JPS6376261A - Secondary cell - Google Patents

Secondary cell

Info

Publication number
JPS6376261A
JPS6376261A JP61218509A JP21850986A JPS6376261A JP S6376261 A JPS6376261 A JP S6376261A JP 61218509 A JP61218509 A JP 61218509A JP 21850986 A JP21850986 A JP 21850986A JP S6376261 A JPS6376261 A JP S6376261A
Authority
JP
Japan
Prior art keywords
alloy
fiber
negative electrode
fibrous material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61218509A
Other languages
Japanese (ja)
Inventor
Hidenori Nakamura
英則 中村
Hiroshi Konuma
博 小沼
Riichi Shishikura
利一 獅々倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP61218509A priority Critical patent/JPS6376261A/en
Publication of JPS6376261A publication Critical patent/JPS6376261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To secure such a secondary cell that is high in strength, and even if charging and discharging are repeated, not easily disintegrated and, what is more, excellent in a cell characteristic, by using a negative electrode, made up of alloying lithium electrochemically, on top of aluminum or an aluminum alloy reinforced with fibrous material. CONSTITUTION:This secondary cell is one that uses a negative electrode, made up of alloying lithium electrochemically, on top of aluminum or an aluminum alloy reinforced with fibrous material. It is desirable that the fibrous material is low in reactivity with an electrolyte and excellent in electrical conductivity. As for a method of compoundization with the fibrous material, for example, there are following ways that a method of mixing alloyed powder and a fiber and molding by heating, a method of processing the fiber into sheet form and dipping it in a melted alloy layer, having the alloy impregnated in the sheet inside, and a method of stacking alloyed foil and the fiber alternately and molding it by heating, etc. And, in case of a carbon fiber, it is desirable that such one covering a metal on the carbon fiber as compared with a complex with the carbon fiber itself. In the compounded electrode substrate, the fiber and the metal become entangled with each other so that disintegration of the substrate due to separation and discharge of the lithium is restrained, thus it comes to such one as excellent as a negative electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エネルギー密度が高く、自己放電が小ざく、
ザイクル寿命が長く、かつ充放電効率(クーτコン効率
)の良好な二次電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a high energy density, small self-discharge,
The present invention relates to a secondary battery with a long cycle life and good charge/discharge efficiency (coupon efficiency).

〔従来の技術〕[Conventional technology]

現在、汎用されている二次電池には鉛蓄電池、Ni/C
d電池等がある。これらの二次電池は、一般には水溶液
系電池であって、それらの単セルの電池電圧は、せいぜ
い2.0V程度である。近年、電池電圧を高くとること
ができる二次電池として、1− iを負極に用いた二次
電池の開発研究が盛/νに行なわれている。
Currently, the commonly used secondary batteries are lead acid batteries, Ni/C
There are d batteries etc. These secondary batteries are generally aqueous batteries, and the battery voltage of their single cells is about 2.0V at most. In recent years, research and development efforts have been actively conducted on secondary batteries that use 1-i as a negative electrode as secondary batteries capable of achieving high battery voltages.

1−iを電極に用いた場合には、水とl−i とは相互
に高い反応性を示ずため、電解液としては非水系を用い
ることが必要である。
When 1-i is used as an electrode, water and 1-i do not show high reactivity with each other, so it is necessary to use a non-aqueous electrolyte.

しかしながら、liを負極活物質として二次電池反応を
行なう場合には充電に際し、Li“が還元されるとぎに
デンドライトが生じ、充放°心動率の低下及び正・負極
の短絡等の問題がある。
However, when carrying out a secondary battery reaction using Li as a negative electrode active material, dendrites are formed when Li is reduced during charging, causing problems such as a decrease in charge/discharge heart rate and a short circuit between the positive and negative electrodes. .

この問題を解決するため、IIU自体をAJと合金化す
ることにより、l−iのデンドライトを防止する方法〔
ビ、エム、エル、う1等ニジ11−ナル・オア。エレク
トロケミカル、ソサイエティー(B、 M、 L、 R
ao et al : J 、 E Icctroch
em。
To solve this problem, a method of preventing l-i dendrites by alloying IIU itself with AJ [
B, M, L, 1st class Niji 11-Naru Or. Electrochemical, Society (B, M, L, R
ao et al: J, E Icctroch
em.

Soc、 ) 1490〜1492頁(1977) )
やウッド合金を用いる方法〔第24回電池討論会、18
09 (1983) )等が提案されている。
Soc, ) pp. 1490-1492 (1977))
Method using wood alloy [24th Battery Symposium, 18
09 (1983)) etc. have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

1iとAjとの合金を負極に用いる場合は、Aj中のl
iの拡散速度により最大充放電のN流密度がI11限さ
れ、合金の中ではβ相のL1拡拡散度が速い。従って、
β型のLi −A4合金粉末を成型して電極に用いるこ
とがよく行なわれているが、β型の1−i−A1合金は
板状に成型することが難しく、たとえ、成型できても、
その電極を用いて、充放電を繰り返すうちに電極が崩壊
してしまう。また、適当な結着剤を混ぜ【崩壊を防止す
ると電橋性能が低下する。
When using an alloy of 1i and Aj for the negative electrode, l in Aj
The maximum charging/discharging N flow density is limited by the diffusion rate of i, and the L1 diffusion rate of the β phase is fast in the alloy. Therefore,
It is common practice to mold β-type Li-A4 alloy powder and use it for electrodes, but it is difficult to mold β-type 1-i-A1 alloy into a plate shape, and even if it can be molded,
As the electrode is repeatedly charged and discharged, it collapses. In addition, mixing an appropriate binder to prevent collapse will reduce the performance of the bridge.

