JPS6374014A - Preparation of transmission type surface relief diffraction grating - Google Patents

Preparation of transmission type surface relief diffraction grating

Info

Publication number
JPS6374014A
JPS6374014A JP22072186A JP22072186A JPS6374014A JP S6374014 A JPS6374014 A JP S6374014A JP 22072186 A JP22072186 A JP 22072186A JP 22072186 A JP22072186 A JP 22072186A JP S6374014 A JPS6374014 A JP S6374014A
Authority
JP
Japan
Prior art keywords
grating
diffraction grating
depth
surface relief
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22072186A
Other languages
Japanese (ja)
Inventor
Atsushi Amako
淳 尼子
Fumio Yamagishi
文雄 山岸
Hiroyuki Ikeda
池田 弘之
Yushi Inagaki
雄史 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22072186A priority Critical patent/JPS6374014A/en
Publication of JPS6374014A publication Critical patent/JPS6374014A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To select and use a desired incident angle by a simple process, by generating a peak of a diffraction efficiency/incident angle characteristic in two parts by controlling the depth of a grating groove of diffraction grating, and also, shifting an incident angle generated by the peak part. CONSTITUTION:When depth (h) of a grating groove of a diffraction grating is changed gradually, a peak of the diffraction efficiency of a diffraction efficiency/incident angle thetai characteristic is increased to two from one, and also, a value of two peaks becomes high, and a peak position is also varied. This phenomenon is different by not only the depth (h) of the grating groove, but also a refractive index (n) of a material to be used. Accordingly, by controlling the depth (h) of the grating groove or selecting the material to be used, two peaks of the diffraction efficiency can be shifted to a desired incident angle thetai. Also, the angle shift can be realized by only increasing the depth (h) of the groove in a state that a shape of the grating has been held symmetrically, therefore, the manufacturing process is extremely simple, and also, as for the manufacturing method, dry etching is better than wet etching.

Description

【発明の詳細な説明】 〔概要〕 透過型表面レリーフ回折格子において、直光使用効率化
と多機能化を実現するための製造プロセスを筒車化でき
るように、従来のレリーフ格子に比べ、溝の深さを数倍
に深くすることで、−)−1次あるいは一1次回折光の
回折効率対再生光入射角度特性が双峰的になる様にする
[Detailed Description of the Invention] [Summary] Compared to conventional relief gratings, in transmission type surface relief gratings, the grooves are By increasing the depth by several times, the diffraction efficiency of -)-first-order or first-order diffracted light versus reproduction light incident angle characteristic becomes bimodal.

〔産業上の利用分野〕[Industrial application field]

近年、回折格子を応用した光デバイスの開発が盛んであ
り、例えば表面レリーフ型ボログラJ、を利用したレン
ズや偏光分離素子、ホログラムスキャナなどが実用化さ
れつつある。さらに普及可能とするには、複製による低
コスト化が期待出来る表面レリーフ格子において、直光
使用効率化と多機能化とを実現することが重要である。
In recent years, the development of optical devices that apply diffraction gratings has been active, and for example, lenses, polarization separation elements, hologram scanners, etc. using surface relief type Bologura J are being put into practical use. In order to make it more widespread, it is important to realize efficient use of direct light and multifunctionality in surface relief gratings, which can be expected to reduce costs through duplication.

本発明は、このような表面レリーフ型回折格子において
、前記のような特性の改善を実現するものである。
The present invention realizes the improvement of the characteristics described above in such a surface relief type diffraction grating.

〔従来の技術〕[Conventional technology]

第6図は従来の表面レリーフ型回折格子の形状とその特
性を示す図である。(alはホログラムスキャナなどに
使用されている典型的な格子形状であり、単純な凹凸の
溝を有している。この格子形状の回折効率/入射角特性
は、(blのようにほぼ放物線状となり、回折効率の最
も高いピーク部がブラッグ角となるので、このピーク部
で再生光を入射して使用される。
FIG. 6 is a diagram showing the shape and characteristics of a conventional surface relief type diffraction grating. (Al is a typical grating shape used in hologram scanners, etc., and has simple uneven grooves.The diffraction efficiency/incident angle characteristics of this grating shape are approximately parabolic as shown in (bl). Since the peak portion where the diffraction efficiency is highest is the Bragg angle, the reproduction light is incident at this peak portion for use.

