JPS6374147A - Recording method for magneto-optical disk - Google Patents

Recording method for magneto-optical disk

Info

Publication number
JPS6374147A
JPS6374147A JP22042186A JP22042186A JPS6374147A JP S6374147 A JPS6374147 A JP S6374147A JP 22042186 A JP22042186 A JP 22042186A JP 22042186 A JP22042186 A JP 22042186A JP S6374147 A JPS6374147 A JP S6374147A
Authority
JP
Japan
Prior art keywords
layer
temperature
information
magnetization
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22042186A
Other languages
Japanese (ja)
Inventor
Masahiro Miyazaki
宮崎 正裕
Itaru Shibata
格 柴田
Kazunori Naito
一紀 内藤
Seiji Okada
誠二 岡田
Kenichi Ito
健一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22042186A priority Critical patent/JPS6374147A/en
Publication of JPS6374147A publication Critical patent/JPS6374147A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To enable overlap writing and to improve the efficiency of a treatment by laminating two magnetic films which consist of ferrimagnetic materials and are shifted in magnetic characteristics and projecting laser beams having different powers thereto. CONSTITUTION:A bias layer 2 consisting of terbium iron having large coercive force is formed on a substrate and further, a recording layer 3 consisting of dysprosium.iron having a low compensation temp. and Curie temp. is formed thereon. The layer 2 is first kept magnetized in the specified direction at a ordinary temp. The light 5 of the L power for heating at the compensation temp. or below and the light 4 of the H power for heating near to the Curie temp. shown in the figure (c) are projected to the layer 3 on which the information shown by and in the figure (a) is written in order to record the information of the figure (b) to said layer, then the magnetization direction of the layer 2 in the irradiated part changes to and the magnetization of the layer 3 is inverted as well by electrostatic coupling, by which the figure (d) is obtd. the magnetization of the layer 2 is inverted and the information is written in overlap in the direction of the figure (e) when the layer is cooled after the irradiation. The efficiency of the treatment is thereby improved.

Description

【発明の詳細な説明】 〔1既要〕 光磁気ディスクの新しい情報記録方法として、予め一方
向に垂直磁化を行っであるバイアス層と記録層とが積層
して構成されるディスク基板に、記録層がキュリー温度
の近傍にまで加熱される際に、バイアス層は補償温度以
下にしか加熱されないパワーのレーザパルスと、記録層
がキュリー温度以上に加熱される際にバイアス層は補償
温度以上でキュリー温度以下にまで加熱されるパワーの
レーザパルスを選択照射し、二値情報を記録する光磁気
ディスクの記録方法。
[Detailed Description of the Invention] [1 Already Required] As a new information recording method for a magneto-optical disk, recording is performed on a disk substrate composed of a stacked bias layer and recording layer, which have been perpendicularly magnetized in one direction in advance. When the recording layer is heated to near the Curie temperature, the bias layer is heated only below the compensation temperature by a laser pulse, and when the recording layer is heated above the Curie temperature, the bias layer is heated above the compensation temperature. A recording method for magneto-optical disks in which binary information is recorded by selectively irradiating laser pulses with a power that is heated to below temperature.

〔産業上の利用分野〕[Industrial application field]

本発明は光磁気ディスクの新しい記録方法に関する。 The present invention relates to a new recording method for magneto-optical disks.

光磁気ディスクはレーザ光を用いて高密度の情報記録を
行うメモリであり、光ディスクと同様に記録容量が大き
く、非接触で記録・再生を行うことができ、また塵埃の
影響を受けないなど優れた特徴をもっている。
A magneto-optical disk is a memory that uses laser light to record high-density information. Like an optical disk, it has a large storage capacity, can record and read without contact, and is unaffected by dust. It has certain characteristics.

