JP2000193811A - Multidimensional diffraction grating and manufacture thereof - Google Patents
Multidimensional diffraction grating and manufacture thereofInfo
- Publication number
- JP2000193811A JP2000193811A JP10368181A JP36818198A JP2000193811A JP 2000193811 A JP2000193811 A JP 2000193811A JP 10368181 A JP10368181 A JP 10368181A JP 36818198 A JP36818198 A JP 36818198A JP 2000193811 A JP2000193811 A JP 2000193811A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- multidimensional
- active substance
- dimensional
- laser beams
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Holo Graphy (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は多次元回折格子に関
し、特に通常(天然)の光学材料を用いるレンズやプリ
ズム等の光学部品では実現不可能な、光の屈折や集光お
よび分光特性を実現するための多次元回折格子に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-dimensional diffraction grating, and more particularly to a light-reflection, light-condensing, and spectral characteristic that cannot be realized by optical components such as lenses and prisms using ordinary (natural) optical materials. To a multi-dimensional diffraction grating.
【0002】[0002]
【従来の技術】周期的な屈折率変化を有する物質は回折
格子と呼ばれ、光の回折を始め様々な目的で使用されて
いる。通常の回折格子は、ガラス板等の表面に一方向に
等間隔に多くの直線を引いたもので、これはいわば一次
元の回折格子である。2. Description of the Related Art A substance having a periodic change in refractive index is called a diffraction grating, and is used for various purposes such as light diffraction. An ordinary diffraction grating is one in which many straight lines are drawn at equal intervals in one direction on the surface of a glass plate or the like, which is a one-dimensional diffraction grating.
【0003】ところで、一次元の回折格子に対し、更に
2次元3次元の回折格子を実現することにより、1次元の
回折格子では得られないような新しい効果が得られるこ
とが知られている。特に、屈折率差の大きい2つの異な
る光学材料を、光の半波長程度の周期で2次元あるいは3
次元的に積み重ねた構造はフォトニック結晶と呼ばれ、
最近特に注目されている。By the way, for a one-dimensional diffraction grating,
It is known that realizing a two-dimensional and three-dimensional diffraction grating can provide a new effect that cannot be obtained with a one-dimensional diffraction grating. In particular, two different optical materials having a large difference in refractive index are two-dimensional or three-dimensional with a period of about half the wavelength of light.
A dimensionally stacked structure is called a photonic crystal,
Recently, it has received special attention.
【0004】フォトニック結晶は、屈折率変化が光の半
波長オーダーで周期的に3次元的に繰り返されるような
構造を有し、通常(天然)の光学材料を用いるレンズや
プリズム等の光学部品では実現不可能な光の屈折や分光
特性を実現できる点で、注目されている。このフォトニ
ック結晶においては、2つの異なる光学材料の屈折率差
が特に大きい場合には、光の導波が許されないフォトニ
ックバンドが生じ、発光素子と組み合わせることによ
り、光の出射制御や様々な応用が考えられている。屈折
率差が小さい場合には、フォトニックバンドは生じない
が、3次元での回折格子として、図1(a)に示す通常の
光学材料では得られない光の異常な回折現象や分散効果
を実現できる(同図(b)参照)。A photonic crystal has a structure in which a change in the refractive index is periodically repeated three-dimensionally in the order of half a wavelength of light, and optical components such as lenses and prisms using ordinary (natural) optical materials. Attention has been paid to the fact that it can realize light refraction and spectral characteristics that cannot be realized in such cases. In this photonic crystal, when the refractive index difference between two different optical materials is particularly large, a photonic band in which light waveguide is not allowed occurs, and by combining with a light emitting element, light emission control and various Applications are being considered. When the difference in the refractive index is small, no photonic band is generated, but as a three-dimensional diffraction grating, an abnormal diffraction phenomenon or dispersion effect of light that cannot be obtained with the ordinary optical material shown in FIG. It can be realized (see (b) in the figure).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、実際に
フォトニック結晶を造るとなると、光の半波長オーダー
での材料の加工技術や、さらにこれを2次元3次元での周
期構造として実現しなければならない点等、非常に困難
な課題が多く、現在なお実用的なレベルでのフォトニッ
ク結晶は得られていない。However, in order to actually produce a photonic crystal, it is necessary to realize a material processing technology on the order of half a wavelength of light and to realize this as a two-dimensional and three-dimensional periodic structure. There are many very difficult problems such as the point that it is not possible, and a photonic crystal at a practical level has not yet been obtained.
