JPS6376200A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS6376200A
JPS6376200A JP61219549A JP21954986A JPS6376200A JP S6376200 A JPS6376200 A JP S6376200A JP 61219549 A JP61219549 A JP 61219549A JP 21954986 A JP21954986 A JP 21954986A JP S6376200 A JPS6376200 A JP S6376200A
Authority
JP
Japan
Prior art keywords
current
terminal
holding current
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61219549A
Other languages
Japanese (ja)
Other versions
JP2679977B2 (en
Inventor
Kunihiko Yamaguchi
邦彦 山口
Noriyuki Honma
本間 紀之
Kazuo Kanetani
一男 金谷
Hiroaki Nanbu
南部 博昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61219549A priority Critical patent/JP2679977B2/en
Publication of JPS6376200A publication Critical patent/JPS6376200A/en
Application granted granted Critical
Publication of JP2679977B2 publication Critical patent/JP2679977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5006Current

Landscapes

  • Semiconductor Memories (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Static Random-Access Memory (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

PURPOSE:To easily extract a chip including a bit having a narrow action allowance by changing the internal voltage of a discharging circuit forcibly from an external part at the time of non-selection, preventing a discharging current from conducting, changing forcibly the internal potential of an information holding current generating circuit from the external part, decreasing an information holding current to execute a functional test. CONSTITUTION:At the time of the functional test, a current operating as a holding current, for example, a discharging current is controlled from an external part and decreased. Namely, it is realized by driving a terminal 13 for supplying the source voltage of an internal power source circuit 12 by the voltage lower than the terminal 7 of other circuit. This can easily add DELTAVEE (forward direction voltage of transistor) by providing respectively independently a power source terminal 7 and terminals 6 and 13 on a chip, connecting the 6 and 13, separating from the terminal 7, providing them and connecting them to the same terminal at the time of loading to a package. Thus, at the time of the functional test, the action allowance of a memory cell can be measured while the holding current is decreased, therefore, the detection of the memory cell having the narrow action allowance can be easily executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に係り、特にメモリセルの動作
余裕度の評価を容易にし、動作の安定な半導体記憶装置
を得るための回路方式に関す、るう〔従来の技術〕 一般に半導体集積回路の回路設計に用いられている手法
は、電源電圧及びジャンクション温、度の変化に対し、
内部の電位は一定または1等しく変化する様に設計され
ているっこの様に設計された集積回路は、電源電圧を変
化させて、回路の動作余裕度を測定することがむずかし
いため、特開昭58−8079号に記載のように、外部
から内部電位を変えることにより、動作余裕度の測定を
可能としていた。しかし例えばメモリセルの情報保持電
流を考えた時、特許公報昭57−12234号に記載の
ような放電々流が、R造時の素子特性ばらつきのため常
時流れ、結果として清報保持1流として作用するため、
単に前述の方法ではメモリセルの情報保持屯a全テスト
したい値迄小さくしてテストすることが出来なくなる点
については配慮されていなかった。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor memory device, and in particular to a circuit system for easily evaluating the operating margin of a memory cell and obtaining a semiconductor memory device with stable operation. Related [Prior Art] The method generally used for circuit design of semiconductor integrated circuits is to
Integrated circuits designed in this way are designed so that the internal potential is constant or changes by the same value as 1. It is difficult to measure the operating margin of the circuit by changing the power supply voltage, so As described in No. 58-8079, the operating margin could be measured by changing the internal potential from the outside. However, when considering the information retention current of a memory cell, for example, the discharge current described in Patent Publication No. 12234/1980 constantly flows due to variations in element characteristics during R manufacturing, and as a result, it becomes a clear information retention current. In order to act,
However, the method described above does not take into consideration the fact that the information retention level of the memory cell cannot be reduced to the desired value for testing.

〔発明が解決し2ようとする間LA点〕上記従来技術は
、ワード線を高速に非選択電位に駆動するための放電々
流が、非選択時にも流れる点について配慮されておらず
、情報保持電流を減らしてテストしても、放屈々流の一
部が情報保持電流として作用するため、動作余裕度の沃
1.Qビットを含むチップを摘出できない問題があった
[The LA point that the invention attempts to solve] The above-mentioned conventional technology does not take into account the fact that the discharge current to drive the word line to the non-selected potential at high speed flows even when the word line is not selected, and the information Even if the holding current is reduced and tested, a part of the free current acts as an information holding current, which reduces the operating margin. There was a problem that the chip containing the Q bit could not be extracted.