ここで、光ディスクは記録媒体として低融点金属を用い
、情報の記録と再生を穴(ピット)の有無により行う読
み出し専用メモリ (Read 0nly Memor
y)を主目的として開発されているのに対し、光磁気デ
ィスクは書き換え可能なメモリ(Eraserble 
Memorいとして開発が進められているものである。
Here, an optical disk is a read-only memory that uses a low-melting point metal as a recording medium and records and reproduces information by the presence or absence of holes (pits).
y), whereas magneto-optical disks are developed for rewritable memory (eraserble memory).
It is currently being developed as a memory.

(従来の技術〕 光磁気ディスクはプラスチックス或いはガラスからなる
ディスク状の透明基板の上に希土類−遷移金属系の非晶
質合金を真空蒸発法やスパッタ法などで膜形成して垂直
磁化膜からなる記録層を作り、この上に保護膜を設けて
ディスク基板が作られている。
(Prior art) Magneto-optical disks are made by forming a film of an amorphous rare earth-transition metal alloy on a disk-shaped transparent substrate made of plastic or glass using a vacuum evaporation method or a sputtering method. A disk substrate is manufactured by creating a recording layer, and then providing a protective film on top of this.

ここで、透明基板としてはポリメチルメタクリレート(
略称P聞11)、ポリカーボネート(略称PC)のよう
な透明なプラスチック基板或いはガラス基板が用いられ
ており、プラスチック基板の場合は型成形により同心円
状または渦巻き状の案内溝(プリグループ)が作られて
いる。
Here, polymethyl methacrylate (
Transparent plastic substrates such as polycarbonate (abbreviated as PC) or glass substrates are used, and in the case of plastic substrates, concentric or spiral guide grooves (pre-groups) are formed by molding. ing.

一方、ガラス基板の場合は、この上に紫外線硬化樹脂を
塗布した後、金型を圧着して溝形成を行い、ガラス基板
を通して紫外線を照射して硬化せしめて案内溝つき基板
を作る技術が開発され使用されている。
On the other hand, in the case of a glass substrate, a technology has been developed to create a substrate with guide grooves by coating an ultraviolet curing resin on the resin, pressing a mold onto it to form grooves, and curing it by irradiating ultraviolet rays through the glass substrate. has been used.

次に、記録層は先に記したように希土類−遷移金属から
なるフェリ磁性を示す垂直磁化膜からなり、テルビウム
・鉄・コバルト(Tb Fe Co)、ガドリウム・テ
ルビウム・鉄(Gd Tb Fe)などで構成され、真
空蒸着法やスパッタ法などで形成されている。
Next, the recording layer is made of a perpendicularly magnetized film showing ferrimagnetism made of rare earth-transition metals, such as terbium-iron-cobalt (Tb Fe Co), gadolinium-terbium iron (Gd Tb Fe), etc., as described above. It is formed by vacuum evaporation method, sputtering method, etc.

また保護膜は酸化珪素(Sin)などを用いて作られて
いる。
Further, the protective film is made of silicon oxide (Sin) or the like.

かかる構造をとる光磁気ディスクへの情報の記録は垂直
に磁場を加えている状態で、透明なディスク基板の側か
らレンズで集光したレーザ光を照射し、垂直磁化膜の被
照射部の温度が上昇してキュリー温度に達し、磁場の方
向に磁化反転するのを利用して行われている。
To record information on a magneto-optical disk with such a structure, a laser beam focused by a lens is irradiated from the side of the transparent disk substrate while a vertical magnetic field is applied, and the temperature of the irradiated part of the perpendicularly magnetized film is adjusted. This is done by utilizing the fact that the temperature rises to reach the Curie temperature, and the magnetization is reversed in the direction of the magnetic field.

また、情報の消去は記録位置の磁化の方向とは逆の方向
に磁場を加えなからレーザ光を照射して加熱し、もと通
りの方向に磁化を反転させることにより行っている。
Furthermore, information is erased by applying a magnetic field in the direction opposite to the direction of magnetization at the recording position, and by irradiating and heating the material with laser light to reverse the magnetization to its original direction.