【0006】本発明の目的は、上に述べたようなフォト
ニック結晶における作製の難しさに対して、全く新しい
手法で簡単にフォトニック結晶とほぼ同等の効果が得ら
れる多次元回折格子及びこのような多次元回折格子構造
を実現する製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a multidimensional diffraction grating which can easily obtain almost the same effect as a photonic crystal by a completely new method, with respect to the above-mentioned difficulty in manufacturing a photonic crystal. It is an object of the present invention to provide a manufacturing method for realizing such a multidimensional diffraction grating structure.
【0007】[0007]
【課題を解決するための手段】フォトリフラクティブ材
料やDXセンターを有する化合物半導体材料等は、光(電
磁波)や電子線を照射することにより屈折率変化を起こ
すことで知られている。例えば、光ファイバーグレーテ
ィングにも用いられる石英ガラスは、紫外線を照射する
ことにより、フォトリフラクティブ効果によって大きな
屈折率変化が得られる。また、AlGaAsやCdF2
等の化合物半導体材料でも、これらの材料中にドーピン
グされたSiやGeあるいはGaやIn等の不純物が深
い準位(DXセンター)を形成し、このようにして形成さ
れたDXセンターの振る舞いにより、光を照射することに
よって比較的大きな屈折率変化が得られることも知られ
ている。この屈折率変化は、μmオーダーの非常に小さ
い領域に局在して起こすことも可能である。Means for Solving the Problems Photorefractive materials and compound semiconductor materials having a DX center are known to cause a change in the refractive index when irradiated with light (electromagnetic waves) or electron beams. For example, a quartz glass used for an optical fiber grating can obtain a large change in refractive index by irradiating ultraviolet rays by a photorefractive effect. In addition, AlGaAs or CdF 2
In such compound semiconductor materials, impurities such as Si, Ge, Ga, and In doped in these materials form deep levels (DX centers), and the behavior of the DX centers formed in this manner allows It is also known that a relatively large change in the refractive index can be obtained by irradiating light. This change in the refractive index can occur locally in a very small region on the order of μm.
【0008】本発明は、屈折率の異なる2つの光学材料
を積み重ねることなく、前記のようなフォトリフラクテ
ィブ媒質やDX材料の性質を用いて、屈折率の異なる領域
からなる多次元の周期構造を実現するものである。これ
らの材料は、電磁波または電子線を照射することによ
り、その強度に応じた屈折率変化を生じさせることがで
きるため、例えば、レーザ光線の様な干渉性の良い光を
照射することにより干渉縞を生じさせ、その干渉縞に応
じて屈折率の異なる領域を周期的に形成することができ
る。本発明の特徴は、3次元回折格子の書き込みを、こ
のような干渉縞による多重露光を駆使して行うものであ
る。The present invention realizes a multidimensional periodic structure composed of regions having different refractive indices by using the properties of the photorefractive medium and the DX material without stacking two optical materials having different refractive indices. Is what you do. Since these materials can generate a change in the refractive index according to their intensity by irradiating an electromagnetic wave or an electron beam, for example, by irradiating light with good coherence such as a laser beam, interference fringes can be obtained. And regions having different refractive indices can be periodically formed in accordance with the interference fringes. A feature of the present invention is that writing of a three-dimensional diffraction grating is performed by making full use of multiple exposure using such interference fringes.
【0009】すなわち、請求項1記載の多次元回折格子
は、電磁波または電子線の照射によってその屈折率が変
化する物質により構成され、屈折率の異なる領域が多次
元周期的に内部に形成されていることを特徴とする。That is, the multidimensional diffraction grating according to claim 1 is made of a substance whose refractive index changes by irradiation of an electromagnetic wave or an electron beam, and regions having different refractive indices are formed therein periodically and multidimensionally. It is characterized by being.