本発明の目的は、メモリを含む半導体集積回路の機能試
験の際に非選択時には放這々流を流さない様にしたうえ
で、情報保持電流を減らしたテストにより動作余裕度の
狭いビットを含むチップの摘出を容易にすることにある
An object of the present invention is to prevent bits with narrow operating margins from flowing during a functional test of a semiconductor integrated circuit including a memory by reducing the information retention current by preventing a free current from flowing when non-selected. The purpose is to facilitate chip extraction.

〔問題点全解決するための手段〕[Means to solve all problems]

上記目的は、非選択時に外部より強制的に放電回路の内
部電圧を変え、放這々流が流れない様にするとともに、
情報保持電流発生回路の内部磁位を、外部より強制的に
変化させ、情報保持電流を減らして機能試験することに
より達成される。
The above purpose is to forcibly change the internal voltage of the discharge circuit from the outside when it is not selected, so as to prevent the free current from flowing.
This is achieved by forcibly changing the internal magnetic potential of the information retention current generating circuit from the outside, reducing the information retention current, and performing a functional test.

〔作用〕[Effect]

放電回路の内部電圧を外部より強制的に変化させること
Kより、非選択時の放i埋電流の一部が情報保持電流と
して作用すること全防止できろうこのため、メモリセル
の情報保持動作は、情報保持電流のみで決まるよりにi
るので、情報保持電流全小さくすることで、動作余裕度
り)狭いピットを含むテップを容易に検出でさる。
By forcibly changing the internal voltage of the discharge circuit from the outside, it is possible to completely prevent a part of the discharge current during non-selection from acting as an information retention current.For this reason, the information retention operation of the memory cell is , than i determined only by the information retention current
Therefore, by reducing the total information holding current, it is possible to easily detect steps including narrow pits (with sufficient operating margin).

〔実施列〕[Implementation row]

以下、本発明の一実施例を第1図により説明する。筐ず
この1で従来の問題点上述べる。フリラグフロップ形の
メモリセルIA〜IDの記憶情報の保持は、次の様にし
て行われる。保持電流は、保持′4流供給線2人及び2
Bi介して各メモリセルよ電流れる。各メモリセルに於
いては、エミッタが共通接続された一対のトランジスタ
のベース電位が高いトランジスタから保持電流が流れる
An embodiment of the present invention will be described below with reference to FIG. In Part 1 of Kazuko Kazuko, I will discuss the problems of the conventional method. Storage information in the free-lag flop type memory cells IA to ID is held as follows. The holding current is the holding current of two current supply lines and two
Current flows to each memory cell through Bi. In each memory cell, a holding current flows from a pair of transistors whose emitters are commonly connected and whose base potential is higher.

この保持電流により、トランジスタのコレクタに接続さ
れた抵抗での電位降下Kj:Dフリップ7コツプの状態
は床たれ、記憶情報の保持が行われる。
This holding current causes the potential drop in the resistor connected to the collector of the transistor to drop, and the stored information is held.

この保持を流の発生は次の様にして行われる。トランジ
スタ3八と3B及び抵抗4Aと4Bで構成した電流源回
路と、これらのトランジスタのペースを駆動する内部’
を源回路5で定電流源回路を構成している。内部電源回
路5の出力電圧全端子6に加える電圧より2Vmx(こ
こにV a zはトランジスタの順方向電圧)高い電圧
とし、端子7に端子6と同一の電圧を加えた時、保持t
こ供給給線に供給する電流IHは、トランジスタの順方
向電圧をVatとし、抵抗4人及び4Bの抵抗値をR4
とすると次式で求められる。
This maintenance and flow generation is performed in the following manner. A current source circuit consisting of transistors 38 and 3B and resistors 4A and 4B, and an internal circuit that drives the pace of these transistors.
The source circuit 5 constitutes a constant current source circuit. When the output voltage of the internal power supply circuit 5 is set to 2Vmx (here, V a z is the forward voltage of the transistor) higher than the voltage applied to all terminals 6, and the same voltage as that of the terminal 6 is applied to the terminal 7, the holding t
The current IH supplied to this supply line is determined by setting the forward voltage of the transistor as Vat, and the resistance value of the four resistors and 4B as R4.
Then, it can be obtained by the following formula.

このためIHは、内部電源回路に端子6から供給される
電源電圧には依存しない。一方この図の様なスリップフ
ロップ型のメモリセルに於いて。
Therefore, IH does not depend on the power supply voltage supplied from the terminal 6 to the internal power supply circuit. On the other hand, in a slip-flop type memory cell as shown in this figure.

メモリセルの動作余裕度は、各メモリセルから流れる保
持電流依存性が大きい。しかし上述の様に電源電圧を変
えても保持電流を変化させる(−とは不可能である。
The operating margin of a memory cell largely depends on the holding current flowing from each memory cell. However, as mentioned above, even if the power supply voltage is changed, the holding current is changed (- is not possible).

