性ガスはプラズマ化され、ターゲッ
ト25表面で反応しながら該ターゲット25をスパッタ
する。この時、プラズマの発光スペクトル中にFeの発
光ピークがあられれないスパッタ条件でスパッタを行う
と02からなる反応性ガスとの酸化反応が強力になって
、前記基板23表面にはα−Fe203膜が形成される
ことになる。
The reactive gas is turned into plasma by this discharge, and sputters the target 25 while reacting on the surface of the target 25. At this time, if sputtering is performed under sputtering conditions in which the emission peak of Fe does not appear in the emission spectrum of the plasma, the oxidation reaction with the reactive gas consisting of 02 becomes strong, and the surface of the substrate 23 is coated with an α-Fe203 film. will be formed.

従って、該α−Fe203膜の酸化度よりも低い中間酸
化度のFe304膜を形成するためには、プラズマの発
光スペクトル中にFeの発光ピークが成る程度はあられ
れる状態に、ガス雰囲気圧及び高周波電力等を制御した
条件でスパッタさせることにより、該基板23表面にF
e分子が混在したFe304膜が被着される。
Therefore, in order to form a Fe304 film with an intermediate oxidation degree lower than the oxidation degree of the α-Fe203 film, it is necessary to adjust the gas atmosphere pressure and high frequency to such an extent that the Fe emission peak appears in the plasma emission spectrum. F is applied to the surface of the substrate 23 by sputtering under controlled conditions such as electric power.
A Fe304 film mixed with e molecules is deposited.

次にこのような状態のFe304膜は基板支持体22の
回転により前記ガス反応促進機構31の放電電極32と
対向する位置に移動されると、放電電源38より所定電
圧が印加された該放電電極32との間に放電が発生する
Next, when the Fe304 film in this state is moved to a position facing the discharge electrode 32 of the gas reaction promotion mechanism 31 by rotation of the substrate support 22, the discharge electrode 32 is applied with a predetermined voltage from the discharge power supply 38. A discharge occurs between 32 and 32.

この際、該放電電極32と基板23間には、反応性ガス
流出口33から流出する02からなる反応性ガス量と、
その外周の排気口35より排気される排気量とが適度に
制御されて、例えば500mTorrの高いガス圧の0
2ガス雰囲気に維持されており、その反応性ガス、即ち
02ガスはプラズマ化され、それによって活性化された
02ガスが前記基板23上の未酸化なFe分子が混在し
ているFe004膜と接触し、該未酸化のFe分子と酸
化反応してFe304を形成する。
At this time, between the discharge electrode 32 and the substrate 23, an amount of reactive gas consisting of 02 flowing out from the reactive gas outlet 33,
The amount of exhaust gas exhausted from the exhaust port 35 on the outer periphery is appropriately controlled, and the gas pressure is as high as 500 mTorr, for example.
The reactive gas, that is, the 02 gas, is turned into plasma, and the activated 02 gas contacts the Fe004 film on the substrate 23 in which unoxidized Fe molecules are mixed. Then, it undergoes an oxidation reaction with the unoxidized Fe molecules to form Fe304.

この場合、基板23は200℃程度に加熱しておくこと
により上記酸化反応がより円滑に促進される。
In this case, by heating the substrate 23 to about 200° C., the above-mentioned oxidation reaction is promoted more smoothly.

このようにFe分子が混在するFe304膜のスパッタ
形成工程と該Fe304膜中に混在する未酸化のFe分
子をFe304の形に酸化反応させる工程とを交互に繰
り返して行うことにより、未酸化のFe分子の混在のな
い均質なFe304からなる中間酸化膜を容易に形成す
ることが可能となった。
In this way, by alternately repeating the process of sputtering the Fe304 film containing Fe molecules and the process of oxidizing the unoxidized Fe molecules mixed in the Fe304 film into Fe304, unoxidized Fe It has now become possible to easily form a homogeneous intermediate oxide film made of Fe304 without any mixture of molecules.

上記した放電電極32と基板23間での02からなる反
応性ガスのガス雰囲気圧を比較的高くしておく所以は、
■該ガス雰囲気圧が高(なると02ガス中での02分子
同士の衝突確率も高くなり、02分子の持つエネルギー
が低下する。■基板23の未酸化なFe分子を含むFe
304膜に衝突する02分子のエネルギーを低くするこ
とにより、中間酸化度のFe304膜が得易くなること
、また02分子のエネルギーが低くなると放電電極32
物質がスパッタされなくなること等に基づいている。
The reason why the gas atmosphere pressure of the reactive gas consisting of 02 is kept relatively high between the discharge electrode 32 and the substrate 23 is as follows.
■When the gas atmosphere pressure is high (the probability of collision between 02 molecules in the 02 gas increases, and the energy possessed by the 02 molecules decreases).■Fe containing unoxidized Fe molecules of the substrate 23
By lowering the energy of the 02 molecules colliding with the 304 film, it becomes easier to obtain a Fe304 film with an intermediate oxidation degree, and when the energy of the 02 molecules is lower, the discharge electrode 32
This is based on the fact that the substance is no longer sputtered.

尚、本実施例におけるターゲット直下のターゲット支持
体内に、例えば永久磁石、或いは電磁石を配置してプレ
ーナマグネトロン方式とすれば、反応性スパッタリング
において、ターゲツト面での02からなる反応性ガスの
反応が不均一になり、必然的に酸化度の低いFe分子と
酸化反応が全くなされないFe分子がスパッタされるの
で、中間酸化度のFe304膜を形成するのに極めて有
効であり、均質なFe304をより高速に形成すること
ができる。
In addition, if a planar magnetron system is used in which a permanent magnet or an electromagnet is placed in the target support directly under the target in this example, the reaction of the reactive gas consisting of 02 on the target surface will not occur during reactive sputtering. Since Fe molecules with a low oxidation degree and Fe molecules that undergo no oxidation reaction are sputtered uniformly, it is extremely effective for forming a Fe304 film with an intermediate oxidation degree, and it is possible to sputter homogeneous Fe304 at a higher speed. can be formed into

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係るスパッタ
リング装置によれば、反応性スパッタリング中でのスパ
ッタ物質に対する反応性ガスの反応が、ターゲット側と
基板側との三箇所で制御することができるので、従来困
難とされていた中間酸化度のFe304膜のような、中
間反応物を容易に成膜することが可能となる優れた利点
を有し、磁気記録媒体のr −Fe203磁性膜を形成
するための基になるFe304膜の形成に適用して極め
てを利であり顕著なる効果を奏する。
As is clear from the above description, according to the sputtering apparatus according to the present invention, the reaction of the reactive gas to the sputtering material during reactive sputtering can be controlled at three locations: on the target side and on the substrate side. Therefore, it has the excellent advantage of making it possible to easily form intermediate reactants such as Fe304 films with intermediate oxidation degrees, which were previously considered difficult, and forming r -Fe203 magnetic films for magnetic recording media. It is extremely advantageous when applied to the formation of the Fe304 film that is the basis for the process, and produces remarkable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るスパッタリング装置の一実施例を
示す要部断面図、 第2図は従来のスパッタリング装置を説明するための要
部断面図である。 第1図において、 2世真空容器、22は基1反支持体、23は基板、24
は回転機構、25はターゲット、26はターゲット支持
体、31はガス反応促進機構、32は放電電極、33は
反応性ガス流出口、34はアースシールド、35は排気
口、36は外囲部をそれぞれ示す。 第1図 ぐχA【4〉ソ9!TtEI月′1シラi(戸ゼヴトd
力’/]第2図
FIG. 1 is a sectional view of a main part showing an embodiment of a sputtering apparatus according to the present invention, and FIG. 2 is a sectional view of a main part of a conventional sputtering apparatus. In FIG. 1, a second-generation vacuum vessel, 22 a base 1 anti-support, 23 a substrate, and 24
25 is a rotation mechanism, 25 is a target, 26 is a target support, 31 is a gas reaction promotion mechanism, 32 is a discharge electrode, 33 is a reactive gas outlet, 34 is an earth shield, 35 is an exhaust port, and 36 is an outer enclosure. Each is shown below. Figure 1 guχA [4> So9! TtEI Month'1 Shirai (Dozevut d)
Force'/] Figure 2

Claims (1)

【特許請求の範囲】 真空容器(21)内にターゲット(25)と基板(23
)を対向配置し、不活性ガスと反応性ガスとの混合ガス
雰囲気にしたその容器(21)中で放電を発生させて、
回転する前記基板(23)面にスパッタリングによりス
パッタ物質を被着形成する装置構成において、 上記回転する基板(23)とターゲット(25)との対
向領域を避けた領域においてその基板(23)面に近づ
けて、放電電極(32)と、その周囲に反応性ガス流出
口(33)と、更にその外周部に排気口(35)を備え
た外囲部(36)とからなるガス反応促進機構(31)
を配置し、前記基板(23)面に被着されたスパッタ物
質を、更にガス反応促進機構(31)で反応性ガスと反
応させるようにしたことを特徴とするスパッタリング装
置。
[Claims] A target (25) and a substrate (23) are placed in a vacuum container (21).
) are arranged facing each other, and an electric discharge is generated in the container (21) in which a mixed gas atmosphere of an inert gas and a reactive gas is created.
In an apparatus configuration in which a sputtering material is deposited on the surface of the rotating substrate (23) by sputtering, the surface of the substrate (23) is coated with a sputtering material in an area that avoids the area where the rotating substrate (23) and the target (25) face each other. A gas reaction promoting mechanism ( 31)
A sputtering apparatus characterized in that the sputtering material deposited on the surface of the substrate (23) is further reacted with a reactive gas by a gas reaction promotion mechanism (31).
JP22126286A 1986-09-18 1986-09-18 Sputtering device Pending JPS6376868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22126286A JPS6376868A (en) 1986-09-18 1986-09-18 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22126286A JPS6376868A (en) 1986-09-18 1986-09-18 Sputtering device

Publications (1)

Publication Number Publication Date
JPS6376868A true JPS6376868A (en) 1988-04-07

Family

ID=16764013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22126286A Pending JPS6376868A (en) 1986-09-18 1986-09-18 Sputtering device

Country Status (1)

Country Link
JP (1) JPS6376868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229870A (en) * 1989-07-18 1991-10-11 Optical Coating Lab Inc Coating of thin film having optical property on planar and nonplanar supporting body
US5618388A (en) * 1988-02-08 1997-04-08 Optical Coating Laboratory, Inc. Geometries and configurations for magnetron sputtering apparatus
KR101050983B1 (en) * 2002-10-16 2011-07-21 가부시키가이샤 알박 Thin film forming apparatus and thin film forming method
WO2015064194A1 (en) * 2013-10-30 2015-05-07 東京エレクトロン株式会社 Deposition device and deposition method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618388A (en) * 1988-02-08 1997-04-08 Optical Coating Laboratory, Inc. Geometries and configurations for magnetron sputtering apparatus
JPH03229870A (en) * 1989-07-18 1991-10-11 Optical Coating Lab Inc Coating of thin film having optical property on planar and nonplanar supporting body
JP2695514B2 (en) * 1989-07-18 1997-12-24 オプチカル コーティング ラボラトリー インコーポレーテッド Method of depositing thin films with optical performance on planar and non-planar supports
KR101050983B1 (en) * 2002-10-16 2011-07-21 가부시키가이샤 알박 Thin film forming apparatus and thin film forming method
WO2015064194A1 (en) * 2013-10-30 2015-05-07 東京エレクトロン株式会社 Deposition device and deposition method
JPWO2015064194A1 (en) * 2013-10-30 2017-03-09 東京エレクトロン株式会社 Film forming apparatus and film forming method
US10309005B2 (en) 2013-10-30 2019-06-04 Tokyo Electron Limited Deposition device and deposition method

Similar Documents

Publication Publication Date Title
JP3594947B2 (en) Method for forming insulating film, method for manufacturing semiconductor device, substrate processing apparatus
US4420385A (en) Apparatus and process for sputter deposition of reacted thin films
US4444635A (en) Film forming method
JPS6376868A (en) Sputtering device
JPH0641733A (en) Reactive sputtering device
JP2002256428A (en) Sputtering apparatus
JP3293912B2 (en) Method of forming oxide thin film
JPH08269748A (en) Method for working thin film of magnetic substance
JP3568164B2 (en) Processing method of magnetic thin film
WO1992012274A1 (en) Method of forming oxide film
JP3446765B2 (en) Method and apparatus for producing oxide thin film
JPH0250960A (en) Sputtering device
JPS58177466A (en) Formation of thin film
JPS5957423A (en) Formation of metal conductor layer
JPS6357762A (en) Sputtering device
JPH04350929A (en) Sputtering device
JPH0772347B2 (en) Sputtering device
JP2005120411A (en) Apparatus and method for producing cluster
JPH07273089A (en) Apparatus and method for plasma treatment
JPS58165311A (en) Manufacture of iron oxide recording medium for magnetic disc
JP2811458B2 (en) Method and apparatus for manufacturing magnetite film
JP3059597B2 (en) Method and apparatus for manufacturing thin film
JPS5840248B2 (en) Magnetic recording medium and its manufacturing method
JPS5998504A (en) Manufacture of magnetic recording body
JPS619837A (en) Production for magnetic recording medium