また、ウッド合金をLi@蔵・放出用の負極に用いた場
合は、基板の崩壊は抑制され、l−i吸蔵量もLi−A
4合金を用いるよりも大きくなるが、ウッド合金中のl
−iの拡散速度が遅く、β型1−i−A4合金を負極に
用いる場合よりも1流密度を大きくとれない欠点がある
In addition, when Wood alloy is used as the negative electrode for Li storage and release, the collapse of the substrate is suppressed, and the amount of Li storage is also reduced.
Although it is larger than using 4 alloy, l in Wood alloy
-i diffusion rate is slow, and there is a drawback that the single flow density cannot be increased compared to when a β-type 1-i-A4 alloy is used for the negative electrode.

また、A7合金上に電気化学的にliの吸蔵・放出を行
う二次電池においてtよ、合金基板がサイクルとともに
崩壊し、電池性能の低下が起きる等の問題があった。
Further, in a secondary battery in which lithium is absorbed and released electrochemically on an A7 alloy, there are problems such as the alloy substrate disintegrating with cycles, resulting in a decrease in battery performance.

本発明者らは上記の問題点を解決すべく鋭意研究した結
果、A、fもしくはA1合金基板を製造する時点におい
て、IIII状物質を混合、包含した状態で基板をII
造すると、負極材料として優れたものが得られることを
発見した。
As a result of intensive research to solve the above problems, the present inventors found that at the time of manufacturing A, f, or A1 alloy substrates, the substrates are mixed with III-like substances and mixed with II-like substances.
It was discovered that an excellent negative electrode material can be obtained by manufacturing this material.

本発明は上記の発見に基づいてなされたもので、従来の
欠点を解消し、強度が高く、充放電を繰り返しても容易
に崩壊することがなく、かつ電池特性の優れた二次電池
を提供することを目的とする。
The present invention has been made based on the above discovery, and provides a secondary battery that eliminates the conventional drawbacks, has high strength, does not easily collapse even after repeated charging and discharging, and has excellent battery characteristics. The purpose is to

(問題点を解決するための手段) 本発明は上記の目的を達成すべくなされたもので、その
要旨は、繊維状物質で強化されたAjもしくはA1合金
上に、リチウムを電気化学的に合金化した負極を用いる
二次電池にある。
(Means for Solving the Problems) The present invention has been made to achieve the above object, and its gist is to electrochemically alloy lithium on Aj or A1 alloy reinforced with a fibrous material. The secondary battery uses a negative electrode made of

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明に用いられる繊維状物質は、電解液との反応性が
低く、かつ電気伝導度が良好であることが望ましい。こ
のような繊維としては炭素繊維:W、Mo 、Ni 、
Cu 、Fe 、Ag、Au 、Pt 。
It is desirable that the fibrous material used in the present invention has low reactivity with the electrolytic solution and good electrical conductivity. Such fibers include carbon fibers: W, Mo, Ni,
Cu, Fe, Ag, Au, Pt.

CO,TiWの金属繊M:AJ合金、Fe合金、Cu合
金等の合金繊維:アルミナ、ボロン、炭化ケイ素、窒化
ボロン、シリカ等の無機繊維、または炭素繊維を金属で
被覆したI!緒があるが、特に金WA繊維、或は、金属
によって被覆された炭素繊維が好ましい。
CO, TiW metal fiber M: Alloy fiber such as AJ alloy, Fe alloy, Cu alloy, etc.: Inorganic fiber such as alumina, boron, silicon carbide, boron nitride, silica, or carbon fiber coated with metal I! Among them, gold WA fibers or carbon fibers coated with metal are particularly preferred.

上記繊維は、当然のことながら電解液との反応性が低く
、かつ電気伝2J度のよいものが好ましく、その形状は
、作成方法によって種々なものが考えられるが、特に円
柱状であることが好ましい。径は、〜50μm以下のも
のがよいが、これによって造られる負極の厚みが100
〜200μ亀であることを考慮すれば1〜10μmが適
当である。
Naturally, it is preferable that the above-mentioned fiber has low reactivity with the electrolytic solution and good electrical conductivity.The fiber can have various shapes depending on the method of preparation, but it is particularly preferable to have a cylindrical shape. preferable. The diameter is preferably ~50 μm or less, but the thickness of the negative electrode made by this is 100 μm or less.
Considering that the thickness is ~200 μm, 1 to 10 μm is appropriate.

