JPS637650A - Substrate wiring structure of semiconductor integrated circuit - Google Patents
Substrate wiring structure of semiconductor integrated circuitInfo
- Publication number
- JPS637650A JPS637650A JP15100786A JP15100786A JPS637650A JP S637650 A JPS637650 A JP S637650A JP 15100786 A JP15100786 A JP 15100786A JP 15100786 A JP15100786 A JP 15100786A JP S637650 A JPS637650 A JP S637650A
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- wiring
- dielectric constant
- layer
- interconnection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 21
- 239000004065 semiconductor Substances 0.000 title claims abstract description 20
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 14
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000004698 Polyethylene Substances 0.000 claims abstract description 6
- 229920000573 polyethylene Polymers 0.000 claims abstract description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 12
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 125000005739 1,1,2,2-tetrafluoroethanediyl group Chemical group FC(F)([*:1])C(F)(F)[*:2] 0.000 abstract 1
- 238000000034 method Methods 0.000 description 20
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 101100096979 Caenorhabditis elegans sto-1 gene Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Local Oxidation Of Silicon (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体集積回路の基板配線構造に関し、とくに
高密度及び高速度な半導体集積回路において、遅延と漏
話量を低減した伝達配線に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a substrate wiring structure of a semiconductor integrated circuit, and in particular to a transmission wiring that reduces delay and crosstalk in a high-density and high-speed semiconductor integrated circuit. be.
半導体集積回路において、高密度化及び高速度化の進歩
は著しいものである。最近、LSIの性能を制約する問
題としC1デバイスよりも配線にかかわる問題がクロー
ズアップされてきた。その問題点は、大きく分けて2つ
ある。第1点は、配線抵抗と配線容量との積で決定され
る遅延時間に関する問題である。例えば、エイ・ケイ・
シイナ(A、に、5inha ’5peed Llmi
tationa due to Int@rconn@
ctTim@Con5tants ln VLSI I
ntegrated C1rcuits、 ” IEE
EvoL、 EDL−31,NO,4Apr、 198
2. pp 90−92.)等は、配線の電気的特性を
2次元ラプラス刀根式による数値計算で求め、サブミク
ロンルールのLSIにおいては、デバイスのスピードよ
りも配線による遅延時間の方が大きいと報告している。In semiconductor integrated circuits, there has been remarkable progress in increasing density and speed. Recently, problems related to wiring, rather than C1 devices, have been attracting more attention as problems that limit the performance of LSIs. There are two main problems. The first point concerns a delay time determined by the product of wiring resistance and wiring capacitance. For example, A.K.
Shiina (A, ni, 5inha '5peed Llmi
tationa due to Int@rconn@
ctTim@Con5tants ln VLSI I
integrated C1rcuits, ”IEE
EvoL, EDL-31, NO, 4Apr, 198
2. pp 90-92. ) et al. determined the electrical characteristics of interconnects by numerical calculation using the two-dimensional Laplace-cut equation, and reported that in submicron LSIs, the delay time due to interconnects is greater than the device speed.