そこで、従来は端子6と端子7を分離しAなる値のl電
圧を加えて前述の保持電流を減少させて機能試験してい
る。すなわち端子7:りもΔVF、にだけ絶対値の小き
い電源電圧を4f6に印加した時1、迂流Iaは次式で
求められる。
Therefore, in the past, the terminals 6 and 7 were separated and a voltage of A was applied thereto to reduce the above-mentioned holding current for functional testing. That is, when a power supply voltage with a small absolute value is applied to 4f6 only at terminal 7: ΔVF, the detour flow Ia is obtained by the following equation.

この様に電源端子と分離することによシ、保持電流供給
線を流れる電流Inは、′電源電圧を変える事で増減す
ることが可能となる。本実施例によればすなわち1組立
前のグローブ検査に於いて。
By separating it from the power supply terminal in this manner, the current In flowing through the holding current supply line can be increased or decreased by changing the power supply voltage. According to this embodiment, in the glove inspection before one assembly.

メモリセルの動作余裕度の狭いメモリセルを摘出し、そ
れを含むチップを不良品として排除することが可能にな
る。
It becomes possible to select memory cells with narrow operating margins and reject chips containing them as defective products.

しかし1次に述べるような放電回路を有する場合は、内
部′電源回路5のみの制御で保持電流を減らすことが難
しくなる。この放電回路の動作については、特許公報昭
57−12234号に記載されているように、レベルシ
フト回路9A及び9B″′r:選択時のワード線8A及
び8Bの電位を、レベルシフトし、トランジスタIOA
及びIOBと抵抗11A及びIIBで構成した成流源回
路て加えて、放電々流を発生している。非選択時には、
両トランジスタが非導通になる様にして放電々流が流れ
ない様にしている。しかしレベルシフト量の差により、
ワード線が非選択時でもトランジスタIOA及びIOB
が非導通にならず、保持直流に相幽する放電々流が流れ
ている場合、前述の内部電γ涼回路5のみの制御で保持
電流を減らすことは逍しくなり、同様な制御手法により
放電々流も同時に減らす必要がある。
However, when a discharge circuit as described in the first section is provided, it becomes difficult to reduce the holding current by controlling only the internal power supply circuit 5. Regarding the operation of this discharge circuit, as described in Japanese Patent Publication No. 57-12234, level shift circuits 9A and 9B"'r: level shift the potentials of word lines 8A and 8B when selected, and IOA
In addition to the current source circuit composed of IOB and resistors 11A and IIB, a stream of discharge is generated. When not selected,
Both transistors are made non-conductive to prevent discharge from flowing. However, due to the difference in level shift amount,
Transistors IOA and IOB even when word line is not selected
If the current does not become non-conductive and there is a current flowing that interferes with the holding direct current, it becomes difficult to reduce the holding current by controlling only the internal current cooling circuit 5, and the same control method will reduce the holding current. It is also necessary to reduce direct flow at the same time.

本発明は1機能テスト時保持電流として作用する電流1
例えば放電々流を外部より制御して減らすものであり、
これは内部電源回路12の電源電圧供給用の端子13を
、他の回路の端子7よシも低い電圧で駆動することによ
シ実現していることに特徴がある。
The present invention provides a current 1 that acts as a holding current during a functional test.
For example, it reduces the electrical discharge current by controlling it from the outside.
This is achieved by driving the power supply voltage supply terminal 13 of the internal power supply circuit 12 at a lower voltage than the terminals 7 of other circuits.

これは、チップ上で電源端子7と、端子6及び13をそ
れぞれ独立て設けるか、また6と13を接続し端子7と
分離して設け、パンケージに実装時に同一の端子に接続
されるようにすることで容易に△V■を加えることがで
きる。
This can be done by providing power supply terminal 7 and terminals 6 and 13 independently on the chip, or by connecting 6 and 13 and providing them separately from terminal 7 so that they are connected to the same terminal when mounted on the pan cage. By doing so, △V■ can be easily added.

実装はボンディング法及びCCB法等その方法によらず
各種の方法が可能である。
Various methods such as a bonding method and a CCB method can be used for mounting.

第2図は、特開昭58−8079号に記載されている保
持電流を減少させる手法である。この回路は機能試験時
内部電源回路5の出力電圧と、端子14に外部よフ電圧
を加えて変化させることができる%徴がある。すなわち
内部で決まる電圧よυも低い電圧を端子14に加えるこ
とによシ、保持電流のみを減らして機能試験することが
できる。
FIG. 2 shows a method for reducing the holding current described in Japanese Patent Application Laid-Open No. 58-8079. This circuit has a percentage characteristic that can be changed by applying an external buffer voltage to the terminal 14 and the output voltage of the internal power supply circuit 5 during a functional test. That is, by applying a voltage that is lower than the internally determined voltage to the terminal 14, it is possible to perform a functional test by reducing only the holding current.