使用するA1合金としては、5Qwt%以上のAjと、
MO,Mn、Si、Cu、Ti、Fe。
The A1 alloy used includes Aj of 5Qwt% or more,
MO, Mn, Si, Cu, Ti, Fe.

Zn、pb、Cr、Ca、Sn、Inからなる群から選
ばれた一種または二種以上の成分が5Qwt%以下とか
らなる合金が用いられるが、特にMO。
An alloy containing 5Qwt% or less of one or more components selected from the group consisting of Zn, pb, Cr, Ca, Sn, and In is used, and in particular, MO.

Ca、PbおよびInとの多成分合金が好ましい。Multicomponent alloys with Ca, Pb and In are preferred.

また、繊維物質との複合化の方法としては、特に制限は
ないが、例えば、合金粉末と繊維を混合し加熱成型する
方法、繊維をシート状に加工し、溶融した合金層中に浸
漬してシート内部に合金を含浸させる方法、合金箔とl
i維を交互にVi層して加熱成型する方法等があるがい
ずれの方法を用いてもよい。
In addition, there are no particular restrictions on the method of compounding with the fibrous material, but examples include a method of mixing alloy powder and fibers and heat molding, processing the fibers into a sheet shape, and immersing the fibers in a molten alloy layer. Method of impregnating alloy inside sheet, alloy foil and l
There is a method in which I-fibers are alternately formed into Vi layers and then heated and molded, and any method may be used.

また、炭素繊維の場合は、炭素m雑その物との複合体に
比べて、炭素繊維の上に金属を被覆したものが好ましい
Furthermore, in the case of carbon fibers, carbon fibers coated with metal are preferable to composites with carbon and miscellaneous materials.

これらの方法によって、複合化された電極基板は!!維
と金属が絡まり合うため、Llの析出、放出による基板
の崩壊が抑制され、負極として優れたものとなる。
Composite electrode substrates are created using these methods! ! Since the fibers and metal are entangled, collapse of the substrate due to precipitation and release of Ll is suppressed, making it an excellent negative electrode.

次に、電気化学的に繊維で強化された電極基板上にli
を電析さ往る方法について説明する。
Next, the Li
The method for electrodepositing is explained below.

しi塩を含んだ非水電解液中、またはli溶融塩中で、
上記基板を負汚に用い、一般にはリチウム金属を正極と
して、一定電流または一定電圧で設定電気母相当の電気
を流し、基板を合金化する。
In a non-aqueous electrolyte containing salt or in a molten salt,
The above-mentioned substrate is used for negative contamination, and in general, lithium metal is used as a positive electrode, and electricity corresponding to a set electric power source is passed at a constant current or constant voltage to alloy the substrate.

この場合、合金化の電気【)は、基板に含まれるアルミ
ニウム1原子当り0.6原子以内のliが電析するに相
当する電気量に抑える必要がある。
In this case, the alloying electricity () needs to be suppressed to an amount of electricity equivalent to electrodepositing 0.6 atoms or less of li per 1 atom of aluminum contained in the substrate.

1−iの電析逼が0.6原子を越えると、各サイクル毎
に充放電できる電気ωが大きく制限され、電池性能が低
下するため、特に、0.2原子乃至0.6原子のl−i
を初期に合金化することが好ましい。この範囲内では、
各サイクル毎に充放電できる電気量及び充放電効率が6
0%に低下するまでの、繰り返し充放電を行えるサイク
ル数が多く、電極性能が極めて良い。
If the amount of 1-i deposited exceeds 0.6 atoms, the amount of electricity ω that can be charged and discharged in each cycle is greatly limited, and the battery performance deteriorates. -i
It is preferable to alloy it initially. Within this range,
The amount of electricity that can be charged and discharged in each cycle and the charging and discharging efficiency are 6
The number of cycles that can be repeatedly charged and discharged until the voltage drops to 0% is large, and the electrode performance is extremely good.

一定電流で合金化する場合の電流密度は、10m^/C
1i以下が良く、これを越えるとデンドライトが基板表
面に析出してしまう。特に好ましい電流密度は、3a+
^/cd以下である。一方、定電圧で合金化する場合は
、基板の電位がLi/Li9の酸化還元電位に対し、0
.2■乃至0.4Vが良い。
When alloying with a constant current, the current density is 10m^/C
A value of 1i or less is preferable; if it exceeds this, dendrites will precipitate on the substrate surface. A particularly preferred current density is 3a+
^/cd or less. On the other hand, when alloying is carried out at a constant voltage, the potential of the substrate is 0 compared to the oxidation-reduction potential of Li/Li9.
.. 2■ to 0.4V is good.

0.2■より低い電位ではliのデンドライトを生じ、
0,4■より高い電位では、合金化の時間が非常に長く
かかる。
At a potential lower than 0.2■, li dendrites occur,
At potentials higher than 0.4 ■, the alloying time takes very long.

本発明の二次電池において正極に用いることができる活
物質は、負極よりも高い電位で、電気化学的に非水系の
電解液と可逆的に反応できるものなら格別限定されない
The active material that can be used for the positive electrode in the secondary battery of the present invention is not particularly limited as long as it can electrochemically react reversibly with a non-aqueous electrolyte at a higher potential than the negative electrode.