ところで前記光デバイスの代表的な例として、レンズが
あるが、レンズでは、再生光の入射角度を変えて先便用
効率を上げるために、(dlのようにブラッグ角に対応
する回折効率のピーク部を八からA゛にずらず必要があ
る。この様な角度シフ1−の技術は、回折格子を応用し
たレンズ、冴波路結合器、偏向器の開発に必須のもので
ある。そのために、(C)のように格子形状を銅山状化
することが行なわれている。
By the way, a typical example of the above-mentioned optical device is a lens. In a lens, in order to increase the efficiency of first use by changing the incident angle of the reproduced light, the peak of diffraction efficiency corresponding to the Bragg angle (such as dl) is It is necessary to shift the angle from 8 to A. This angle shift technique is essential for the development of lenses, optical couplers, and deflectors that apply diffraction gratings. The lattice shape is made into a copper mountain shape as shown in (C).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのように鋸歯状に作製するには、■電子
ビームあるいはレーザビーム描画ではビーム位置並びに
ビーム強度の超精密制御を要し、また■NC旋盤による
切削加工においても、ダイヤモンドバイトの超精密制御
を要する等、製造プロセスの作業性に難があった。
However, in order to produce a sawtooth shape in this way, ■ ultra-precise control of the beam position and beam intensity is required in electron beam or laser beam drawing, and ■ ultra-precision control of the diamond bite is required in cutting with an NC lathe. There were some difficulties in the workability of the manufacturing process.

本発明の技術的課題は、透過型表面レリーフ回折格子に
おいて、直光使用効率化と多機能化を実現する際に、こ
のような複雑な装造プロセスを要することなく、簡単な
作業で作製可能とすることにある。
The technical problem of the present invention is to achieve efficient use of direct light and multifunctionality in a transmission-type surface relief diffraction grating, which can be manufactured with simple work without the need for such a complicated manufacturing process. It is to do so.

〔問題点を力¥決するための手段〕[Means for resolving issues]

第1図は本発明による透過型表面レリーフ回折格子の作
製法の基本原理を説明する図であり、(a)は格子形状
を示す断面図、(blは同格子形状の回折効率/入射角
特性を示す図である。(a)に示すように、本発明にお
ける透過型表面レリーフ回折格子は、従来のレリーフ格
子に比べ、溝の深さを数倍に深くして、+1次あるいは
一1次回折光の回折効率対再生光入射角度特性が双峰的
になる様にしている。
FIG. 1 is a diagram explaining the basic principle of the method for producing a transmission type surface relief diffraction grating according to the present invention, in which (a) is a cross-sectional view showing the grating shape, and (bl is the diffraction efficiency/incident angle characteristic of the same grating shape. As shown in (a), the transmission type surface relief diffraction grating according to the present invention has grooves several times deeper than conventional relief gratings, and has the +1st or 11th order. The diffraction efficiency of the diffracted light versus the incident angle of the reproduced light is made to be bimodal.

再生光のブラッグ角は、再生光の波長と格子溝のピッチ
に依存するが、格子溝の深さを制御することで、(bl
のように回折効率/入射角特性のピークを2つ発生させ
ることができる。このように、ピークが2つ発生するよ
うな格子溝深さとし、使用目的に応じて2つのピークの
うち所望のピークの入射角を選択使用する。また格子溝
深さを制御することで、あるいは屈折率の異なる材料を
使用することによって、それぞれのピークをずらすこと
もできる。
The Bragg angle of the reproduction light depends on the wavelength of the reproduction light and the pitch of the grating grooves, but by controlling the depth of the grating grooves, (bl
Two peaks of diffraction efficiency/incident angle characteristics can be generated as shown in FIG. In this way, the grating groove depth is set so that two peaks occur, and the incident angle of the desired peak of the two peaks is selected and used depending on the purpose of use. Furthermore, each peak can be shifted by controlling the grating groove depth or by using materials with different refractive indexes.

〔作用〕[Effect]

実施例において詳述するように、透過型表面レリーフ回
折格子の格子溝深さを次第に変えていくと、回折効率/
入射角特性の回折効率のピークが、1つから2つに増え
、かつ2つのピークの値が大きくなっていくことが確認
された。またピーク位置も変化する。この現象は格子溝
の深さのみでなく、使用する材料の屈折率によっても異
なる。したがって格子:苛深さを制御したり使用Il料
を選択することで、2つの回折効率のピークを所望の入
射角にシフトできる。しかも格子形状を左右対称に保っ
たまま、溝の深さを増すだけで角度シフトを実現できる
ので、製造プロセスは至って簡単である。作製方法とし
てはウェットエツチングよりドライエツチングが良い。
As detailed in the examples, gradually changing the grating groove depth of the transmission surface relief grating increases the diffraction efficiency/
It was confirmed that the diffraction efficiency peak of the incident angle characteristic increased from one to two, and the values of the two peaks became larger. The peak position also changes. This phenomenon depends not only on the depth of the grating grooves but also on the refractive index of the material used. Therefore, by controlling the grating depth or selecting the Il material used, the two peaks of diffraction efficiency can be shifted to a desired angle of incidence. Moreover, the manufacturing process is extremely simple, as the angle shift can be achieved by simply increasing the depth of the grooves while keeping the lattice shape symmetrical. Dry etching is better than wet etching as a manufacturing method.