【0010】請求項2記載の多次元回折格子は、請求項
1記載の多次元回折格子において、前記作用物質は、フ
ォトリフラクティブ効果を有する材料であることを特徴
とする。According to a second aspect of the present invention, in the multidimensional diffraction grating according to the first aspect, the active substance is a material having a photorefractive effect.
【0011】請求項3記載の多次元回折格子は、請求項
1記載の多次元回折格子において、前記作用物質は、DX
センターを有する化合物半導体材料であることを特徴と
する。According to a third aspect of the present invention, there is provided the multidimensional diffraction grating according to the first aspect, wherein the active substance is DX.
It is a compound semiconductor material having a center.
【0012】請求項4記載の多次元回折格子は、請求項
2記載の多次元回折格子において、前記作用物質は、紫
外線照射によって屈折率変化を生じる石英ガラス材料で
あることを特徴とする。According to a fourth aspect of the present invention, there is provided the multidimensional diffraction grating according to the second aspect, wherein the active substance is a quartz glass material whose refractive index changes by irradiation with ultraviolet rays.
【0013】請求項5記載の多次元回折格子は、請求項
3記載の多次元回折格子において、前記作用物質は、C
dF2:Gaであることを特徴とする。According to a fifth aspect of the present invention, there is provided the multidimensional diffraction grating according to the third aspect, wherein the active substance is C
It is characterized in that dF 2 is Ga.
【0014】また、上記多次元回折格子の製造は、以下
の方法により実現される。すなわち、請求項6記載の多
次元回折格子の製造方法は、電磁波または電子線の照射
によってその屈折率が変化する作用物質に電磁波または
電子線を照射することにより、前記作用物質の内部に屈
折率の異なる領域を多次元周期的に形成して回折格子を
得ることを特徴とする。The production of the multidimensional diffraction grating is realized by the following method. That is, in the method of manufacturing a multidimensional diffraction grating according to claim 6, by irradiating an electromagnetic wave or an electron beam to an active substance whose refractive index changes due to irradiation of an electromagnetic wave or an electron beam, the refractive index inside the active substance is reduced. Are formed in a multidimensional manner periodically to obtain a diffraction grating.
【0015】請求項7記載の多次元回折格子の製造方法
は、請求項6に記載の多次元回折格子の製造方法におい
て、前記作用物質に、対向する2本のレーザ光線を入射
させて1次元回折格子を書き込み、次に、先にレーザ光
線を入射させた方向と直交する方向から、対向する2本
のレーザ光線を入射させて回折格子を書き込むことで2
次元回折格子を得、さらに、今までに入射させたレーザ
光線の入射方向と各々直交する方向から、対向する2本
のレーザ光線を入射させて回折格子を書き込むことによ
り3次元回折格子を得ることを特徴とする。According to a seventh aspect of the present invention, there is provided a method of manufacturing a multidimensional diffraction grating according to the sixth aspect, wherein two opposing laser beams are incident on the active substance. Write the diffraction grating, and then write the diffraction grating by irradiating two opposing laser beams from a direction orthogonal to the direction in which the laser beam was first incident.
Obtain a three-dimensional diffraction grating by obtaining two-dimensional diffraction gratings and writing the diffraction grating by injecting two opposing laser beams from directions orthogonal to the incident directions of the laser beams that have been incident so far. It is characterized by.
【0016】この多次元回折格子の製造方法において
は、1次元回折格子を書き込んだあと、作用物質を90°
回転させて再び同じレーザ光線を入射させ、更に90°回
転させて同様にレーザ光線を入射して3次元回折格子を
得ることとしてもよいし、作用物質を固定しておき、レ
ーザ光源を変えて(移動させて)3次元回折格子を得る
こととしてもよい。In this method of manufacturing a multi-dimensional diffraction grating, after writing a one-dimensional diffraction grating, the active substance is turned by 90 °.
Rotate and apply the same laser beam again, rotate it further 90 ° and similarly apply the laser beam to obtain a three-dimensional diffraction grating, or fix the active substance and change the laser light source A three-dimensional diffraction grating may be obtained (by moving).