また、ケイ・シー・サラスヮト(K、 C,Saras
wat ”gffect of Seatingof
Intarconnactiona on tha T
ime Daムy of ’VLSI C1rcuit
s、’IIJEE vot、ED−29,No、4.A
pr、 1982.pp645−650)等は、0.5
μmルール以下でのLSIの性能は、配線技術によって
決まるとも報告している。これまで配線による遅延時間
を少なくするために低抵抗配線金属材料の検討と低比誘
電率絶縁膜の検討とが進められてさた。しかしながら、
上記条件を満足する材料としては、LSIのプロセスと
の親和性、即ち、密着性、加工性、耐熱性、絶縁性及び
信頼性等の観点から、Atと5ift Kを越える材料
はい゛まだに開発されていない。s10!膜に代える絶
縁膜としてポリイミド膜が周知であるが、ポリイミド膜
の比誘電率はその組成により3〜4と高いものである。Also, K. C. Saraswato (K, C, Saras)
wat” gffect of Seatingof
Interconnection on the T
ime Damy of 'VLSI C1rcuit
s, 'IIJEE vot, ED-29, No, 4. A
pr, 1982. pp645-650) etc. are 0.5
They also report that the performance of LSIs below the μm rule is determined by wiring technology. In order to reduce the delay time caused by wiring, research has been carried out on low-resistance wiring metal materials and low dielectric constant insulating films. however,
As for materials that satisfy the above conditions, materials exceeding At and 5ift K are still under development from the viewpoint of compatibility with LSI processes, that is, adhesion, processability, heat resistance, insulation, and reliability. It has not been. s10! A polyimide film is well known as an insulating film that can be used instead of a film, but the dielectric constant of the polyimide film is as high as 3 to 4 depending on its composition.
第2点は、漏話に関する問題である。@話が発生する理
由は、第5図に従来の配線構造の一例を示すように半導
体基板3上に形成された配線構造において、高密度化が
進み配線2の膜厚Cとその下の絶縁層1の膜厚aと配線
間膜厚すが同程度になった時に生じやすくなる。その理
由は、配線間容量が配線の対地容量と同程度あるいは大
きくなるからである。−活量の目安は、良く知られてい
るように次式で与えられる。The second point is a problem regarding crosstalk. The reason why the @ story occurs is that in the wiring structure formed on the semiconductor substrate 3, as shown in an example of the conventional wiring structure in FIG. This phenomenon tends to occur when the film thickness a of layer 1 and the inter-wiring film thickness s become approximately the same. The reason for this is that the inter-wiring capacitance becomes equal to or larger than the ground capacitance of the wiring. - As is well known, the guideline for activity is given by the following formula.
CM / (Cs10M ) ここで、Csは対地容t、cMは配線間容量でめる。CM / (Cs10M) Here, Cs is the capacitance to ground t, and cM is the capacitance between wirings.
この式から、C820Mとなると、被誘導線に、誘導線
の電位の1ハの電位が誘導されることが分かる。漏話量
を減らす−?の手段として、絶縁層の膜厚aを減らし、
Csを大きくする方法がある。しかし、この方法は配線
遅延を増加てせるため好゛ましくない。また、もう一つ
の手段として配線2の膜gcを薄くするという方法があ
る。しかし、この方法は配線抵抗が増加し、配線遅延を
増大させるため好ましくない。さらに、もう一つの漏話
量低減の方法として、第6図に示す従来の配?Ia構造
の他の例のように、配線を積っている絶縁膜上に金属材
料から成るグランドプレーン9を設けるというものがあ
る。この方法の最大の特徴は、配線を多層化した際の異
なる配線層間の漏話が防止できる点にある。しかし、こ
の方法も配線容量は増加する。From this equation, it can be seen that when C820M is used, a potential of 1 h of the potential of the guiding wire is induced in the guided wire. Reduce the amount of crosstalk -? As a means of reducing the thickness a of the insulating layer,
There is a way to increase Cs. However, this method is undesirable because it increases wiring delay. Another method is to make the film gc of the wiring 2 thinner. However, this method is not preferable because it increases wiring resistance and increases wiring delay. Furthermore, as another method for reducing the amount of crosstalk, the conventional arrangement shown in Fig. 6 is used. As in other examples of the Ia structure, there is one in which a ground plane 9 made of a metal material is provided on an insulating film on which wiring is stacked. The greatest feature of this method is that crosstalk between different wiring layers can be prevented when wiring is multilayered. However, this method also increases the wiring capacitance.