〔実施例〕〔Example〕

次に本発明による透過型表面レリーフ回折格子が実際上
どのように具体化されるかを実施例で説明する。第2図
は透過型表面レリーフ回折格子の回折効率と(δ子?R
深さとの関係を示す図で、横軸は格子溝の′深さ/ピッ
チ”を示す。この図から明らかなように、格子溝深さが
変化することで、S偏光の場合回折効率のピーク部が2
力所発生している。第3図は回折格子のh/dをいろい
ろと変化させた場合の回折効率/入射角特性であり、溝
の深さが入射角度特性に与える効果について示すもので
ある。(1)1のように、格子溝深さh/dが1.40
と浅い場合は、第6図(b)の場合と同様に、大きな放
物線状ピークが1力所発生するのみである。
Next, examples will be used to explain how the transmission type surface relief diffraction grating according to the present invention is actually implemented. Figure 2 shows the diffraction efficiency of the transmission type surface relief diffraction grating and (δ?R
This figure shows the relationship with depth, and the horizontal axis shows the ``depth/pitch'' of the grating grooves.As is clear from this figure, changing the depth of the grating grooves causes the peak of diffraction efficiency in the case of S-polarized light. Department is 2
Force is occurring. FIG. 3 shows the diffraction efficiency/incidence angle characteristics when h/d of the diffraction grating is variously changed, and shows the effect of groove depth on the incident angle characteristics. (1) As in 1, the grating groove depth h/d is 1.40
When the depth is shallow, a large parabolic peak occurs at only one point, as in the case of FIG. 6(b).

ところが(b) (C1のように、h/dを次第に大き
くしていくと、ピークが2力所発生し、かつピークが増
大していく。第2図において、S偏光入射の条件でh/
dが約2.50の値で回折効率が最低となっているが、
h/dが2.50の場合の回折効率/入射角特性を示す
第3図fc)を見ると、入射角度が5″付近と70″付
近に効率のピークがシフトしている。
However, as shown in (b) (C1), when h/d is gradually increased, two peaks occur and the peak increases.In Figure 2, under the condition of S-polarized light incidence, h/d
The diffraction efficiency is the lowest when d is about 2.50, but
Looking at FIG. 3 fc) showing the diffraction efficiency/incident angle characteristics when h/d is 2.50, the peak of the efficiency has shifted to around 5'' and around 70'' at the incident angle.

この様な現象は、第2図における回折効率対溝の深さ特
性に現れる周期性の曲線の第1の、谷から第2の山へ至
る範囲で顕著となる。即ちh/dを更に増加させると、
(dlのようにそれぞれのピークの値は増大するが、2
つのピークの間の谷の回折効率も増加し、またb / 
dが3.10のときは、17°と50@付近に効率のピ
ークがシフトする。そして(elのように]1/dを更
に大きくすると、2つのピークが合体して1つの大きな
ピークとなる。
Such a phenomenon becomes remarkable in the range from the first trough to the second peak of the periodicity curve appearing in the diffraction efficiency vs. groove depth characteristic in FIG. That is, when h/d is further increased,
(The value of each peak increases like dl, but 2
The diffraction efficiency of the valley between the two peaks also increases, and b/
When d is 3.10, the efficiency peak shifts to around 17° and 50@. If 1/d is then further increased (as in el), the two peaks will merge into one large peak.

第2図、第3図は矩形状のボ]レジスト格子を例にとっ
て示したものである。なおh/dが2.50以上と深く
なると、現在の技術では作製困工「であるので、h /
 d =2.50以上のデータは計算で得たものである
FIGS. 2 and 3 show a rectangular resist grid as an example. Note that if h/d becomes deeper than 2.50, it is difficult to manufacture with current technology, so h/d
Data with d = 2.50 or more were obtained by calculation.