第3図は本発明のもう一つの実施例である。この図でワ
ード線が非選択状態にある時に、トランジスタIOA及
びtOBを完全に非導通てならずに保持電流供給線から
流れ、保持電流として作用するため1機能試験時には両
トランジスタのベース電位を、端子15に外部より電圧
を加えて完全に非導通にすることができろう 以上は、内部電源回路5及び12の出力電圧を外部よシ
変化させて、保持電流f:減少させたものであるが、内
部電源回路5及び12の内部電位(例えば節点16)に
外部より電圧を加えられる手段を設けても同様な効果を
得ることができるっ更に保持電流供給線2人及び2Bに
、3個以上の電流源が接続されている場合′・ま、それ
ぞれの電流源に上記対策を施すことが好ましい。しかし
全てに施さなくとも、本発明の効果は十分に得られるた
め、効果の高・ハものからQ5¥次施すことが好ましい
FIG. 3 shows another embodiment of the invention. In this figure, when the word line is in the non-selected state, the holding current flows from the holding current supply line without completely turning off the transistors IOA and tOB, and acts as a holding current. Therefore, during one function test, the base potential of both transistors is Since it is possible to make the terminal 15 completely non-conductive by applying a voltage externally, the holding current f is reduced by externally changing the output voltages of the internal power supply circuits 5 and 12. , the same effect can be obtained by providing a means for externally applying a voltage to the internal potential of internal power supply circuits 5 and 12 (for example, node 16).Furthermore, three or more holding current supply lines 2 and 2B are provided. When two current sources are connected, it is preferable to take the above measures for each current source. However, the effect of the present invention can be sufficiently obtained even if it is not applied to all areas, so it is preferable to apply it in Q5 order starting from the one with the highest effect.

またバイポーラ形で説明したが、メモリセルの記憶(’
W報が保持電流を常時メモリセルに流すことによ9行わ
れているメモリ全てに有効である。特に論理全域り込ん
だ論理付メモリの場合、メモリ単独と同じ様な機能テス
トをすることが難しくなるため本発明の効果はメモリ単
独時よりも犬きくなる。
Also, although we have explained the bipolar type, the memory of the memory cell ('
This is effective for all memories in which the W signal is carried out by constantly flowing a holding current through the memory cells. In particular, in the case of a memory with logic that includes the entire logic, it is difficult to perform a functional test similar to that of a memory alone, so the effects of the present invention are more pronounced than when the memory is alone.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、@能試験時にメモリセルの動作余裕度
を、保持電流を減らした状態で測定できるため、動作余
裕度の狭いメモリセルの検出が容易となり、高集積化及
び闘機能化(論理回路を同一チップに集積化した論理付
メモリ等)に伴うテスト時間の瑠犬′fr、軽減する効
果がある。
According to the present invention, since the operating margin of a memory cell can be measured with the holding current reduced during a performance test, it is easy to detect memory cells with a narrow operating margin, and this increases the This has the effect of reducing the test time associated with memory with logic (memory with logic, etc. in which logic circuits are integrated on the same chip).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のメモリセル七内部電源回路
図、第2図は保持電流発生回路図、第3図は放電々流発
生回路図である。 IA〜11)・・−メモリセル、2A、2B・・・保持
電流供給線、14.15・・・端子、5・・・内部電源
回路。
FIG. 1 is a diagram of an internal power supply circuit of a memory cell according to an embodiment of the present invention, FIG. 2 is a diagram of a holding current generation circuit, and FIG. 3 is a diagram of a discharge current generation circuit. IA~11)...-Memory cell, 2A, 2B...Holding current supply line, 14.15...Terminal, 5...Internal power supply circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、保持電流を常時流し続けることにより情報の記憶を
行なうメモリセルと、保持電流をメモリセルに供給する
信号線より成るセルアレーを有する半導体集積回路にお
いて、上記保持電流を供給する信号線に接続された保持
電流を含む2個以上の電流源回路の節点に、外部より独
立に電圧を印加できる導電性の端子を設けたことを特徴
とする半導体集積回路。
1. In a semiconductor integrated circuit having a cell array consisting of memory cells that store information by constantly flowing a holding current and signal lines that supply the holding current to the memory cells, a cell array that is connected to the signal line that supplies the holding current 1. A semiconductor integrated circuit characterized in that conductive terminals to which voltages can be applied independently from the outside are provided at nodes of two or more current source circuits containing holding currents.
JP61219549A 1986-09-19 1986-09-19 Semiconductor integrated circuit Expired - Lifetime JP2679977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219549A JP2679977B2 (en) 1986-09-19 1986-09-19 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219549A JP2679977B2 (en) 1986-09-19 1986-09-19 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS6376200A true JPS6376200A (en) 1988-04-06
JP2679977B2 JP2679977B2 (en) 1997-11-19