従来の配線構造は、高密度化に伴って増加する配線遅延
と漏話な抑えることができないという欠点があった。そ
のため、高密度化に伴い配線の信頼性を低下させること
をく、配線遅延を押さえつつ、同時に漏話量を低減する
対応策が必要である。Conventional wiring structures have the disadvantage of not being able to suppress wiring delays and crosstalk, which increase as density increases. Therefore, countermeasures are needed to prevent wiring reliability from deteriorating as the density increases, to suppress wiring delays, and to reduce the amount of crosstalk at the same time.
本発明は従来の問題点を解決し、従来の配線構造と同等
の配線の信頼性すなわち基板との接着性を確保しつつ、
高密度及び高速な半導体集積回路において大きな問題と
なる遅延と漏話量を低減した伝送配線構造を提供するも
ので、半導体基板上の配線構造において、半導体基板上
に形成した第1の絶縁層と、第1の絶縁層上に形成した
配線と、配線間に少くとも存在する、第1の絶縁層の比
誘を率より小さい比誘電率を有する第2の絶縁層とを備
えてなることを特徴とする。The present invention solves the conventional problems, and while ensuring the reliability of the wiring equivalent to the conventional wiring structure, that is, the adhesion with the substrate,
The present invention provides a transmission wiring structure that reduces delay and crosstalk, which are major problems in high-density and high-speed semiconductor integrated circuits.In the wiring structure on a semiconductor substrate, a first insulating layer formed on the semiconductor substrate; It is characterized by comprising a wiring formed on a first insulating layer and a second insulating layer existing between the wirings and having a dielectric constant smaller than the dielectric constant of the first insulating layer. shall be.
従来の配線構造は、単一の誘電率の絶縁層を用いていた
。それに対して本発明は、配線の下の絶縁層と配線間に
埋設した絶縁層とはそれぞれ比誘電率が異なることを最
も主要な特徴とするものであり、配線下の絶縁層の比誘
電率より配線間の絶縁層の比誘電率を小さくすることに
より配線間容量を減らし、遅延時間を減らすと共に、配
線間容量の対地容量に対する比率を減らすことにより、
漏話な発生しにくくするという点が従来技術と大きく異
なる。本発明においては、配線層と基板との接着性は、
配線層下の絶縁層の絶縁材料により確保されているため
、配線層間に埋設される絶縁材料と配線層との接着性に
対する要求条件は緩和され、エリ広い材料の範囲から低
誘電率材料の選択が可能となる。以下図面にもとづき実
施例について説明する。Conventional interconnect structures have used insulating layers of a single dielectric constant. In contrast, the main feature of the present invention is that the insulating layer under the wiring and the insulating layer buried between the wirings have different dielectric constants, and the dielectric constant of the insulating layer under the wiring is different from that of the insulating layer buried between the wirings. By lowering the dielectric constant of the insulating layer between the wires, the capacitance between the wires is reduced, delay time is reduced, and the ratio of the capacitance between the wires to the ground capacitance is reduced.
This method differs greatly from conventional technology in that crosstalk is less likely to occur. In the present invention, the adhesiveness between the wiring layer and the substrate is
Since this is ensured by the insulating material of the insulating layer below the wiring layer, the requirements for adhesion between the insulating material buried between the wiring layers and the wiring layer are relaxed, making it possible to select a low dielectric constant material from a wide range of materials. becomes possible. Examples will be described below based on the drawings.
本発明の配線構造の第1の実施例を第1図に示す。第1
図は、半導体基板4上の配線6の周囲を絶縁層5.7で
形成した配線構造である。絶縁層7の比誘電率は絶縁層
5の比誘電率よりも小さいことを特徴とするー1本発明
では、配線6としてAt配線を使い、絶縁層5として集
積のあるS tO1層。A first embodiment of the wiring structure of the present invention is shown in FIG. 1st
The figure shows a wiring structure in which a wiring 6 on a semiconductor substrate 4 is surrounded by an insulating layer 5.7. The dielectric constant of the insulating layer 7 is smaller than that of the insulating layer 5.-1 In the present invention, an At wiring is used as the wiring 6, and an integrated StO1 layer is used as the insulating layer 5.