【0017】請求項8記載の多次元回折格子の製造法方
法は、請求項6に記載の多次元回折格子の製造方法にお
いて、互いに直交する3本のレーザ光線と、該レーザ光
線に各々対向する3本のレーザ光線とを同時に前記作用
物質に入射させ、一度に3次元回折格子を書き込むこと
を特徴とする。According to an eighth aspect of the present invention, there is provided a method of manufacturing a multidimensional diffraction grating according to the sixth aspect, wherein three laser beams orthogonal to each other are respectively opposed to the laser beams. It is characterized in that three laser beams are simultaneously incident on the active substance, and a three-dimensional diffraction grating is written at a time.
【0018】請求項9記載の多次元回折格子の製造方法
は、請求項6に記載の多次元回折格子の製造方法におい
て、各々の光線の成す角度が全て等しい4本のレーザ光
線を前記作用物質に入射させ、三角格子からなる3次元
回折格子を書き込むことを特徴とする。According to a ninth aspect of the present invention, there is provided the method of manufacturing a multidimensional diffraction grating according to the sixth aspect, wherein the four laser beams, each having an equal angle, are formed by the active substance. And writing a three-dimensional diffraction grating consisting of a triangular grating.
【0019】[0019]
【発明の実施の形態】次に本発明の一実施形態にかかる
多次元回折格子および多次元回折格子の製造方法につい
て図面を参照して説明する。ここでは、屈折率変化を起
こさせる物質としてDXセンターを有する光学材料であ
る、GaドープのCdF2結晶(作用物質)を用いる。
この物質に書き込まれた回折格子は、室温では数秒間で
消えてしまうが、約150Kの低温では1年間以上持続する
性質がある。そこで、Thermoelectric Cooler(熱電冷
却器)を用いて約150Kの低温まで冷やし、回折格子を書
き込む。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a multidimensional diffraction grating and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings. Here, a Ga-doped CdF 2 crystal (active substance), which is an optical material having a DX center, is used as a substance that causes a change in the refractive index.
A grating written on this material will disappear in a few seconds at room temperature, but will last for more than a year at temperatures as low as about 150K. Therefore, it is cooled down to a low temperature of about 150K using a thermoelectric cooler, and the diffraction grating is written.
【0020】回折格子の書き込み方法としてここでまず
最初に紹介する方法は、図2(a)に示す様に、まず、
レーザ光1による2光束を対向して結晶2に入射させ、
屈折率の異なる領域を周期的に形成し、1次元の回折格
子3を書き込む。書き込まれる回折格子3の周期は、レ
ーザ光1の波長により決まり、例えばアルゴンレーザの
514.5nmの波長の光を用いる場合約164nmとなる。次に
同図(b)に示す様に結晶2を90°回転させて、(c)に
示す様に先に書き込んだ回折格子3に対して直交方向に
も回折格子3を書き込み、2次元回折格子を得る。次に
(d)に示す様に結晶2をさらに90°回転させて、(e)
に示す様に今までに書き込まれた回折格子3に対して直
交方向にも回折格子3を書き込み、3次元回折格子を得
る。このような方法で、DX結晶に3次元の周期的干渉縞
が書き込まれた多次元回折格子を得ることができる。The method first introduced here as a writing method of the diffraction grating is, as shown in FIG.
Two luminous fluxes of the laser beam 1 are incident on the crystal 2 in opposition,
A region having a different refractive index is periodically formed, and a one-dimensional diffraction grating 3 is written. The period of the diffraction grating 3 to be written is determined by the wavelength of the laser beam 1, and is, for example, an argon laser.
When light having a wavelength of 514.5 nm is used, the wavelength is about 164 nm. Next, the crystal 2 is rotated by 90 ° as shown in FIG. 4B, and the diffraction grating 3 is also written in a direction orthogonal to the previously written diffraction grating 3 as shown in FIG. Get the grid. Next, as shown in (d), the crystal 2 is further rotated by 90 °, and (e)
As shown in (1), the diffraction grating 3 is also written in a direction orthogonal to the diffraction grating 3 that has been written so far to obtain a three-dimensional diffraction grating. By such a method, it is possible to obtain a multidimensional diffraction grating in which three-dimensional periodic interference fringes are written on the DX crystal.