例えば、Ti S2の如くL;9と居間化合物を形成す
るものや、li+を可逆的に出し入れできる無機非晶質
酸化物を用いることもできる。また、アニオンを可逆的
に出し入れできるポリアセチレン、ポリピロール、ポリ
チオフェン、ポリアニリン、ポリパラフェニレン等の導
電性高分子を用いることもできる。これらの3Jlft
i性高分子のうち、本発明の電池の性能が最も活かされ
る正極材料はポリアニリンである。ポリアニリンは、導
電性高分子のうち活物質重a当りのアニオンをドーピン
グできる限界濃度が極めて高く、また空気、水分等に対
する安定性も大きく、自己放電率ら極めて小さいからで
ある。
For example, it is also possible to use a material that forms a living room compound with L;9, such as TiS2, or an inorganic amorphous oxide that can reversibly take in and take out li+. Further, conductive polymers such as polyacetylene, polypyrrole, polythiophene, polyaniline, polyparaphenylene, etc., which can reversibly take in and out anions, can also be used. These 3Jlft
Among i-type polymers, polyaniline is the positive electrode material that makes the most of the performance of the battery of the present invention. This is because polyaniline has an extremely high limit concentration for doping with anions per active material weight a among conductive polymers, has high stability against air, moisture, etc., and has an extremely low self-discharge rate.

本発明の二次電池に用いることができる電解液は、Li
 8F4 、Li BPh4.Li BBtl< 。
The electrolytic solution that can be used in the secondary battery of the present invention is Li
8F4, Li BPh4. LiBBtl<.

Li ClO2,L! PFs 、L! As Fs等
の1i塩の少なくとも1種類を非水溶媒に溶解もしくは
混合させたものである。
LiClO2,L! PFs, L! At least one type of 1i salt such as AsFs is dissolved or mixed in a non-aqueous solvent.

上記非水溶媒としてはプロピレンカーボネート、エチレ
ンカーボネート等のカーボネート類:スルホラン、3−
メチル−スルホラン等のスルホラン類:1,2−ジメト
キシエタン、1.1−ジメトキシエタン、テトラヒドロ
フラン、2−メチル−テトラヒドロフラン、1.3−ジ
オキソラン、4−メチル−1,3−ジオキンラン等のエ
ーテル類:γ−ブヂロラクトン、δ−ブチロラクトン等
のラクトン類ニリン酸トリメチル、リン酸トリエチル等
のリン酸エステル類やその他のエステル類等を用いるこ
とができる。しかしながら、必ずしもこれ等に限定され
るものではない。また、これらの溶媒は2種以上を混合
した混合溶媒として用いることもできる。
Examples of the nonaqueous solvent include carbonates such as propylene carbonate and ethylene carbonate: sulfolane, 3-
Sulfolanes such as methyl-sulfolane: Ethers such as 1,2-dimethoxyethane, 1,1-dimethoxyethane, tetrahydrofuran, 2-methyl-tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioquinrane: Lactones such as γ-butyrolactone and δ-butyrolactone, phosphoric esters such as trimethyl diphosphate and triethyl phosphate, and other esters can be used. However, it is not necessarily limited to these. Moreover, these solvents can also be used as a mixed solvent in which two or more types are mixed.

上記の溶媒の中でも、プロピレンカーボネート、1.2
−ジメトキシエタン、テトラヒドロフラン、2−メチル
−テトラヒドロフラン、スルホラン、またはプロピレン
カーボネートとエーテル類との混合溶媒が好ましい。そ
の理由はこれ等の溶媒が、正極活物質および負極活物質
とも比較的安定に存在でき、電池の可逆的な充放電を大
きく妨げることが少ないからである。
Among the above solvents, propylene carbonate, 1.2
-Dimethoxyethane, tetrahydrofuran, 2-methyl-tetrahydrofuran, sulfolane, or a mixed solvent of propylene carbonate and ethers are preferred. The reason for this is that these solvents can exist relatively stably in both the positive electrode active material and the negative electrode active material, and do not significantly impede reversible charging and discharging of the battery.

〔実施例〕〔Example〕

次に実施例、比較例を示して本発明に係る二次電池を説
明する。
Next, the secondary battery according to the present invention will be described with reference to Examples and Comparative Examples.