このような従来の記録・消去方法によると成る記録情報
を消去し、この位置に別の情報を書き込むには情報の消
去に1回転、磁場を反転させるのに1回転、情報を書き
込むのに1回転を必要とし、重ね書き(0νer−wr
i te)ができないことが問題である。
In order to erase recorded information and write other information at this position using such conventional recording/erasing methods, it takes one rotation to erase the information, one rotation to reverse the magnetic field, and one rotation to write the information. Requires rotation and overwriting (0νer-wr
The problem is that it cannot be done.

ここで、重ね書きのできない理由は磁場印加用のコイル
のインダクタンスが大きいために磁場の高速反転ができ
ないことによる。
Here, the reason why overwriting is not possible is because the inductance of the coil for applying the magnetic field is large, and the magnetic field cannot be reversed at high speed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように従来の方法によると成る記録情報を消
去し、この位置に別の情報を書き込むには情報の消去に
1回転、磁場を反転させるのに1回転、情報を書き込む
のに1回転を必要とし、磁気テープのように重ね書きが
できないことが問題である。
As described above, in order to erase recorded information and write other information at this position using the conventional method, one rotation is required to erase the information, one rotation is required to reverse the magnetic field, and one rotation is required to write information. The problem is that it cannot be overwritten like magnetic tape.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題はレーザビームの案内溝を有する基板上にフ
ェリ磁性体よりなり、一定の方向に垂直磁化しているバ
イアス層と、該バイアス層と同様にフェリ磁性体からな
る記録層とを層形成し、案内溝の記録層が照射によりキ
ュリー温度の近傍にまで加熱されるもの\、バイアス層
は補償温度以下にしか加熱されないパワーのレーザパル
スと、記録層はキュリー温度以上に加熱されると共にバ
イアス層が補償温度以上でキュリー温度以下にまで加熱
されるパワーのレーザパルスを選択照射して二値情報を
記録する光磁気ディスクの記録方法により解決すること
ができる。
The above problem is solved by forming a bias layer made of a ferrimagnetic material and magnetized perpendicularly in a certain direction on a substrate having a guide groove for the laser beam, and a recording layer made of a ferrimagnetic material like the bias layer. However, the recording layer in the guide groove is heated to near the Curie temperature by irradiation, the bias layer is heated by a laser pulse with a power that is only heated below the compensation temperature, and the recording layer is heated above the Curie temperature and the bias layer is heated to a temperature close to the Curie temperature. This problem can be solved by a magneto-optical disk recording method in which binary information is recorded by selectively irradiating a laser pulse with a power that heats the layer above the compensation temperature and below the Curie temperature.

〔作用〕[Effect]

本発明は重ね書きを行う方法としてフェリ磁性の特性を
利用するものである。
The present invention utilizes the characteristics of ferrimagnetism as a method for overwriting.

すなわち、光磁気ディスクの記録層として使用されてい
る記録媒体はフェリ磁性体であって、磁場を与えて予め
一定の方向に磁化を揃えた状態で第3図に示すように室
温より昇温しで行くと、使用する材料組成によって決ま
る補償温度に近づくに従って磁化の強さくM)は減少し
、一方、保磁力(Hc)は増加して極大の状態になる。
In other words, the recording medium used as the recording layer of a magneto-optical disk is a ferrimagnetic material, and when a magnetic field is applied to align the magnetization in a certain direction, the temperature is raised from room temperature as shown in Figure 3. As the temperature approaches the compensation temperature determined by the composition of the material used, the strength of magnetization (M) decreases, while the coercive force (Hc) increases and reaches a maximum state.

 そして、補償温度を境として磁化の方向は反転して次
第に増加し、キュリー温度に近づくに従って再び減少し
、キュリー温度では常磁性体となるためHcはOとなる
Then, the direction of magnetization is reversed and gradually increases after reaching the compensation temperature, and decreases again as it approaches the Curie temperature. At the Curie temperature, it becomes a paramagnetic material, so Hc becomes O.