【0021】また別の方法としては図3に示す様に、互
いに直交する3本のレーザ光線と、該レーザ光線に各々
対向するレーザ光線の、計6本のレーザ光線1を同時に
結晶2に入射させ、一度に3次元回折格子3を書き込む
ような方法も考えられる。As another method, as shown in FIG. 3, a total of six laser beams 1 of three laser beams orthogonal to each other and laser beams respectively opposed to the laser beams are simultaneously incident on the crystal 2. Then, a method of writing the three-dimensional diffraction grating 3 at a time is also conceivable.
【0022】あるいはまた別の方法としては、図4に示
す様に回折格子3を書き込む材料に対して入射する各々
の光線の成す角度が全て等しい4本のレーザ光線1によ
り、三角格子からなる3次元回折格子3を書き込むよう
な方法も考えられる。上記何れの方法を用いる場合にお
いても、書き込む光の強度と露光時間(露光量)を適切
に調整することにより、結晶内部に3次元的な回折格子
を得ることができる。Alternatively, as another method, as shown in FIG. 4, a laser beam 1 incident on a material on which the diffraction grating 3 is written has four laser beams 1 all having the same angle. A method of writing the three-dimensional diffraction grating 3 is also conceivable. In any of the above methods, a three-dimensional diffraction grating can be obtained inside the crystal by appropriately adjusting the intensity of writing light and the exposure time (exposure amount).
【0023】以上本実施形態にかかる多次元回折格子お
よび多次元回折格子の製造方法を用いれば、特に通常
(天然)の光学材料を用いるレンズやプリズム等の光学
部品では得られない光の屈折や分散特性を実現できるた
め、これによりレンズやプリズム等の光学部品を作れ
ば、大幅な小型化が可能であり、波長多重光通信方式等
で用いることができる。By using the multidimensional diffraction grating and the method of manufacturing the multidimensional diffraction grating according to the present embodiment, refraction of light, which cannot be obtained particularly with optical components such as lenses and prisms using ordinary (natural) optical materials, can be obtained. Since dispersion characteristics can be realized, if optical components such as a lens and a prism are made by this, the size can be significantly reduced, and the device can be used in a wavelength multiplexing optical communication system or the like.
【0024】[0024]
【発明の効果】本発明の多次元回折格子および多次元回
折格子の製造方法を用いれば、特に通常(天然)の光学
材料を用いるレンズやプリズム等の光学部品では得られ
ない光の屈折や分散特性を実現できるため、これにより
レンズやプリズム等の光学部品を作れば、大幅な小型化
が可能であり、波長多重光通信方式等で用いることがで
きる。According to the multidimensional diffraction grating and the method for manufacturing the multidimensional diffraction grating of the present invention, refraction and dispersion of light which cannot be obtained particularly with optical components such as lenses and prisms using ordinary (natural) optical materials. Since the characteristics can be realized, if optical components such as a lens and a prism are made by this, the size can be significantly reduced, and the device can be used in a wavelength multiplexing optical communication system or the like.
【図1】 プリズムによる光の屈折を示した図であり、
(a)は通常の光学材料による光の屈折を示した図、
(b)はフォトニック結晶による光の屈折を示した図で
ある。FIG. 1 is a diagram showing refraction of light by a prism;
(A) is a diagram showing refraction of light by a normal optical material,
(B) is a diagram showing refraction of light by the photonic crystal.
【図2】 本発明の一実施形態に係る多次元回折格子の
製造方法を示した図である。FIG. 2 is a diagram illustrating a method for manufacturing a multidimensional diffraction grating according to one embodiment of the present invention.
【図3】 本発明の他の実施形態に係る多次元回折格子
の製造方法を示した図である。FIG. 3 is a view illustrating a method for manufacturing a multidimensional diffraction grating according to another embodiment of the present invention.
【図4】 本発明の他の実施形態に係る多次元回折格子
の製造方法を示した図である。FIG. 4 is a view illustrating a method for manufacturing a multidimensional diffraction grating according to another embodiment of the present invention.