絶縁層7として、例えばポリテトラフルオロエチレン(
−(CFtCFt)−)、らるいはポリエチレン等の低
誘電率高分子材料を適用する。絶縁層5としての810
2層の比誘電率は工9、絶縁層7としてのポリテトラフ
ルオロエチレン及びポリエテレ/の比誘電率はそれぞれ
2.1及び22程度である。従って、配線下の絶縁層5
の膜厚と配線間の寸法とが等しくても、あるいは、配線
間の寸法の方が小さくても配線の対地容120も配線間
の容量の方を小さくすることができる。すなわち、本配
線構造は、従来と同等の配線層と基板との接着性を有し
配線を高密度に実装しても漏話が発生しにくい構造であ
る。第1図の構造において、配線下の絶縁膜厚a、配線
層間距離す、配球7”−厚さCが等しい場合に本発明を
適用すると、絶縁層としr stowのみを使用した場
合と比較すると、全容量、漏話量とも25チないし36
%程度低減でれろ。As the insulating layer 7, for example, polytetrafluoroethylene (
-(CFtCFt)-), a low dielectric constant polymer material such as silica or polyethylene is applied. 810 as insulating layer 5
The dielectric constant of the two layers is about 9, and the dielectric constants of polytetrafluoroethylene and polyethylene as the insulating layer 7 are about 2.1 and 22, respectively. Therefore, the insulating layer 5 under the wiring
Even if the film thickness of the wiring and the dimension between the wirings are equal, or even if the dimension between the wirings is smaller, the capacitance to the ground 120 of the wiring can also be made smaller than the capacitance between the wirings. In other words, this wiring structure has the same adhesion between the wiring layer and the substrate as the conventional wiring structure, and is a structure in which crosstalk is less likely to occur even when wiring is mounted at high density. In the structure shown in Fig. 1, if the present invention is applied when the insulating film thickness under the wiring, the distance between the wiring layers, and the distribution ball 7'' - thickness C are equal, the comparison will be made with the case where only r stow is used as the insulating layer. Then, the total capacity and crosstalk amount are 25 to 36 inches.
It should be reduced by about %.
次に、本発明の配線構造の第2の実施例を第2図に示す
。第2の実施例は、第2図に示す工うに配線層の周囲に
絶縁層5,7.8を形成し、さらに、絶縁層7.8上に
金属材料のグラ/ドブレーン9を形成した配線構造であ
る。絶縁層7の比誘電率は絶縁層5,8の比誘電率より
も小さい。本構造は、従来のグランドプレーンを設けた
構造と比較すると、全配線容量が減るばかりか、配線間
容量の対地容量に対する比率が減少し、配線間の漏話も
低減される。Next, a second embodiment of the wiring structure of the present invention is shown in FIG. In the second embodiment, insulating layers 5, 7.8 are formed around the wiring layer as shown in FIG. It is a structure. The dielectric constant of the insulating layer 7 is smaller than that of the insulating layers 5 and 8. Compared to a conventional structure provided with a ground plane, this structure not only reduces the total wiring capacitance, but also reduces the ratio of inter-wiring capacitance to ground capacitance, and reduces crosstalk between wiring.
以下に本発明の配線構造を儒えた幾−りかの具体例につ
いて製造方法を例示しC記す。最初に、第1の実施例の
配?IA構造を備えた幾つかの具体例を第3図(&)乃
至(e)にしめす。第3図(a)は、半導体基板4上に
形成した絶縁9j%5上に配線6の材料を堆積したもの
である。本実施例では、絶縁膜5としてCVD法による
5ift膜を0.5μm4槓した。The manufacturing methods for some specific examples of the wiring structure of the present invention will be exemplified and described below. First, what is the arrangement of the first embodiment? Some specific examples with IA structures are shown in FIGS. 3(&) to (e). In FIG. 3(a), material for wiring 6 is deposited on an insulating layer 9j%5 formed on a semiconductor substrate 4. In FIG. In this example, as the insulating film 5, a 5ift film formed by the CVD method was formed to have a thickness of 0.5 μm.