本発明はこのように補償温度を境として変化するフェリ
磁性の特性を利用するものであり、光磁気ディスクは基
板上に磁気特性を異にする二つのフェリ磁性層で構成さ
れる。
The present invention makes use of the ferrimagnetic characteristics that change with the compensation temperature as a boundary, and a magneto-optical disk is composed of two ferrimagnetic layers having different magnetic characteristics on a substrate.

すなわち、第1図に示すように本発明に係る光磁気ディ
スクは基板1の上にバイアスIW2と記録11J3とが
積層されて構成されているが、ここでバイアス層2の必
要条件は、 ■ 補償温度が室温以上にあること、 ■ 室温で保磁力Hcが高いこ、 である。
That is, as shown in FIG. 1, the magneto-optical disk according to the present invention is constructed by laminating a bias IW2 and a recording layer 11J3 on a substrate 1, and the necessary conditions for the bias layer 2 are as follows: (1) Compensation The temperature is above room temperature; (1) The coercive force Hc is high at room temperature.

一方、記録Ji3の必要条件は、 ■ 補償温度が低いことであって、たとえ室温以下であ
っても差支えない。
On the other hand, the necessary conditions for recording Ji3 are: (1) The compensation temperature is low, even if it is below room temperature.

■ キュリー温度が低く、低パワーのレーザ照射によっ
て、容易にキュリー温度に達すること。
■ The Curie temperature is low and can be easily reached by low power laser irradiation.

が必要である。is necessary.

本発明はかかる磁気特性のずれた二つの磁性膜を使用し
、パワーの異なるレーザ光で照射することにより重ね書
きを行うものであるが、先ず情報の記録と消去法につい
て説明する。
The present invention uses two magnetic films with different magnetic properties and performs overwriting by irradiating them with laser beams of different powers. First, a method for recording and erasing information will be explained.

先ず、バイアス層2を室温で一定の方向例えば↑の方向
に着磁しておく。
First, the bias layer 2 is magnetized in a certain direction, for example, in the ↑ direction at room temperature.

この場合は、バイアス層2の上にある記録層3の磁化の
方向は静磁結合によって総て↑の方向に向いている。(
以上第2図a) 次に、この状態の光ディスクに記録層3の保磁力(Hc
 )を下げるには充分であり、且つバイアス層2を補償
温度以上でキュリー温度(Tc)以下にまで加熱し得る
レーザパワー(以下略してHパワー)4を照射すると照
射部のバイアス層2は磁化が反転して↓の方向となり、
静磁結合によりこの上の部分の記録N3の磁化も↓の方
向に向く。
In this case, the magnetization directions of the recording layer 3 on the bias layer 2 are all oriented in the ↑ direction due to magnetostatic coupling. (
(a) Next, the coercive force (Hc) of the recording layer 3 is applied to the optical disk in this state.
) and is sufficient to heat the bias layer 2 to a temperature above the compensation temperature and below the Curie temperature (Tc) (hereinafter referred to as H power) 4, the bias layer 2 in the irradiated area becomes magnetized. is reversed and becomes the direction of ↓,
Due to the magnetostatic coupling, the magnetization of the recording N3 in the upper part is also directed in the ↓ direction.

(以上同図b) 次にレーザ照射が終わって降温するとバイアスN2の磁
化は第3図に示すように補償温度で反転して官の方向に
戻るが、記録層3の温度がバイアス層2より先に降下す
るため補償温度が室温より低い場合は反転するに到らず
、保磁力が回復してそのまま↓の方向の記録パターンが
残り、記録が行われる。(以上同図C) 次に↓の方向に磁化した情報の消去を行う場合は記S!
Fi3の保磁力Hcを下げるには充分であるがバイアス
N2は補償温度以上には加熱しない程度のレーザパワー
(以下略してLパワー)5を照射すると記録層のHcは
低下する結果、バイアス層との静磁結合により磁化反転
が生じて記録層の磁化は↑の方向に向き、消去される。
(The above figure b) Next, when the laser irradiation is finished and the temperature is lowered, the magnetization of the bias N2 is reversed at the compensation temperature and returns to the normal direction as shown in Figure 3, but the temperature of the recording layer 3 is lower than that of the bias layer 2. Since the temperature drops first, if the compensation temperature is lower than room temperature, the reversal does not occur, but the coercive force is recovered and the recording pattern in the ↓ direction remains as it is, and recording is performed. (The above is C in the same figure) Next, when erasing information magnetized in the ↓ direction, write S!
If the bias N2 is irradiated with a laser power (hereinafter referred to as L power) 5 that is sufficient to lower the coercive force Hc of Fi3, but does not heat it above the compensation temperature, the Hc of the recording layer decreases, and as a result, the bias layer Due to the magnetostatic coupling of , magnetization reversal occurs, and the magnetization of the recording layer is oriented in the ↑ direction and erased.

(以上同図d) 〔実施例〕 記録層としてはTcが70℃であるディスプロシウム・
鉄(Dy Fe)を、またバイアス層としては)■Cが
室温で5KOe以上あるテルビウム・鉄(Tb Fe)
を選び、またレーザ光としては半導体レーザを用い、レ
ンズで1μmのビット径に絞り込んだものを用いた。
(The above is d in the same figure) [Example] The recording layer was made of dysprosium with a Tc of 70°C.
Iron (Dy Fe), and as a bias layer) Terbium iron (Tb Fe) with C of 5 KOe or more at room temperature
A semiconductor laser was used as the laser beam, and the laser beam was focused to a bit diameter of 1 μm using a lens.

第4図は本発明に係る重ね書き法の説明図であって、当
初同図(a)に示すように記録層3には↓および↑で示
すような情報が書き込まれているとする。
FIG. 4 is an explanatory diagram of the overwriting method according to the present invention, and it is assumed that information as shown by ↓ and ↑ is initially written in the recording layer 3 as shown in FIG. 4(a).

これに同図(b)に示すような情報を記録するには、同
図(c)に示すように↓と↑に対応するしパワーの光5
とHパワーの光4とを光磁気ディスクに照射すると、照
射部のバイアス層2の磁化の方向は↓に変わり、静磁結
合により記録層3の磁化も反転し、(以上同図d)照射
が終わって冷却が進むに従ってバイアス層のみ磁化が反
転して?の方向に揃い重ね書きが終了する。(以上同図
e) 〔発明の効果〕 以上記したように本発明の実施により重ね書きが可能と
なり、これにより情報の処理能率を格段に向上すること
ができる。
In order to record information as shown in the same figure (b), the power of the light 5 corresponds to ↓ and ↑ as shown in the same figure (c).
When the magneto-optical disk is irradiated with the H-power light 4, the direction of magnetization of the bias layer 2 in the irradiated part changes to ↓, and the magnetization of the recording layer 3 is also reversed due to magnetostatic coupling (see d in the same figure). As cooling progresses after the completion of cooling, the magnetization of only the bias layer is reversed? The overwriting ends when aligned in the direction of . (E) [Effects of the Invention] As described above, by implementing the present invention, overwriting becomes possible, and thereby information processing efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光磁気ディスクの構成図、第2図
は本発明に係る記録と消去法を説明する断面図、 第3図はフェリ磁性体について磁化の強さと保磁力の温
度特性図、 第4図は本発明に係る重ね書き法を説明する断面図、 である。 図において、 1は基板、        2はバイアス層、3は記録
層、       4はHパワー、5はLパワー、 左部を上戸1こイ暦ろtλ抱クりテ4ス2のλ片絨困箒
 1 図 1トオ百ジ男弓j二fトる占シ安くヒ5@シ光と獣旦肛
ろ謔rtcコ竿 2 に
Fig. 1 is a configuration diagram of a magneto-optical disk according to the present invention, Fig. 2 is a cross-sectional view explaining the recording and erasing method according to the present invention, and Fig. 3 is a temperature characteristic of magnetization strength and coercive force of a ferrimagnetic material. FIG. 4 is a sectional view illustrating the overwriting method according to the present invention. In the figure, 1 is the substrate, 2 is the bias layer, 3 is the recording layer, 4 is H power, 5 is L power, and the left part is Ueto 1 Koyorirot λ holding te 4th 2's λ piece carpet broom 1 Figure 1 Too hundred men's bow j 2 f Toru fortune-telling cheap Hi 5@shi light and beast man anal arrogance rtc rod 2 to

Claims (1)

【特許請求の範囲】[Claims] レーザビームの案内溝を有する基板上にフェリ磁性体よ
りなり、一定の方向に垂直磁化しているバイアス層と、
該バイアス層と同様にフェリ磁性体からなる記録層とを
層形成し、記録層が照射によりキュリー温度の近傍にま
で加熱される際に、バイアス層は補償温度以下にしか加
熱されないパワーのレーザパルスと、記録層はキュリー
温度以上に加熱される際にバイアス層は補償温度以上で
キュリー温度以下にまで加熱される二種類のレーザパル
スとを選択照射して二値情報を記録することを特徴とす
る光磁気ディスクの記録方法。
a bias layer made of a ferrimagnetic material and magnetized perpendicularly in a certain direction on a substrate having a laser beam guide groove;
A recording layer made of ferrimagnetic material is formed in the same manner as the bias layer, and when the recording layer is heated to near the Curie temperature by irradiation, the bias layer is heated only to a temperature below the compensation temperature using a laser pulse of such power. and, when the recording layer is heated above the Curie temperature, the bias layer is selectively irradiated with two types of laser pulses that are heated above the compensation temperature and below the Curie temperature to record binary information. A recording method for magneto-optical disks.
JP22042186A 1986-09-18 1986-09-18 Recording method for magneto-optical disk Pending JPS6374147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22042186A JPS6374147A (en) 1986-09-18 1986-09-18 Recording method for magneto-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22042186A JPS6374147A (en) 1986-09-18 1986-09-18 Recording method for magneto-optical disk

Publications (1)

Publication Number Publication Date
JPS6374147A true JPS6374147A (en) 1988-04-04

Family

ID=16750842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22042186A Pending JPS6374147A (en) 1986-09-18 1986-09-18 Recording method for magneto-optical disk

Country Status (1)

Country Link
JP (1) JPS6374147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148446A (en) * 1986-12-10 1988-06-21 Nikon Corp Magneto-optical recording medium capable of over-write

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148446A (en) * 1986-12-10 1988-06-21 Nikon Corp Magneto-optical recording medium capable of over-write

Similar Documents

Publication Publication Date Title
JP2957367B2 (en) Magneto-optical recording medium, recording method and recording / reproduction method
JP2579631B2 (en) Magneto-optical recording method
JP3277245B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3452451B2 (en) Magneto-optical recording medium and magneto-optical recording method
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPS63276731A (en) Method for writing to magneto-optical recording medium
JPS6374147A (en) Recording method for magneto-optical disk
JPH06180884A (en) Magneto-optical recording method
JPS6374146A (en) Recording method of magneto-optical disk
JPS63237238A (en) Magneto-optical recording medium and magneto-optical recording method
JPS6374145A (en) Recording method for magneto-optical disk
JP2746313B2 (en) Information recording method
JP2815122B2 (en) Information recording device
JP3091099B2 (en) Magneto-optical recording medium and magneto-optical recording / reproducing method
JPS6391853A (en) Recording method for magneto-optical disk
JPS63237239A (en) Magneto-optical disk
JPS63133338A (en) Magneto-optical recording method
JPH01217744A (en) Magneto-optical recording medium
JPS6370947A (en) Magneto-optical recording medium
JPH0522302B2 (en)
JPH06236589A (en) Magneto-optical recording method and magneto-optical reproducing method and magneto-optical recording medium
JPH03263634A (en) Magneto-optical recording medium and recording method thereof
JPH07311993A (en) Method for recording magneto-optical recording medium
JPH06103627A (en) Method for recording and erasing of magneto-optical recording
JPH09282726A (en) Magneto-optical recording medium