実施例1 (負極の製造) 口径が8μm、長さ20m+の炭素li!帷を、銅の無
電解メッキ液(宝町化学工業株式会社製、キューポジッ
トカッパーミックス#328)に2分間浸漬して引き上
げることにより表面に0.2〜0.5μmの銅を被覆し
た。その炭素1allt、0.027gとA1合金粉末
(JIS NQ5052)  0.2458 gをよく
混合した後、10cjIφのカーボン製金型に充填し、
真空ポンプで真空にしながら、600℃まで加熱して油
圧にて30 K9 / ciの加圧を行った。600℃
にて30分間保持した後、加熱をやめ加圧のまま除冷を
した。常温になってから加圧を中止し、金型より、炭素
繊維により強化されたI’4合金を取りだし、板fPJ
150μm、嵩密rfi2.3t 9/cdの10αφ
の基板をつくった。
Example 1 (Manufacture of negative electrode) Carbon li! with a diameter of 8 μm and a length of 20 m+. The cloth was immersed in a copper electroless plating solution (manufactured by Takaracho Kagaku Kogyo Co., Ltd., Cuposite Copper Mix #328) for 2 minutes and then pulled up to coat the surface with 0.2 to 0.5 μm of copper. After thoroughly mixing 1 allt of carbon, 0.027 g, and 0.2458 g of A1 alloy powder (JIS NQ5052), it was filled into a 10 cj Iφ carbon mold,
While creating a vacuum using a vacuum pump, it was heated to 600°C and pressurized to 30 K9/ci using hydraulic pressure. 600℃
After holding for 30 minutes, the heating was stopped and the mixture was slowly cooled while still being pressurized. After the temperature reached room temperature, pressurization was stopped, the carbon fiber reinforced I'4 alloy was taken out from the mold, and the plate fPJ
150μm, bulk rfi2.3t 9/cd 10αφ
I made a board for this.

この基板を直径15履φに切り取りt計量14.6■の
負極用基板とした。
This substrate was cut into a diameter of 15 mm to obtain a negative electrode substrate with a t-meter of 14.6 mm.

(正極の製造) 1規定塩酸水溶液にアニリンを0.5モル/J溶解させ
た液を撹拌しながら、酸化剤として過硫酸アンモニウム
を徐々に添加しながらアニリンの重合を行なった。使用
した過[Qアンモニウムは、アニリンモノマーに対し1
:1のモル比になるまで加え、反応開始から反応終了す
るまで、はぼ40℃に反応液を保持し、3時間反応させ
た。
(Manufacture of positive electrode) Aniline was polymerized while stirring a solution in which 0.5 mol/J of aniline was dissolved in a 1N aqueous hydrochloric acid solution and gradually adding ammonium persulfate as an oxidizing agent. The per[Q ammonium used was 1% per aniline monomer.
:1 molar ratio, and the reaction solution was kept at approximately 40° C. from the start of the reaction until the end of the reaction, and the reaction was allowed to proceed for 3 hours.

合成したポリアニリンを濾過分離した後、過剰のアンモ
ニア水溶液で中和し、さらに水洗した後、220℃で減
圧乾燥を充分に行なった。
After the synthesized polyaniline was separated by filtration, it was neutralized with an excess aqueous ammonia solution, further washed with water, and then thoroughly dried under reduced pressure at 220°C.

このポリアニリンにポリテトラフルオロエヂレン製結着
剤とアセチレンブラックをそれぞれ7wt%ずつ混ぜ、
直径が15sφのペレットを作製した。その後ベレット
を、5wt%のヒドラジン水溶液中においてポリアニリ
ンを還元処理し、220℃にて減圧乾燥して正極とした
This polyaniline was mixed with 7 wt% each of a polytetrafluoroethylene binder and acetylene black.
A pellet having a diameter of 15 sφ was produced. Thereafter, polyaniline was reduced in the pellet in a 5 wt % aqueous hydrazine solution, and the pellet was dried under reduced pressure at 220° C. to obtain a positive electrode.

(電池性能試験) 上記のようにして作成した負極、正極を電池容器に組み
込み、電池テストを行なった。第1図は電池テストに使
用した電池の縦断面図で、図中、符号1は負極である。
(Battery Performance Test) The negative electrode and positive electrode prepared as described above were assembled into a battery container, and a battery test was conducted. FIG. 1 is a longitudinal cross-sectional view of the battery used in the battery test, and in the figure, reference numeral 1 indicates the negative electrode.

負極1をニッケル集電体2に接し、電解液を含浸させた
ガラス繊維製多孔質セパレータ3を積み重ね、さらに正
極4、白金集電体5を積み重ね、ねじ込み式ポリテトラ
フルオロエチレン製容器6に組み込み、集電体2.5に
接続したリードIj17,7を容器6より引出し電池を
構成した。
A negative electrode 1 is in contact with a nickel current collector 2, a glass fiber porous separator 3 impregnated with an electrolytic solution is stacked, a positive electrode 4 and a platinum current collector 5 are stacked, and the stack is assembled into a screw-type polytetrafluoroethylene container 6. The leads Ij17, 7 connected to the current collector 2.5 were pulled out from the container 6 to form a battery.

上記電池において、セパレーター3の厚みは1鑓として
電解液が充分存在づるようにし、電解液にはLtBF4
を1モル/j’fA度となるようにプロピレンカーボネ
ートと、1.2−ジメトキシエタンの体積比1:1の混
合溶媒に溶解させて調製したものを用いた。
In the above battery, the thickness of the separator 3 is set to 1 mm to ensure that sufficient electrolyte exists, and the electrolyte contains LtBF4.
was prepared by dissolving it in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1:1 so as to have a concentration of 1 mol/j'fA degrees.