この絶縁膜の堆積方法としては、CvD法以外にスパン
タリング法、プラズマCvD法、スピンオン法等があり
、いずれを採用しても実現できることは言うまでもない
。配線材料としては、比抵抗が2.9 ×10−60−
閏と小さく、かつ、LSIのプロセスに親和性のあるA
/、を採用した。Atは、スパッタリング法によりa、
5μm堆積した。配線材料の堆積法として、スパッタリ
ング法以外に蒸着法、 CVD法、プラズマCVD法等
がちるがいずれを採用しても実現できることは言うまで
もない。第6図(b)に、レジストパターンをリングラ
フィ工程により形成した後、ドライエツチングにエリ、
絶縁層5゜配線6の材料を同時にエツチングし、形成し
たものである。本発明では、微細パターンを形成するた
めにレジストとして5NR(シリコーン系ネガ型レジス
ト)/AZレジストの2層レジストを用いた。レジスト
の膜厚は、SNRが0.15μm + A Zレジスト
が1.011mである。リングラフィは、EB描画法に
より行ない、パターン形成後、SNRを現像し、続いて
OSプラズマを用いてAZレジストをエツチングし、次
に002番でAtをドライエツチングし、さらに、CF
4とH!により Sin、をエツチングした。第3図(
b)の実施例では、絶縁層5を膜厚分だけ完全にエラ六
ノグ除去したが、エツチングを途中でとめた工程でも良
い。第3図(e)は、比誘電率が絶縁層5よりも小さい
絶縁層7を埋設したものである。絶縁層を埋設する方法
としては、プラズマ重合法、スピンオン法8蒸着法があ
る。本実施例では、絶縁物としてポリテトラフルオロエ
チレン(−〔CF、CF、)−>を用いてスピンオン法
により塗布し、ベーキングをすることにより埋設した。Methods for depositing this insulating film include, in addition to the CvD method, a sputtering method, a plasma CvD method, a spin-on method, etc., and it goes without saying that the present invention can be achieved by employing any of these methods. The wiring material has a specific resistance of 2.9 x 10-60-
A is as small as a leapfrog and is compatible with LSI processes.
/,It was adopted. At is prepared by a sputtering method.
A thickness of 5 μm was deposited. In addition to the sputtering method, there are various methods for depositing the wiring material, such as vapor deposition, CVD, and plasma CVD, and it goes without saying that the present invention can be achieved using any of these methods. In FIG. 6(b), after the resist pattern is formed by a phosphorography process, the resist pattern is etched by dry etching.
The insulating layer 5 and the material of the wiring 6 are etched at the same time. In the present invention, a two-layer resist of 5NR (silicone negative type resist)/AZ resist was used as a resist to form a fine pattern. The film thickness of the resist is SNR 0.15 μm + AZ resist 1.011 m. The phosphorography was performed using the EB writing method, and after pattern formation, the SNR was developed, the AZ resist was etched using OS plasma, the At was dry etched with No. 002, and the CF resist was etched.
4 and H! Sin was etched by etching. Figure 3 (
In the embodiment b), the insulating layer 5 was completely removed by the thickness of the film, but the etching may be stopped midway through the process. In FIG. 3(e), an insulating layer 7 having a dielectric constant smaller than that of the insulating layer 5 is embedded. Methods for embedding the insulating layer include plasma polymerization, spin-on deposition, and vapor deposition. In this example, polytetrafluoroethylene (-[CF, CF,)-> was applied as an insulator by a spin-on method, and buried by baking.