1 レーザ光線 2 CdF2:Ga結晶(作用物質) 3 回折格子Reference Signs List 1 laser beam 2 CdF 2 : Ga crystal (active substance) 3 diffraction grating
Claims (9)
屈折率が変化する物質により構成され、屈折率の異なる
領域が多次元周期的に内部に形成されていることを特徴
とする多次元回折格子。1. A multidimensional diffraction grating comprising a substance whose refractive index changes by irradiation of an electromagnetic wave or an electron beam, wherein regions having different refractive indices are formed therein periodically and multidimensionally.
て、 前記作用物質は、フォトリフラクティブ効果を有する材
料であることを特徴とする多次元回折格子。2. The multidimensional diffraction grating according to claim 1, wherein said active substance is a material having a photorefractive effect.
て、 前記作用物質は、DXセンターを有する化合物半導体であ
ることを特徴とする多次元回折格子。3. The multidimensional diffraction grating according to claim 1, wherein the active substance is a compound semiconductor having a DX center.
て、 前記作用物質は、紫外線照射によって屈折率変化を生じ
る石英ガラスであることを特徴とする多次元回折格子。4. The multidimensional diffraction grating according to claim 2, wherein the active substance is quartz glass whose refractive index changes when irradiated with ultraviolet rays.
て、 前記作用物質は、CdF2:Gaであることを特徴とす
る多次元回折格子。5. The multidimensional diffraction grating according to claim 3, wherein the active substance is CdF 2 : Ga.
屈折率が変化する作用物質に電磁波または電子線を照射
することにより、前記作用物質の内部に屈折率の異なる
領域を多次元周期的に形成して回折格子を得ることを特
徴とする多次元回折格子の製造方法。6. An active substance whose refractive index changes by irradiation of an electromagnetic wave or an electron beam is irradiated with an electromagnetic wave or an electron beam to form a region having a different refractive index in the active substance in a multidimensional manner. A method for producing a multidimensional diffraction grating, comprising: obtaining a diffraction grating by:
方法において、 前記作用物質に、対向する2本のレーザ光線を入射させ
て1次元回折格子を書き込み、次に、先にレーザ光線を
入射させた方向と直交する方向から、対向する2本のレ
ーザ光線を入射させて回折格子を書き込むことで2次元
回折格子を得、さらに、今までに入射させたレーザ光線
の入射方向と各々直交する方向から、対向する2本のレ
ーザ光線を入射させて回折格子を書き込むことにより3
次元回折格子を得ることを特徴とする多次元回折格子の
製造方法。7. The method for manufacturing a multi-dimensional diffraction grating according to claim 6, wherein two opposing laser beams are incident on the active substance to write a one-dimensional diffraction grating, and then the laser beam is first applied. A two-dimensional diffraction grating is obtained by writing a diffraction grating by injecting two opposing laser beams from a direction perpendicular to the direction in which the laser beam is incident. By writing a diffraction grating by injecting two opposing laser beams from orthogonal directions, 3
A method for producing a multidimensional diffraction grating, comprising obtaining a two-dimensional diffraction grating.
方法において、 互いに直交する3本のレーザ光線と、該レーザ光線に各
々対向する3本のレーザ光線とを同時に前記作用物質に
入射させ、一度に3次元回折格子を書き込むことを特徴
とする多次元回折格子の製造方法。8. The method for manufacturing a multidimensional diffraction grating according to claim 6, wherein three laser beams orthogonal to each other and three laser beams respectively opposed to said laser beams are simultaneously incident on said active substance. And writing a three-dimensional diffraction grating at a time.