組み込みが終った電池を充放電装置に接続し、第1回の
充電はゆっくりと0.51A/cdの電流密度にて充電
を開始した。充電電気量は負極基板に対して20m0.
f%、正極アニリンに対しては60m0J%を限界とし
た。
The assembled battery was connected to a charging/discharging device, and the first charging was started slowly at a current density of 0.51 A/cd. The amount of electricity charged is 20m0.
f%, and 60m0J% was the limit for positive electrode aniline.

第1回の充電終了1p、電流密度を2.5m^/dに上
げ、放電・充電を繰り返し試験を行った。この場合、電
池電圧4.0〜2.0Vの聞に保つように調節した。以
下、充・放電の繰り返し試験を充・放電時のクーロン効
率が50%に低下するまで実施し、その時点を寿命とし
た。
After 1 p of the first charging, the current density was increased to 2.5 m^/d, and the test was repeated by discharging and charging. In this case, the battery voltage was adjusted to be maintained between 4.0 and 2.0V. Hereinafter, repeated charging and discharging tests were conducted until the coulombic efficiency during charging and discharging decreased to 50%, and that point was defined as the life span.

その結果、サイクル寿命は525回であり、自己放電率
5.6%/月となった。その時のエネルギー密度は28
0wh/kgであった。
As a result, the cycle life was 525 times, and the self-discharge rate was 5.6%/month. The energy density at that time is 28
It was 0wh/kg.

実施例2 (負極の製造) 4.5μmのタングステン!!雑を空孔率80%、厚み
150μ丑になる様に加工したシートを製造した。この
シートをJIS Nα3004のA1合金浴中に浸漬し
空孔の中にA1合金を含有させて溶融浴より引き上げた
後で、熱のさめないうちに間隔が120μmに設定され
たロールの間にて加圧成型し均一なフォイルをH14し
、その一部を151Mφの大きさに切り出して電池試験
用の電極基板とした。
Example 2 (Manufacture of negative electrode) 4.5μm tungsten! ! A sheet was manufactured by processing the rough material to have a porosity of 80% and a thickness of 150 μm. This sheet was immersed in a JIS Nα3004 A1 alloy bath to contain A1 alloy in the pores, and then pulled out of the molten bath. Before the sheet cooled down, it was placed between rolls with a spacing of 120 μm. A uniform foil was pressure-molded and subjected to H14, and a portion thereof was cut out to a size of 151Mφ and used as an electrode substrate for battery testing.

正極の製造方法および電池試験方法は実施例1と同様に
して行った。
The manufacturing method of the positive electrode and the battery testing method were carried out in the same manner as in Example 1.

その結果、サイクル寿命は510回であり300回目に
J3ける自己放電率は1ケ月当り 4.2%であり、エ
ネルギー密度は224wh/koであった。
As a result, the cycle life was 510 times, the self-discharge rate at J3 at the 300th cycle was 4.2% per month, and the energy density was 224 wh/ko.

比較例1 負極基板として市販のJIS Nα5052のA1合金
の箔を15#φに切り扱き、表面処理としてアルカリで
洗浄、水洗、乾燥を実施したものを用いた以外は、正極
の製造、電池試験方法は実施例1と同様な手法で行った
Comparative Example 1 The production of the positive electrode and the battery testing method were the same, except that a commercially available JIS Nα5052 A1 alloy foil was cut into 15 #φ and washed with alkali, water, and dried for surface treatment as the negative electrode substrate. was carried out in the same manner as in Example 1.

その結果、サイクルステ0420回と低く、自己放電率
は6.7%/月どなった。
As a result, the cycle time was as low as 0,420 times, and the self-discharge rate was 6.7%/month.

比較例2 JIS Nfi3QO4のA1合金箔を竹内金属箔株式
会社より入手した。このものは、厚み120AITn、
、幅100a*であった。その一部を15φMに切り取
り電池試験用とした。また正極の製造、電池試験方法は
実施例1と同様とした。
Comparative Example 2 JIS Nfi3QO4 A1 alloy foil was obtained from Takeuchi Metal Foil Co., Ltd. This one has a thickness of 120AITn,
, width 100a*. A part of it was cut to 15φM and used for battery testing. Further, the manufacturing of the positive electrode and the battery testing method were the same as in Example 1.

その結果、クーロン効率50%になったサイクル数は4
00回となり、300回目に測定した自己放電率は10
.5%/月であった。
As a result, the number of cycles at which the coulombic efficiency reached 50% was 4.
00 times, and the self-discharge rate measured at the 300th time was 10
.. It was 5%/month.

実施例3 (負極の製造) 口径が8μmである炭素繊維を集合させ、厚み150μ
m、幅20M、長さ50間のシートを作成した。このも
のは、空孔率は75%であった。
Example 3 (Manufacture of negative electrode) Carbon fibers with a diameter of 8 μm were assembled to a thickness of 150 μm.
A sheet with a width of 20 m, a length of 50 m, and a length of 50 m was prepared. This material had a porosity of 75%.

このシートを銅のメッキ液中に浸漬し、表面に厚さ0.
2〜0.5μmの銅を析出さヒた。
This sheet is immersed in a copper plating solution, and the surface is coated with a thickness of 0.
A copper layer of 2 to 0.5 μm was deposited.

JISNα5052のAj金合金溶融した炉中にメッキ
された炭素繊維シートを浸漬し、引き上げて空孔中にA
1合金を充満させた。
A plated carbon fiber sheet is immersed in a furnace in which Aj gold alloy of JISNα5052 is melted, pulled up and Aj gold alloy is melted into the holes.
1 alloy.

強化されたアルミ合金中にliを電析させるため、上記
合金を浸漬式セル中に設定し、対極にリチウム金属、電
解液としてしIB「4をp c’−DME (ポリカー
ボネートと1,2−ジメトキシエタン)に溶解したもの
を用い、°電流密度0.5m八へcIliにてこの合金
に対して45%になる様に電流を流してLlを電析させ
た。その後DME溶媒で洗浄し15姻φに切断し電池試
験用とした。
In order to electrodeposit lithium into the reinforced aluminum alloy, the above alloy was placed in an immersion cell, lithium metal was used as the counter electrode, and pc'-DME (polycarbonate and 1,2- dimethoxyethane) was used to electrodeposit Ll by passing a current at a current density of 0.5m to a current density of 45% with respect to this alloy.Then, it was washed with a DME solvent and 15 It was cut into φ pieces for battery testing.

(正極のtI造) 二硫化チタン粉末、結着剤としてポリテトラフルオロエ
チレン、導電助剤としてアセチレンブラック、有橢昇華
性物質としてジメチルベンゾキノンを用い、これらを4
5:5:5:45の割合で充分混合したのち、15馴φ
の金型に77mgを充填し、2t/CIiの圧力で成型
して電Jll+を作成した。
(TI construction of positive electrode) Using titanium disulfide powder, polytetrafluoroethylene as a binder, acetylene black as a conductive agent, and dimethylbenzoquinone as a sublimable substance, these
After mixing thoroughly at a ratio of 5:5:5:45,
77 mg was filled into a mold and molded at a pressure of 2t/CIi to create an electric Jll+.

次いでガラス管の中に入れ、電気炉中で真空に引きなが
ら320℃まで加熱して、多孔質の二(シ11化チタン
電極を作った。この電極は、厚み360g、m、重さ3
8r#9、嵩密度0.6g/c+n’テあった。
Next, it was placed in a glass tube and heated to 320°C while being evacuated in an electric furnace to create a porous titanium di(silyl)ide electrode. This electrode had a thickness of 360 g, m and a weight of 3
8r#9, the bulk density was 0.6g/c+n'te.

(M池試験) 前記手法で作成した極材料を図1に示す電池に設定した
。π1し電解液は、1七ル/J濃度のLiASF6/2
−メチルテトラヒドロフラン液を用いた層門化合物−C
ある二硫化チタンを正極として使用する二次電池は、次
式の様な T; S2 + xLi + +xc −al 1xT
i S2反応で充放電を行うため、第1回は負極中のリ
チウムを11IIA/Cdの電流密度で放出から始め、
充・放電のサイクル試験を行った。
(M Pond Test) The electrode material prepared by the above method was set in the battery shown in FIG. 1. The π1 electrolyte was LiASF6/2 with a concentration of 17 l/J.
-Stratiform compound-C using methyltetrahydrofuran solution
A secondary battery using titanium disulfide as a positive electrode has T as shown in the following formula; S2 + xLi + +xc -al 1xT
i To perform charging and discharging by S2 reaction, the first time started with releasing lithium in the negative electrode at a current density of 11IIA/Cd,
A charge/discharge cycle test was conducted.

イの結果、サイクル寿命350同となり、200回目の
自己放電率は4.2%で、エネルギー密度は250wh
/kgであった。
As a result, the cycle life was 350, the self-discharge rate at the 200th cycle was 4.2%, and the energy density was 250wh.
/kg.

比較例3 負(セとしてLi94AJ6からなるフォイルを15s
φに切断して使用した以外は実施例3と同様にして試験
を行った。
Comparative Example 3 Negative (foil made of Li94AJ6 was used for 15s
The test was conducted in the same manner as in Example 3 except that the sample was cut into φ.

その結果、152回目から電池電圧があがらなくなり、
アンドライトが生じているのが推定でさた。100回目
の自己放電率は9.5%で、エネルギー密度は250w
h/kaであった。
As a result, the battery voltage stopped rising from the 152nd time.
It was presumed that andrite was occurring. The 100th self-discharge rate was 9.5%, and the energy density was 250w.
It was h/ka.