ポリテトラフルオロエtしy ((CFtCFt)−)
は、比誘電率が2.1 (I MHz )、耐熱性30
0℃程度で、ポリエチレンの耐熱性(200℃程度)に
比べて高く、本発明の目的により合致した材料である。Polytetrafluoroethylene ((CFtCFt)-)
has a dielectric constant of 2.1 (I MHz) and a heat resistance of 30
It has a heat resistance of about 0°C, which is higher than that of polyethylene (about 200°C), and is a material that better meets the purpose of the present invention.
次に、本発明の第2の実施例の配線構造を備えた幾つか
の具体例を第4図(A)乃至(d)に示す。Next, some specific examples having the wiring structure of the second embodiment of the present invention are shown in FIGS. 4(A) to 4(d).
第4図(a)は半導体基板4の上に絶縁層5を堆積し、
次に配線6の材料と絶縁層8を連続して堆積したもので
ある。本実施例では、絶縁層5.8としてCVD法によ
る膜厚α5μmのSigh膜、配線材料としてスパッタ
リング法による膜厚α5μmのAtを採用した。第4図
(b)は、第1の実施例と同様のSNR/Azの2層レ
ジストにEB描画を行い、SNRN像現像後2プラズマ
によりAZレジストをエツチングしパターンを形成した
後、CF4とH1雰囲気中で上層のSin、からなる絶
縁層8をエツチングし、次にCCt、でAtからなる配
線層6をエツチングし、次にCF4とH1雰囲気中で下
層の5iotからなる絶縁層5をエツチングし、その後
2層レジストを除去したものである。第4図(C)は、
絶縁層7を第1の実施例と同様にして線間に埋設したも
のである。FIG. 4(a) shows an insulating layer 5 deposited on a semiconductor substrate 4,
Next, the material for the wiring 6 and the insulating layer 8 are successively deposited. In this embodiment, a Sigh film with a thickness of α5 μm formed by CVD method was used as the insulating layer 5.8, and an At film with a thickness α5 μm formed by sputtering method was used as the wiring material. FIG. 4(b) shows that EB writing is performed on the same SNR/Az two-layer resist as in the first embodiment, and after the SNRN image is developed, the AZ resist is etched with two plasmas to form a pattern, and then CF4 and H1 The upper insulating layer 8 made of Sin is etched in an atmosphere, then the wiring layer 6 made of At is etched in CCt, and then the lower insulating layer 5 made of 5iot is etched in a CF4 and H1 atmosphere. , after which the two-layer resist was removed. Figure 4 (C) is
The insulating layer 7 is buried between the lines in the same manner as in the first embodiment.
第4図(d)は、Arのスパッタリングを用いてニップ
パックを行い表面を平坦な構造としたものである。第4
図(6)は、金属材料であるグランドブレーン9を堆積
したものである。本実施例では、スパッタリング法によ
りAtを0.2μm堆積したものである。FIG. 4(d) shows a structure in which the surface is made flat by nip-packing using Ar sputtering. Fourth
In FIG. 6, a ground brain 9 made of a metal material is deposited. In this example, At is deposited to a thickness of 0.2 μm by sputtering.
本発明の配線構造を、配線層の厚さ、配線間距離、配線
と基板との距離が全て等しい場合に適用すると、絶縁層
7として比誘電率Z1のポリテトラフルオロエチレン、
絶縁層5として比誘電率6.9の5iotを用いること
にエリ従来構造と同じ基板との接着性を確保しつつ、絶
縁層全てがS SOxとした従来構造と比較すると、全
配線容量、漏話量とも30%程度低減できる。When the wiring structure of the present invention is applied when the thickness of the wiring layer, the distance between the wirings, and the distance between the wiring and the substrate are all equal, the insulating layer 7 is made of polytetrafluoroethylene with a dielectric constant of Z1,
The advantage of using 5iot with a dielectric constant of 6.9 as the insulating layer 5 is to ensure the same adhesion to the substrate as in the conventional structure, while reducing total wiring capacitance and crosstalk compared to the conventional structure in which all the insulating layers are SSOx. Both amounts can be reduced by about 30%.