方法において、 各々の光線の成す角度が全て等しい4本のレーザ光線を
前記作用物質に入射させ、三角格子からなる3次元回折
格子を書き込むことを特徴とする多次元回折格子の製造
方法。9. The method of manufacturing a multidimensional diffraction grating according to claim 6, wherein four laser beams having the same angle formed by each of the light beams are incident on the active substance, and the three-dimensional diffraction grating is formed of a triangular grating. And a method for manufacturing a multidimensional diffraction grating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36818198A JP3348668B2 (en) | 1998-12-24 | 1998-12-24 | Method for manufacturing three-dimensional diffraction grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36818198A JP3348668B2 (en) | 1998-12-24 | 1998-12-24 | Method for manufacturing three-dimensional diffraction grating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000193811A true JP2000193811A (en) | 2000-07-14 |
JP3348668B2 JP3348668B2 (en) | 2002-11-20 |
Family
ID=18491160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36818198A Expired - Fee Related JP3348668B2 (en) | 1998-12-24 | 1998-12-24 | Method for manufacturing three-dimensional diffraction grating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3348668B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002095466A1 (en) * | 2001-05-24 | 2002-11-28 | The University Of Sydney | Optical lattice structure |
CN100337145C (en) * | 2004-06-22 | 2007-09-12 | 天津大学 | A method and apparatus for producing three-dimensional photon crystal structure |
JP2008040334A (en) * | 2006-08-09 | 2008-02-21 | Ritsumeikan | Method and apparatus of manufacturing three-dimensional photonic crystal |
US7572648B2 (en) | 2003-10-06 | 2009-08-11 | Japan Aviation Electronics Industry Limited | Method of manufacturing optical sensor |
-
1998
- 1998-12-24 JP JP36818198A patent/JP3348668B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002095466A1 (en) * | 2001-05-24 | 2002-11-28 | The University Of Sydney | Optical lattice structure |
US7572648B2 (en) | 2003-10-06 | 2009-08-11 | Japan Aviation Electronics Industry Limited | Method of manufacturing optical sensor |
CN100337145C (en) * | 2004-06-22 | 2007-09-12 | 天津大学 | A method and apparatus for producing three-dimensional photon crystal structure |
JP2008040334A (en) * | 2006-08-09 | 2008-02-21 | Ritsumeikan | Method and apparatus of manufacturing three-dimensional photonic crystal |
Also Published As
Publication number | Publication date |
---|---|
JP3348668B2 (en) | 2002-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6673497B2 (en) | High efficiency volume diffractive elements in photo-thermo-refractive glass | |
Berger et al. | Photonic band gaps and holography | |
US20010012149A1 (en) | Optical elements comprising photonic crystals and applications thereof | |
Yamada et al. | Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass | |
CN102147492A (en) | Micro-structure quasi-phase-matching based method for preparing multidimensional target waveguide grating and bulk grating | |
JP2000056146A (en) | Light self-guide optical circuit | |
US7906255B2 (en) | Photo-masks and methods of fabricating periodic optical structures | |
JPWO2010073585A1 (en) | Sheet and light emitting device | |
JP5224027B2 (en) | Diffraction grating fabrication method using phase mask for diffraction grating fabrication | |
JP3348668B2 (en) | Method for manufacturing three-dimensional diffraction grating | |
TW200425539A (en) | Light-emitting device having diffraction optical film on light-emitting surface and its manufacturing method | |
US20110263056A1 (en) | Method of manufacturing a laser diode with improved light-emitting characteristics | |
JP3766844B2 (en) | Lattice modulation photonic crystal | |
B Glebov | Photosensitive holographic glass–new approach to creation of high power lasers | |
US20090098468A1 (en) | Photo-masks and methods of fabricating photonic crystal devices | |
US11796740B2 (en) | Optical device | |
JP4373163B2 (en) | Method for manufacturing optical structure | |
JP2629671B2 (en) | Holographic exposure method | |
JPH1184117A (en) | Reflection type optical waveguide grating | |
Nikonorov et al. | Holographic optical components based on photorefractive crystals and glasses: comparative analysis and development prospects | |
JP3019809B2 (en) | Optical circuit and manufacturing method thereof | |
JP2004219998A (en) | Optical circuit | |
Sukhoivanov et al. | Introduction to photonic crystals | |
JP2006138945A (en) | Polarizer and transmission type liquid crystal projector apparatus | |
Badalyan et al. | Optical induction of 3D rotational symmetry refractive lattices by combined interferometric-mask method in doped LiNbO 3 crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020514 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020813 |
|
LAPS | Cancellation because of no payment of annual fees |