〔効 果〕〔effect〕

以上述べたように、本発明に係る二次電池は、負極基材
を製造する時に炭素繊維、金属繊維、無様物繊維等のm
H状物質を混入させてAノ、もしくはA」合金との複合
体にすることにより、礪械的強度が改良され、l−i電
析、放出による電極崩壊が抑制され、サイクル寿命が長
くなり、さらにエネルギー密度が高く、自己放電が小さ
く、充放電効率が良好である等、電池に要求されるすべ
ての特性の侵れたものである。
As described above, in the secondary battery according to the present invention, carbon fibers, metal fibers, inorganic fibers, etc. are used when manufacturing the negative electrode base material.
By mixing H-like substances to form a composite with A or A' alloy, mechanical strength is improved, electrode collapse due to l-i electrodeposition and release is suppressed, and cycle life is extended. Furthermore, it has all the characteristics required of a battery, such as high energy density, low self-discharge, and good charging and discharging efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の二次電池の特性測定用電池の一例を
示す縦断概略図である。 1・・・・・・負極、2・・・・・・ニッケル集電体、
3・・・・・・ヒバレータ−14・・・・・・正極、5
・・・・・・白金集電体、 6・・・・・・ポリテトラフルオロエチレン製容器、7
・・・・・・リード線。
FIG. 1 is a schematic longitudinal sectional view showing an example of a battery for measuring characteristics of a secondary battery of the present invention. 1... Negative electrode, 2... Nickel current collector,
3...Hiberator-14...Positive electrode, 5
...Platinum current collector, 6...Polytetrafluoroethylene container, 7
······Lead.

Claims (3)

【特許請求の範囲】[Claims] (1)繊維状物質で強化されたアルミニウムもしくはア
ルミニウム合金上に、リチウムを電気化学的に合金化し
た負極を用いることを特徴とする二次電池。
(1) A secondary battery characterized by using a negative electrode in which lithium is electrochemically alloyed on aluminum or aluminum alloy reinforced with a fibrous material.
(2)繊維状物質が、炭素、無機物質、金属、合金のい
ずれかからなる繊維である特許請求の範囲第1項記載の
二次電池。
(2) The secondary battery according to claim 1, wherein the fibrous material is a fiber made of carbon, an inorganic substance, a metal, or an alloy.
(3)繊維状物質が、炭素繊維上を金属もしくは合金に
よつて被覆した繊維である特許請求の範囲第1項記載の
二次電池。
(3) The secondary battery according to claim 1, wherein the fibrous material is a carbon fiber coated with a metal or an alloy.
JP61218509A 1986-09-17 1986-09-17 Secondary cell Pending JPS6376261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218509A JPS6376261A (en) 1986-09-17 1986-09-17 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218509A JPS6376261A (en) 1986-09-17 1986-09-17 Secondary cell

Publications (1)

Publication Number Publication Date
JPS6376261A true JPS6376261A (en) 1988-04-06

Family

ID=16721039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218509A Pending JPS6376261A (en) 1986-09-17 1986-09-17 Secondary cell

Country Status (1)

Country Link
JP (1) JPS6376261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331275A2 (en) * 1988-02-29 1989-09-06 Henry Frank Hope Lightweight solid state rechargeable batteries
JPH04206342A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Battery
WO1996010271A1 (en) * 1994-09-29 1996-04-04 Cambridge Advanced Batteries, Inc. Particulate interface for electrolytic cells and electrolytic process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331275A2 (en) * 1988-02-29 1989-09-06 Henry Frank Hope Lightweight solid state rechargeable batteries
JPH04206342A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Battery
WO1996010271A1 (en) * 1994-09-29 1996-04-04 Cambridge Advanced Batteries, Inc. Particulate interface for electrolytic cells and electrolytic process

Similar Documents

Publication Publication Date Title
JP4777593B2 (en) Method for producing lithium ion secondary battery
KR101103841B1 (en) Metal ions-assisted electroless etching method for the bundle type silicon nano-rod composite and its application as anode materials for lithium secondary batteries
JP2002063894A (en) Production method of carbon material film, and nonaqueous secondary battery using the carbon material film
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
WO2007069562A1 (en) Nonaqueous electrolyte secondary battery
CN209626322U (en) Negative current collector, cathode pole piece and lithium ion battery
CN109244474A (en) Negative current collector and preparation method thereof, cathode pole piece and lithium ion battery
EP3739675B1 (en) Lithium electrode and lithium secondary battery comprising same
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
CN112447970A (en) Self-repairing coating for positive electrode of lithium-sulfur battery and preparation method thereof
JP2002093416A (en) Negative electrode material for lithium secondary battery, negative electrode and secondary battery using the same
Guojun et al. Synthesis and properties of Si/Ag and Si/Ag/CMS composites as anode materials for Li-ion batteries
JPS6376261A (en) Secondary cell
JP2002083602A (en) Nonaqueous electrolytic solution secondary battery and its manufacturing method
JP4370759B2 (en) Non-aqueous electrolyte battery
CN108183220B (en) Ternary composite negative electrode material of lithium battery and preparation method of ternary composite negative electrode material
JP2002117850A (en) Negative electrode active material for nonaqueous electrolytic solution secondary battery
CN111416091A (en) Bimetal nitride modified diaphragm and preparation method and application thereof
JP2023513815A (en) Anode piece, battery and electronic device employing said electrode piece
JPH08255633A (en) Organic electrolyte battery
JP2002270170A (en) Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
JPH0869797A (en) Carbon material for lithium secondary battery electrode and its manufacture
WO2023017673A1 (en) Battery
CN116404116B (en) High-compaction-density composite positive plate, preparation method thereof and energy storage device
WO2023017672A1 (en) Battery