第4図、第5図は、材料を変え、矩形状のホトポリマ格
子に対して、上記の現象を調べた結果である。第4図の
ように、ホトレジスト格子に比べて、さらに格子溝の深
い部分に回折効率の谷が移行している。またこれに対応
して、第5図に示すように、ホトレジスト格子の場合に
比べて、h /dの大きい3.10付近で2つのピーク
が発生している。このように格子溝深さが深い方にシフ
トしている原因は、屈折率の違いによる。
FIGS. 4 and 5 show the results of investigating the above phenomenon for rectangular photopolymer lattices using different materials. As shown in FIG. 4, compared to the photoresist grating, the valley of the diffraction efficiency has shifted to a deeper part of the grating groove. Correspondingly, as shown in FIG. 5, two peaks occur near 3.10, where h 2 /d is larger than in the case of the photoresist grating. The reason why the grating groove depth is shifted to the deeper side in this way is due to the difference in refractive index.

実施例では、S偏光入射(偏光方向が格子溝に平行)に
注目したが、格子形状を変えることによって(矩形の場
合にはデユーティ化)P偏光入射(偏光方向が格子溝に
垂直)においても同様の現象を得ることができる。
In the example, we focused on S-polarized light incident (the polarization direction is parallel to the grating grooves), but by changing the grating shape (duty in the case of a rectangle), it can also be applied to P-polarized light incident (the polarization direction is perpendicular to the grating grooves). A similar phenomenon can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、透過型表面レリーフ回折
格子の格子溝深さを制御することで、回折効率/入射角
特性のピークを2力所発生させ、かつピーク部の発生す
る入射角をシフトすることができる。したがって所望の
入射角を’M IR,して使用することが可能となる。
As described above, according to the present invention, by controlling the grating groove depth of a transmission type surface relief diffraction grating, peaks of diffraction efficiency/incident angle characteristics are generated at two points, and the incident angle at which the peak portion occurs is can be shifted. Therefore, it is possible to use a desired angle of incidence as 'MIR'.

しかも製造プロセスが節準で量産に適しているため、透
過型表面レリーフ回折格子を、レンズ、導波路結合器、
偏向器などに適用し、普及させることができる。
Moreover, the manufacturing process is flexible and suitable for mass production, so transmission type surface relief gratings can be used for lenses, waveguide couplers,
It can be applied to deflectors and become popular.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による透過型表面レリーフ回折格子の作
製法の基本原理を説明する図、第2図〜第5図は本発明
による透過型表面レリーフ回折格子の作製法の実施例を
示すもので、第2図、第3図は回折格子材料としてホ1
〜レジス1−を使用した例、第4図、第5図は回折格子
材料としてホ[−ポリマを使用した例、第6図は従来の
透過型表面レリーフ回折格子における入I・1角の制御
手法を示す図である。 特許出願人     富士通株式会社 復代理人 弁理士  福 島 康 文 本発明の禁ホ原吸 第1図
FIG. 1 is a diagram explaining the basic principle of the method for manufacturing a transmission type surface relief diffraction grating according to the present invention, and FIGS. 2 to 5 show examples of the method for manufacturing a transmission type surface relief diffraction grating according to the present invention. So, Figures 2 and 3 show that the diffraction grating material is phosphor.
~An example using Regis 1-, Figures 4 and 5 are examples using Ho[-polymer as the diffraction grating material, and Figure 6 is an example of controlling the input I and 1 angle in a conventional transmission type surface relief diffraction grating. It is a figure showing a method. Patent Applicant Fujitsu Limited Sub-Agent Patent Attorney Yasushi Fukushima Figure 1 of the Invention

Claims (5)