また本発明の一態様の配線構造でおる配線を多層化した
際に、上下の配線層間の漏話を防止するためのグランド
プレーンが存在する構造において、絶縁層7として比誘
電率2.1のポリテトラフルオロエテレンを、絶縁層5
.8としてSin、を用いることにより絶縁層7の比誘
電率を絶縁層5,8の比誘電率の約1/2と小さくした
ことにより、ALのグランドプレーンを上層に設けたた
めに増加した配線容量を低減させるとともに、配線間容
量の対地容量に対する比率をさらに小さくシ、−層の漏
話量の低減を実現できる。Further, in a structure in which a ground plane exists to prevent crosstalk between upper and lower wiring layers when wiring is multilayered in the wiring structure of one embodiment of the present invention, the insulating layer 7 is made of polyamide with a dielectric constant of 2.1. Insulating layer 5 of tetrafluoroethylene
.. By using Sin as 8, the relative permittivity of the insulating layer 7 is reduced to approximately 1/2 of that of the insulating layers 5 and 8, which reduces the wiring capacitance increased due to the provision of the AL ground plane in the upper layer. At the same time, the ratio of the inter-wiring capacitance to the ground capacitance can be further reduced, thereby realizing a reduction in the amount of crosstalk in the - layer.
以上説明したように、本発明は、サブミクロンルールに
よる超LSIの性能を左右する配線における遅延と漏話
の問題を解決するものである。As described above, the present invention solves the problems of delay and crosstalk in wiring, which affect the performance of VLSIs based on the submicron rule.
第1図は本発明の配線構造の第1の実施例、第2図は本
発明の配線構造の第2の実施例、第3図(a)乃至(e
)は本発明の第1の実施例の配線構造を備えた具体例、
第4図(&)乃至(@)は本発明の第2の実施例の配線
構造を備えた具体例、
第5図は従来の配線構造の一例、
第6図は従来の配線構造の他の例である。
1・・・絶縁層
2・・・配線
3・・・半導体基板
4・・・半導体基板
5・・・絶縁層(比誘を軍人)
6・・・配線
7・・・絶縁層(比誘電軍手)
8・・・絶縁層(比誘電重大)
9・・・グランドブレーンFIG. 1 shows a first embodiment of the wiring structure of the present invention, FIG. 2 shows a second embodiment of the wiring structure of the present invention, and FIGS. 3(a) to (e)
) is a specific example having the wiring structure of the first embodiment of the present invention, FIG. 4 (&) to (@) are specific examples having the wiring structure of the second embodiment of the present invention, FIG. is an example of a conventional wiring structure, and FIG. 6 is another example of a conventional wiring structure. 1... Insulating layer 2... Wiring 3... Semiconductor substrate 4... Semiconductor substrate 5... Insulating layer (dielectric for soldiers) 6... Wiring 7... Insulating layer (dielectric work gloves) ) 8... Insulating layer (dielectric critical) 9... Ground brain
Claims (2)
造において、 前記半導体基板上に形成した第1の絶縁層と、前記第1
の絶縁層上に形成した配線と、 前記配線間に少くとも存在する、前記第1の絶縁層の比
誘電率より小さい比誘電率を有する第2の絶縁層とを備
えてなる ことを特徴とする半導体集積回路の基板配線構造。(1) In a wiring structure on a semiconductor substrate forming a semiconductor integrated circuit, a first insulating layer formed on the semiconductor substrate;
and a second insulating layer having a relative permittivity smaller than the relative permittivity of the first insulating layer, which is present at least between the interconnects. substrate wiring structure of semiconductor integrated circuits.