Family

ID=16737241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219549A Expired - Lifetime JP2679977B2 (en) 1986-09-19 1986-09-19 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2679977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768437B2 (en) * 2005-12-26 2011-09-07 株式会社東芝 Semiconductor memory device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279738A (en) * 1975-12-26 1977-07-05 Hitachi Ltd Semiconductor memory unit
JPS5712234A (en) * 1980-06-23 1982-01-22 Taiheiyo Kogyo Kk Centralized control apparatus of central heating system
JPS57123590A (en) * 1980-12-11 1982-08-02 Fairchild Camera Instr Co Method of and apparatus for pulling down word wire voltage
JPS588079A (en) * 1981-06-27 1983-01-18 スミス・クライン・アンド・フレンチ・ラボラトリ−ス・リミテツド Pyrimidone derivative
JPS5830679A (en) * 1981-08-10 1983-02-23 チタス・スル Method having excellent sensitivity, stability and efficiency which continuously convert magnetic value into electric value
JPS5936360A (en) * 1982-08-24 1984-02-28 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing device
JPS601720A (en) * 1983-06-20 1985-01-07 Hitachi Ltd Manufacture of electron tube cathode structure
JPS6023434A (en) * 1983-07-18 1985-02-06 Showa Denko Kk Dust sealing material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279738A (en) * 1975-12-26 1977-07-05 Hitachi Ltd Semiconductor memory unit
JPS5712234A (en) * 1980-06-23 1982-01-22 Taiheiyo Kogyo Kk Centralized control apparatus of central heating system
JPS57123590A (en) * 1980-12-11 1982-08-02 Fairchild Camera Instr Co Method of and apparatus for pulling down word wire voltage
JPS588079A (en) * 1981-06-27 1983-01-18 スミス・クライン・アンド・フレンチ・ラボラトリ−ス・リミテツド Pyrimidone derivative
JPS5830679A (en) * 1981-08-10 1983-02-23 チタス・スル Method having excellent sensitivity, stability and efficiency which continuously convert magnetic value into electric value
JPS5936360A (en) * 1982-08-24 1984-02-28 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing device
JPS601720A (en) * 1983-06-20 1985-01-07 Hitachi Ltd Manufacture of electron tube cathode structure
JPS6023434A (en) * 1983-07-18 1985-02-06 Showa Denko Kk Dust sealing material

Also Published As

Publication number Publication date
JP2679977B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US5404099A (en) Semiconductor device
JP4074697B2 (en) Semiconductor device
US6339357B1 (en) Semiconductor integrated circuit device capable of externally monitoring internal voltage
US4399372A (en) Integrated circuit having spare parts activated by a high-to-low adjustable resistance device
KR100193307B1 (en) Selector circuit
US4950921A (en) Semiconductor integrated circuit having a built-in voltage generator for testing at different power supply voltages
JPH06295585A (en) Inside power supply voltage generating circuit
US20090039950A1 (en) Internal power-supply circuit
JPS6337269A (en) Mode selecting circuit
JPS631676B2 (en)
JPH04230049A (en) Semiconductor device
US5644250A (en) Structure for externally identifying an internal state of a semiconductor device
JP2000174081A (en) Burn-in testing method of semiconductor chip, burn-in testing device, and semiconductor chip used for burn-in testing method
JP3786826B2 (en) Integrated circuit capable of burn-in test of AC stress and test method using the same
JPS6376200A (en) Semiconductor integrated circuit
JPH01166400A (en) Static type random access memory
JPS588079B2 (en) hand tie memory
KR0170518B1 (en) A power supply circuit of a dram device on-chip boosted power
US20220254406A1 (en) Non-volatile memory circuit, semiconductor device, and method of reading non-volatile memory
JPH05274883A (en) Semiconductor memory
JP2638016B2 (en) Semiconductor circuit
JP2002222922A (en) Semiconductor storage device
JPS5998389A (en) Semiconductor memory
JP3745875B2 (en) Burn-in stress control circuit for semiconductor memory device
TW514929B (en) Method and apparatus thereof for burn-in testing of a static random access memory