【特許請求の範囲】[Claims] (1)、格子溝の深さを制御することにより、+1次あ
るいは−1次透過回折光の回折効率対再生光入射角度特
性が双峰的になるように作製することを特徴とする透過
型表面レリーフ回折格子の作製法。
(1) A transmissive type characterized by controlling the depth of the grating groove so that the diffraction efficiency of the +1st-order or -1st-order transmitted diffracted light versus the incident angle of the reproduced light becomes bimodal. Fabrication method for surface relief diffraction gratings.
(2)、上記回折格子において、回折効率対溝の深さ特
性に現れる周期性の曲線のほぼ第1の谷から第2の山へ
至る範囲の値となるように、格子の溝の深さを制御する
ことを特徴とする特許請求の範囲第(1)項記載の透過
型表面レリーフ回折格子の作製法。
(2) In the above diffraction grating, the depth of the grooves of the grating is adjusted so that the periodicity curve appearing in the diffraction efficiency vs. groove depth characteristic has a value in the range from approximately the first valley to the second peak. A method for producing a transmission type surface relief diffraction grating according to claim (1), characterized in that:
(3)、上記回折格子の形状は、左右ほぼ対称であるこ
とを特徴とする特許請求の範囲第(1)項記載の透過型
表面レリーフ回折格子の作製法。
(3) The method for manufacturing a transmission type surface relief diffraction grating according to claim (1), wherein the shape of the diffraction grating is substantially symmetrical on the left and right sides.
(4)、上記回折格子を再生する光は、その偏光方向が
格子溝に平行あるいは垂直な直線偏光であること特徴と
する特許請求の範囲第(1)項記載の透過型表面レリー
フ回折格子の作製法。
(4) The transmission type surface relief diffraction grating according to claim (1), wherein the light for reproducing the diffraction grating is linearly polarized light whose polarization direction is parallel or perpendicular to the grating grooves. Fabrication method.
(5)、上記回折格子を再生する際の入射角度は、回折
効率対再生光入射角度特性に現れる2つのピーク(双峰
)のいずれか一方を与える角度であることを特徴とする
特許請求の範囲第(1)項記載の透過型表面レリーフ回
折格子の作製法。
(5) The incident angle when reproducing the diffraction grating is an angle that gives one of two peaks (double peaks) appearing in the diffraction efficiency versus reproduction light incident angle characteristic. A method for producing a transmission type surface relief diffraction grating according to scope (1).
JP22072186A 1986-09-18 1986-09-18 Preparation of transmission type surface relief diffraction grating Pending JPS6374014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22072186A JPS6374014A (en) 1986-09-18 1986-09-18 Preparation of transmission type surface relief diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22072186A JPS6374014A (en) 1986-09-18 1986-09-18 Preparation of transmission type surface relief diffraction grating

Publications (1)

Publication Number Publication Date
JPS6374014A true JPS6374014A (en) 1988-04-04

Family

ID=16755475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22072186A Pending JPS6374014A (en) 1986-09-18 1986-09-18 Preparation of transmission type surface relief diffraction grating

Country Status (1)

Country Link
JP (1) JPS6374014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754341A (en) * 1995-06-08 1998-05-19 Matsushita Electric Industrial Co., Ltd. Phase grating, its fabricating method, optical encoder, motor using the optical encoder, and robot using the motor
WO2001073484A1 (en) * 2000-03-27 2001-10-04 Chromaplex, Inc. Optical diffraction grating structure with reduced polarization sensitivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754341A (en) * 1995-06-08 1998-05-19 Matsushita Electric Industrial Co., Ltd. Phase grating, its fabricating method, optical encoder, motor using the optical encoder, and robot using the motor
WO2001073484A1 (en) * 2000-03-27 2001-10-04 Chromaplex, Inc. Optical diffraction grating structure with reduced polarization sensitivity
US6487019B2 (en) 2000-03-27 2002-11-26 Chromaplex, Inc. Optical diffraction grating structure with reduced polarization sensitivity

Similar Documents

Publication Publication Date Title
US20220057749A1 (en) Method for Holographic Mastering and Replication
KR101226346B1 (en) Optical element, optical apparatus, optical pickup, optical information processing apparatus, optical attenuator, polarization conversion element, projector optical system, and optical apparatus system
WO1997032243A1 (en) An optical arrangement for processing an optical wave
EP1542043A1 (en) Diffractive optical device and method for producing same
WO2013085535A1 (en) Control of light wavefronts
US5566024A (en) Beam separation control and beam splitting by single blazed binary diffraction optical element
JP2000304933A (en) Polarizing filter and its manufacture
JPH1096807A (en) Holographic optical element and its production
JP2010102008A (en) Photomask and method for making sawtooth pattern
JPS6374014A (en) Preparation of transmission type surface relief diffraction grating
JPS61213802A (en) Optical coupler
Vu et al. Planar waveguide lenses in GaAs by using ion milling
JP2594548B2 (en) Polarizing beam splitter
JPH0225803A (en) Polarized beam splitter
JPS6033504A (en) Production of blazed grating
CN1241036C (en) Selective deposition of material on a substrate according to an interference pattern
US9869857B2 (en) Optical grating phase modulator for laser interference photoetching system
JPS62111203A (en) Mode refractive-index bimodulation type phase grating
CN111240012A (en) Light beam near-field shaping method based on guided mode resonance sub-wavelength grating coding
JPS6127505A (en) Manufacture of blaze optical element
JPS6033501A (en) Production of blazed grating
JP3432235B2 (en) How to create a holographic filter
CN114609714B (en) Transmission type inclined two-dimensional grating based on RGB three-color band polarization independence
JPS6025761B2 (en) Manufacturing method of holographic grating
JP2000193811A (en) Multidimensional diffraction grating and manufacture thereof