ポリエチレンからなる ことを特徴とする特許請求の範囲第1項記載の半導体集
積回路の基板配線構造。(2) A substrate for a semiconductor integrated circuit according to claim 1, wherein the first insulating layer is made of a silicon oxide film, and the second insulating layer is made of polytetrafluoroethylene or polyethylene. Wiring structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61151007A JPH07120706B2 (en) | 1986-06-27 | 1986-06-27 | Wiring structure of semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61151007A JPH07120706B2 (en) | 1986-06-27 | 1986-06-27 | Wiring structure of semiconductor integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS637650A true JPS637650A (en) | 1988-01-13 |
JPH07120706B2 JPH07120706B2 (en) | 1995-12-20 |
Family
ID=15509250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61151007A Expired - Lifetime JPH07120706B2 (en) | 1986-06-27 | 1986-06-27 | Wiring structure of semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07120706B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0706216A2 (en) | 1994-10-03 | 1996-04-10 | Sony Corporation | Interlayer dielectric structure for semiconductor device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58123753A (en) * | 1982-01-20 | 1983-07-23 | Hitachi Ltd | Semiconductor integrated circuit |
JPS6051262A (en) * | 1983-08-27 | 1985-03-22 | 株式会社大林組 | Mold frame raising apparatus |
JPS60224229A (en) * | 1984-04-20 | 1985-11-08 | Hitachi Ltd | Semiconductor device |
-
1986
- 1986-06-27 JP JP61151007A patent/JPH07120706B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58123753A (en) * | 1982-01-20 | 1983-07-23 | Hitachi Ltd | Semiconductor integrated circuit |
JPS6051262A (en) * | 1983-08-27 | 1985-03-22 | 株式会社大林組 | Mold frame raising apparatus |
JPS60224229A (en) * | 1984-04-20 | 1985-11-08 | Hitachi Ltd | Semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0706216A2 (en) | 1994-10-03 | 1996-04-10 | Sony Corporation | Interlayer dielectric structure for semiconductor device |
US5646440A (en) * | 1994-10-03 | 1997-07-08 | Sony Corporation | Interlayer dielectric structure for semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH07120706B2 (en) | 1995-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69323628T2 (en) | CHIP CONNECTION WITH GAS-PERMEABLE ETCH LAYER | |
US6078088A (en) | Low dielectric semiconductor device with rigid lined interconnection system | |
KR100392900B1 (en) | Multilayer Low Dielectric Constant Technology | |
JP3305251B2 (en) | Method of forming wiring structure | |
US6617690B1 (en) | Interconnect structures containing stress adjustment cap layer | |
JP2002009150A (en) | Semiconductor device, its manufacturing method and manufacturing equipment | |
JP2000174123A (en) | Semiconductor device and manufacture thereof | |
CN1795552A (en) | Method for manufacturing a multi-level interconnect structure | |
JPH0834772B2 (en) | Method for manufacturing semiconductor device | |
JPH1074755A (en) | Microelectronic structure and its forming method | |
KR20010107555A (en) | Semiconductor device and manufacturing method thereof | |
TW200411716A (en) | Semiconductor device and method of manufacturing the same | |
JPH07114236B2 (en) | Wiring structure manufacturing method | |
JPS637650A (en) | Substrate wiring structure of semiconductor integrated circuit | |
JP2005150389A (en) | Semiconductor device | |
US6660661B1 (en) | Integrated circuit with improved RC delay | |
KR100607363B1 (en) | Inter-Metal-Dielectric Layer Using Low-k Dielectric Material And Method for Same | |
JPH061795B2 (en) | Multilayer wiring structure | |
GB2208119A (en) | Method and structure for achieving low contact resistance to aluminium and its alloys | |
KR20010086025A (en) | Interlayer between titanium nitride and high density plasma oxide | |
JPS60187038A (en) | Multilayer interconnection structure | |
JPS6376351A (en) | Formation of multilayer interconnection | |
US7018942B1 (en) | Integrated circuit with improved RC delay | |
JP2899895B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPS632353A (en) | Alleviation of stepwise difference of wiring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |