JPS6373128A - Method and apparatus for measuring dynamic supporting force of pile - Google Patents

Method and apparatus for measuring dynamic supporting force of pile

Info

Publication number
JPS6373128A
JPS6373128A JP16990486A JP16990486A JPS6373128A JP S6373128 A JPS6373128 A JP S6373128A JP 16990486 A JP16990486 A JP 16990486A JP 16990486 A JP16990486 A JP 16990486A JP S6373128 A JPS6373128 A JP S6373128A
Authority
JP
Japan
Prior art keywords
amount
pile
driven pile
driven
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16990486A
Other languages
Japanese (ja)
Inventor
Kazuma Uto
宇都 一馬
Fumihiko Iwashita
岩下 文彦
Hiroshi Omori
弘 大森
Takuji Kawamura
川村 卓二
Koji Ninomiya
康治 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Nippon Kokan Koji KK
Original Assignee
JDC Corp
Nippon Kokan Koji KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp, Nippon Kokan Koji KK filed Critical JDC Corp
Priority to JP16990486A priority Critical patent/JPS6373128A/en
Publication of JPS6373128A publication Critical patent/JPS6373128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To compute dynamic supporting force efficiently, by measuring the acceleration of a pile with an accelerometer, integrating the values twice, computing the amount of displacement, computing the amount of penetration of the pile and the rebounding amount when the speed of the penetrating pile becomes zero, and operating the values. CONSTITUTION:The acceleration of a pile 1 when it is driven with a hammer is measured with an accelerometer 2. The acceleration signals are sampled in a sampling circuit 4 through an amplifier circuit 3. The result is stored in a memory 9 through an A/D converter circuit 8. An integrating circuit 10 integrates the acceleration signals, and a speed is computed and stored in a memory 11. An integrating circuit 12 integrates the speed signals, and the amount of displacement is computed and stored in a memory 13. A CPU 14 obtains the amount of displacement when the speed is zero. The amount of penetration (s) of the penetrating pile 1 and the rebounding amount (k) are computed based on the amount of displacement. The values of (s) and (k) are substituted into a linear wave equation in the CPU, and dynamic supporting force is computed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は打込み杭の動的支持力計測方法及び装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for measuring dynamic bearing capacity of driven piles.

[従来の技術] パンツ等により頭部を断続的に叩いて地中に打ち込まれ
る打込み杭の動的支持力は、まず打込み杭の打ち込み士
、即ち打込み杭の変位量(正確には、リバウンド量)を
計測し、この変位量を所定の算定式に代入して算出する
のが一般的な方法である。
[Prior art] The dynamic bearing capacity of a driven pile, which is driven into the ground by intermittently hitting the head with pants, etc., is determined by the driver of the pile, that is, the amount of displacement (more precisely, the amount of rebound) of the driven pile. ) is calculated by measuring the amount of displacement and substituting this displacement amount into a predetermined calculation formula.

打込み杭の変位量を計測する従来の方法としては、紙詰
付方法、光学式変位計方法及び加速度計・歪ゲージ方法
等があった。第5図は紙詰付方法の原理図で、第5図(
a)が正面図、第5図(b)が側面図を示す。第5図に
おいて、20は打込み杭、21は打込み杭20の頭部側
面に粘若テープ22で貼り付けられた記録用紙、23は
鉛筆、24は鉛筆23を支持する定規、25は定規24
を水平に支持する支柱である。紙詰付方法は、ハンマ(
図示せず)による打込み杭20の1打撃毎に作業者が鉛
筆23を定規24に沿って0勤させ、打込み杭20の変
位量を記録用紙21に記録するものである。陸上で杭打
ちする場合及び海上で杭打ちする場合における記録用紙
21を第6図及び第7図に示す、記録用紙21には1打
匁毎の打込み杭20の貫入量S及び地中に貫入した打込
み杭20が浮き上がるリバウンド量Kが記録される。又
、海上での打込みは不動点、即ち定規24の固定点が取
り難いので、乱れた線になる。
Conventional methods for measuring the amount of displacement of driven piles include the paper stuffing method, the optical displacement meter method, and the accelerometer/strain gauge method. Figure 5 shows the principle of the paper packing method.
5(a) shows a front view, and FIG. 5(b) shows a side view. In FIG. 5, 20 is a driven stake, 21 is a recording paper pasted with adhesive tape 22 on the side of the head of the driven stake 20, 23 is a pencil, 24 is a ruler that supports the pencil 23, and 25 is a ruler 24
This is a support that supports horizontally. The paper packing method is to use a hammer (
Each time the driven pile 20 is struck by a hammer (not shown), the operator zeroes the pencil 23 along the ruler 24 and records the amount of displacement of the driven pile 20 on the recording paper 21. Figures 6 and 7 show the recording sheets 21 for driving piles on land and at sea. The amount of rebound K by which the driven pile 20 lifts is recorded. Furthermore, when driving at sea, it is difficult to find a fixed point, that is, a fixed point for the ruler 24, so the line becomes irregular.

次に、第8図は光学式変位計方法の原理図である。第8
図において、20は打込み杭、26は打込み杭20を打
ち込むハンマ、27は打込み杭20の頭部側面に貼り付
けられ、白と黒に塗り分けられたターゲット、28は岸
壁上に設置された光学式変位測定装置である。光学式変
位測定装置28はターゲット27を写すカメラ29とカ
メラ29の撮像信号を増幅するアンプ、記録装置及び出
力装置を内蔵する画像IA理装置30から構成されてい
る。光学式変位計方法は、打込み杭20を打ち込んだと
きの変位を、カメラ29でターゲット27を光学的に捕
らえることにより計測し、これを電気的な量に変換して
変位量を算出するものである。光学式変位測定装置28
が出力する打込み杭20の変位量を第9図に示す。第9
図(a)の測定例では、貫入fcS、リバウンド量Kが
それぞれ10.2mmである。又、第9図(b)の測定
例では、貫入量S、リバウンド量Kがそれぞれ8.2m
mである。この方法も1打撃毎の打込み杭20の貫入f
f1S及びリバウンドi Kが記録されるが、紙詰付方
法に比べ精度が良い。
Next, FIG. 8 is a diagram showing the principle of the optical displacement meter method. 8th
In the figure, 20 is a driving pile, 26 is a hammer for driving the driving pile 20, 27 is a target attached to the side of the head of the driving pile 20 and painted white and black, and 28 is an optical device installed on the quay. This is a type displacement measurement device. The optical displacement measuring device 28 is composed of a camera 29 that photographs the target 27, an amplifier that amplifies the imaging signal of the camera 29, an image IA processing device 30 that includes a recording device, and an output device. The optical displacement meter method measures the displacement when the driven pile 20 is driven by optically capturing the target 27 with the camera 29, and converts this into an electrical quantity to calculate the amount of displacement. be. Optical displacement measuring device 28
The amount of displacement of the driven pile 20 output by is shown in FIG. 9th
In the measurement example shown in Figure (a), the penetration fcS and the rebound amount K are each 10.2 mm. In addition, in the measurement example shown in Figure 9(b), the penetration amount S and the rebound amount K are each 8.2 m.
It is m. This method also has the penetration f of the driven pile 20 for each blow.
Although f1S and rebound iK are recorded, the accuracy is better than the paper jamming method.

上述した紙詰付方法及び光学式変位計方法で算出した打
込み杭20の貫入量に基づいて、各基準又は示方書に明
記されている動的支持力算定式により打込み杭20の動
的支持力を算出するのである。
Based on the penetration amount of the driven pile 20 calculated by the paper stuffing method and the optical displacement meter method described above, the dynamic bearing capacity of the driven pile 20 is calculated using the dynamic bearing capacity calculation formula specified in each standard or specification. is calculated.

動的支持力算定式は、−次元波動方程式及びヒイレー(
t(fley )の式等種々のものがある。−次元波動
方程式は現在量も精度が良いとされている。
The dynamic bearing capacity calculation formula is -dimensional wave equation and Hiley (
There are various formulas for t(fley). The -dimensional wave equation is said to have good accuracy in terms of current quantity.

−次元波動方程式によれば、打込み杭20の動的極限支
持力Ruは、打込み杭20の実断面積をA1打込み杭2
0のヤング係数をEl リバウンド量をK、打込み杭2
0の周面のN値の平均値をN、打込み杭20の周長をU
、打込み杭20の長さをI、補正係数をeOlefとす
ると、 A−E−K N−Ll−I R,=      +           (1)e
o・ I   ef となる。
- According to the dimensional wave equation, the dynamic ultimate bearing capacity Ru of the driven pile 20 is calculated by dividing the actual cross-sectional area of the driven pile 20 into A1 driven pile 2
Young's modulus of 0 is El, rebound amount is K, driven pile 2
The average value of the N value of the circumferential surface of 0 is N, and the circumference of the driven pile 20 is U.
, when the length of the driven pile 20 is I and the correction coefficient is eOlef, A-E-K N-Ll-I R,= + (1)e
o・I ef .

次に、第10図は加速度計・歪ゲージ方法の原理図であ
る。第10図において、20は打込み杭、31は打込み
杭20の頭部側面に取り付けられた加速度計、32は歪
ゲージ、33は杭打ちアナライザ、34はテープレコー
ダ、35はマイクロフォン、36はオシロスコープであ
る。この加速度計・歪ゲージ方法は、打込み杭20の打
込み時に発生する杭頭歪波形を歪ゲージ32によって力
に変換するとともに、加速度計31で計測した加速度を
積分して速さに変換し、杭頭部の応力と速さから杭の支
持力を予測するものである。この方法に関してはCa5
e MethodといわれるGobleらの研究やTN
O等の研究が著明である。Ca5e Methodによ
ると動的支持力R6は、打込み杭20の′X量をm(W
/g)、応力波の伝播速度をC1打込み抗20先端部か
らピックアップ設置位置までの距離なLとすると、 となる。第2式中第1項は力がピークをつけた時間(t
l)から応力波が打込み杭20を1往復する時間(2L
/ C’)の力の平均値である。又、第2項は第1項と
同じ時間の速度差を応力波が打込み杭20を1往復する
時間(2L/c)で除し、質量mを乗じた値で加速度に
よる力を表わしたものである。
Next, FIG. 10 is a diagram showing the principle of the accelerometer/strain gauge method. In Fig. 10, 20 is a driven pile, 31 is an accelerometer attached to the side of the head of the driven pile 20, 32 is a strain gauge, 33 is a pile driving analyzer, 34 is a tape recorder, 35 is a microphone, and 36 is an oscilloscope. be. This accelerometer/strain gauge method converts the pile head strain waveform that occurs when driving the driven pile 20 into force using the strain gauge 32, and integrates the acceleration measured by the accelerometer 31 to convert it into speed. This method predicts the bearing capacity of a pile from the stress and speed of the head. Regarding this method, Ca5
Research by Goble et al. called e Method and TN
The research by O et al. is notable. According to the Ca5e Method, the dynamic bearing capacity R6 is calculated by changing the amount of 'X' of the driven pile 20 to m (W
/g), and if the propagation velocity of the stress wave is L, which is the distance from the tip of the C1 driving resistor 20 to the pickup installation position, then the following equation is obtained. The first term in the second equation is the time (t
The time required for the stress wave to make one round trip around the driven pile 20 (2L)
/C') is the average value of the force. In addition, the second term represents the force due to acceleration by dividing the speed difference over the same time as the first term by the time for the stress wave to make one reciprocation of the driven pile 20 (2L/c), multiplied by the mass m. It is.

[発明が解決しようとする問題点] ところで、上述した紙貼付方法にあっては、打込み杭2
0の貫入変位の記録精度が悪く、特に海上杭打ち工事で
は、不動点が取り難いという問題があった。又、打込み
杭20を貫入しているときに作業者が貫入変位を直接記
録するので、危険であるという問題がありた。
[Problems to be solved by the invention] By the way, in the paper pasting method described above, the driven pile 2
The recording accuracy of zero penetration displacement was poor, and there was a problem in that it was difficult to obtain a fixed point, especially in offshore piling work. Furthermore, there is a problem in that it is dangerous because the worker directly records the penetration displacement while the driven pile 20 is being penetrated.

光学式変位計方法にあっては、紙貼付方法より精度が良
いが、ターゲット27の取り付は及び光学式変位測定装
置28の校正に時間がかかるという問題があった。又、
杭打ちの振動のため光学式変位測定装置28をターゲッ
ト27から約3(1m以上離す必要があるが、都市部の
近接工事及び杭打ち機械等の配置上の制限から30mの
距離が確保できないという問題があった。さらに、海上
杭打ち工事では、不動点が取り難いという問題があった
Although the optical displacement measurement method has better accuracy than the paper pasting method, there is a problem in that it takes time to attach the target 27 and to calibrate the optical displacement measurement device 28. or,
Due to the vibrations of pile driving, it is necessary to keep the optical displacement measuring device 28 approximately 3 (1 m or more) away from the target 27, but it is said that a distance of 30 m cannot be secured due to nearby construction work in urban areas and restrictions on the placement of pile driving machines. There was a problem.Furthermore, in offshore piling work, it was difficult to find fixed points.

加速度計・歪ゲージ方法にあっては、打込み杭20の貫
入変位が安定するのに、応力波が打込み杭20を1往復
する時間をT(=2L/c)とすると、3T〜5Tかか
り、打込み杭20の貫入変位を非常に短い時間(t 、
 +2L/ c = 2〜3m5ec+応力波が打込み
杭20を1往復する時間)しかとらえていない、このた
め、打込み杭20の初期貫入だけを問題とし、打込み杭
20の先端地盤の影響が生じる3T〜5丁を無視してい
るので、精度が悪いという問題があった。
In the accelerometer/strain gauge method, it takes 3T to 5T to stabilize the penetration displacement of the driven pile 20, where T (=2L/c) is the time for the stress wave to make one round trip through the driven pile 20. The penetration displacement of the driven pile 20 is controlled in a very short time (t,
+2L/c = 2~3m5ec+time for the stress wave to make one round trip around the driven pile 20).For this reason, only the initial penetration of the driven pile 20 is considered, and the influence of the ground at the tip of the driven pile 20 occurs from 3T~ Since the 5 guns were ignored, there was a problem with poor accuracy.

本発明は上記問題点を解決するためになされたもので、
動的支持力を効率よく算出する打込み杭の動的支持力計
測方法及び装置を提供することを目的とする。
The present invention has been made to solve the above problems,
It is an object of the present invention to provide a method and device for measuring the dynamic bearing capacity of driven piles that efficiently calculates the dynamic bearing capacity.

[問題点を解決するための手段] そこで、本発明では断続的に打込まれることにより地中
に貫入される打込み杭に取り付けられ、打込み杭の打込
みの加速度を測定する加速度計と、加速度を所定時間毎
に積分し、打込み杭の速度を算出する第1の積分回路と
、速度を所定時間毎に積分し、打込み杭の変位量を算出
する第2の積分回路と、打込み杭の速度が;になったと
きの変位量から打込み杭の1回の打込みによる最大変位
量及び打込み杭の貫入量を算出し、最大変位量から貫入
量を減じ、打込み杭のリバウンド量を算出するリバウン
ド量算出手段と、リバウンド量及び所定の動的支持力算
定式に基づいて、打込み杭の動的支持力を算出する支持
力算出手段とから打込み杭の動的支持力計測装置を構成
する。
[Means for Solving the Problems] Therefore, the present invention includes an accelerometer that is attached to a driven pile that penetrates into the ground by being driven intermittently, and that measures the driving acceleration of the driven pile; A first integrating circuit integrates the speed of the driven pile at predetermined time intervals and calculates the speed of the driven pile, and a second integral circuit integrates the speed at predetermined time intervals to calculate the displacement amount of the driven pile. Calculate the rebound amount by calculating the maximum displacement amount due to one driving of the driven pile and the amount of penetration of the driven pile from the amount of displacement when ;, and subtracting the amount of penetration from the maximum displacement amount to calculate the amount of rebound of the driven pile. A dynamic bearing force measuring device for a driven pile is constituted by the means and a bearing force calculation means for calculating the dynamic bearing force of the driven pile based on the rebound amount and a predetermined dynamic bearing force calculation formula.

[作 用] 上記構成の打込み杭の動的支持力計測装置は、加速度計
が打込み杭の加速度を測定し、第1の積分回路が打込み
杭の加速度から速度を算出し、第2の積分回路が打込み
杭の速度から変位量を算出する。さらに、リバウンド量
算出手段が打込み杭の速度が零になったときの変位量か
ら打込み杭の最大変位量及び貫入量を算出し、リバウン
ド量を算出し、支持力算出手段がリバウンド量を所定の
動的支持力算定式に代入し、打込み杭の動的支持力を算
出する。
[Function] In the dynamic bearing capacity measuring device for a driven pile having the above configuration, an accelerometer measures the acceleration of the driven pile, a first integrating circuit calculates the speed from the acceleration of the driven pile, and a second integrating circuit calculates the speed from the acceleration of the driven pile. calculates the displacement from the speed of the driven pile. Further, the rebound amount calculation means calculates the maximum displacement amount and penetration amount of the driven pile from the displacement amount when the speed of the driven pile becomes zero, calculates the rebound amount, and the bearing capacity calculation means calculates the rebound amount by a predetermined amount. Substitute it into the dynamic bearing capacity calculation formula to calculate the dynamic bearing capacity of the driven pile.

[実施例] 以下、本発明の一実施例を添付図面を参照して詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係る打込み杭の動的支持力計測装置の
ブロック図である。第1図において、1は打込み杭、2
は打込み杭1に取り付けられ、打込み杭1の加速度に対
応する加速度信号を出力する加速度計、3は加速度計2
の加速度信号を増幅する増幅回路、4は増幅回路3によ
って増幅される加速度信号をサンプリングするサンプリ
ング回路、5はサンプリング回路4のサンプリングタイ
ムを設定するサンプリングタイム設定回路、6はサンプ
リング回路4のトリガレベルを設定するトリガレベル設
定回路、7はサンプリング回路4の計測時間を設定する
計測時間設定回路、8はサンプリング回路4がサンプリ
ングした加速度信号をデジタル信号に変換するアナログ
・デジタル変換回路、9はデジタル信号に変換した加速
度信号を記憶するメモリ、lOはメモリ9に記憶された
加速度信号を積分して打込み杭10の速度に対応する速
度信号を出力する積分回路、11は積分回路lOの出力
する速度信号を記憶するメモリ、12はメモリ11に記
憶された速度信号を積分して打込み杭10の貫入変位に
対応する変位信号を出力する積分回路、13は積分回路
12の出力する変位信号を記憶するメモリ、14はメモ
リ15に記憶されているプログラムに従って、打込み杭
の動的支持力計測装置全体を制御するとともに、メモリ
11及び13に記憶されているデータの検索、リバウン
ド量の算出並びに動的支持力の算出を行なう中央処理装
置(以下、CPUという)である。
FIG. 1 is a block diagram of a dynamic bearing capacity measuring device for driven piles according to the present invention. In Figure 1, 1 is a driven pile, 2
is an accelerometer that is attached to the driven pile 1 and outputs an acceleration signal corresponding to the acceleration of the driven pile 1, and 3 is an accelerometer 2
4 is a sampling circuit that samples the acceleration signal amplified by the amplifier circuit 3; 5 is a sampling time setting circuit that sets the sampling time of the sampling circuit 4; 6 is a trigger level of the sampling circuit 4. 7 is a measurement time setting circuit that sets the measurement time of the sampling circuit 4; 8 is an analog-to-digital conversion circuit that converts the acceleration signal sampled by the sampling circuit 4 into a digital signal; 9 is a digital signal 10 is an integrating circuit that integrates the acceleration signal stored in the memory 9 and outputs a speed signal corresponding to the speed of the driven pile 10, and 11 is a speed signal output from the integrating circuit 10. 12 is an integrating circuit that integrates the speed signal stored in the memory 11 and outputs a displacement signal corresponding to the penetration displacement of the driven pile 10. 13 is a memory that stores the displacement signal output from the integrating circuit 12. , 14 controls the entire driving pile dynamic bearing capacity measuring device according to the program stored in the memory 15, and also searches data stored in the memories 11 and 13, calculates the amount of rebound, and performs dynamic bearing capacity measurement. This is a central processing unit (hereinafter referred to as CPU) that performs calculations.

次に、本発明に係る打込み杭の動的支持力計測装置の動
作について、第2図、第3図及び第4図を参照して説明
する。第2図は本発明に係る打込み杭の動的支持力計測
装置の動作を示すフローチャートである。第3図は各部
の信号波形図で、第3図(a)が加速度信号の波形図、
第3図(b)が速度信号の波形図、第3図(c)が変位
量信号の波形図である。又、第4図は第3図の信号波形
図を説明のため簡略化した各部の信号波形図で、第4図
(a)が加速度信号の波形図、第4図(b)が速度信号
の波形図、第4図(c)が変位量信号の波形図である。
Next, the operation of the dynamic bearing force measuring device for driven piles according to the present invention will be explained with reference to FIGS. 2, 3, and 4. FIG. 2 is a flowchart showing the operation of the dynamic bearing capacity measuring device for driven piles according to the present invention. Figure 3 is a signal waveform diagram of each part, and Figure 3 (a) is a waveform diagram of the acceleration signal.
FIG. 3(b) is a waveform diagram of the speed signal, and FIG. 3(c) is a waveform diagram of the displacement signal. In addition, Fig. 4 is a signal waveform diagram of each part simplified for explanation of the signal waveform diagram of Fig. 3. Fig. 4(a) is a waveform diagram of the acceleration signal, and Fig. 4(b) is a waveform diagram of the speed signal. FIG. 4(c) is a waveform diagram of the displacement signal.

(1)ステップ1 加速度計2は図示しないハンマにより断続的に叩かれ、
地中に貫入される打込み杭1の打込みの加速度αを測定
し、測定した加速度に対応する加速度信号を出力する。
(1) Step 1 The accelerometer 2 is intermittently hit by a hammer (not shown),
The driving acceleration α of the driven pile 1 penetrating into the ground is measured, and an acceleration signal corresponding to the measured acceleration is output.

打込み杭1はハンマで叩かれて地中に貫入するが、ハン
マの力が取り除かれると多少浮き上がるので、計測され
る加速度は地中に向う方向を正とすると、N4図(a)
に示すように、はじめは正方向であり、浮き上がるとき
には負方向になる。
Driven pile 1 is hit with a hammer and penetrates into the ground, but when the force of the hammer is removed, it lifts up a little, so if the measured acceleration is positive in the direction toward the ground, then Figure N4 (a)
As shown in , the direction is positive at first, and when it rises it becomes negative.

(2)ステップ2 計測された加速度αに対応する加速度信号は、増幅回路
3を介して増幅され、サンプリング回路4に入力される
。サンプリング回路4はサンプリングタイム設定回路5
によりサンプリングタイム力、トリガレベル設定回路6
によりトリガレベルが、計測時間設定回路7により計測
時間がそれぞれ設定されるようになっており、設定され
たタイミングで加速度信号をサンプリングする。サンプ
リングタイム設定回路5が設定するサンプリングタイム
は、打込み杭1の種類及びハンマにより若干異なるが、
20〜100μsが適当であることが実験の結果確証さ
れている。又、トリガレベル設定回路6が設定するトリ
ガレベルは、加速度が所定の大きさを超えた時点から実
際に加速度を計測させるものである。トリガレベルは打
込み杭1の最大加速度が500G程度であるので、50
〜100 Gとし、加速度が50〜100 G以上にな
る前の加速度、時間にすると4〜20m5ecをサンプ
リング回路4にサンプリングさせる。さらに、計測時間
設定回路7が設定する計il!11時間は、応力波が打
込み杭20を1往復する時間をT(=2L/c)とする
と、その3〜5倍の3T〜5Tとする。サンプ11ング
回路4によってサンプリングされた加速度信号は、アナ
ログ・デジタル変換回路8を介してデジタル信号に変換
され、メモリ9に記憶される。この場合、加速度信号は
、サンプリングした各加速度信号毎に番号を付して、デ
ータ番号とともに記憶する。
(2) Step 2 The acceleration signal corresponding to the measured acceleration α is amplified via the amplifier circuit 3 and input to the sampling circuit 4. The sampling circuit 4 is a sampling time setting circuit 5.
By sampling time force, trigger level setting circuit 6
The trigger level and measurement time are respectively set by the measurement time setting circuit 7, and the acceleration signal is sampled at the set timing. The sampling time set by the sampling time setting circuit 5 differs slightly depending on the type of driven pile 1 and the hammer.
Experiments have confirmed that 20 to 100 μs is appropriate. Further, the trigger level set by the trigger level setting circuit 6 is such that the acceleration is actually measured from the point in time when the acceleration exceeds a predetermined magnitude. Since the maximum acceleration of driven pile 1 is about 500G, the trigger level is 50
~100 G, and the sampling circuit 4 samples the acceleration, or time, of 4 to 20 m5ec before the acceleration exceeds 50 to 100 G. Furthermore, the timer set by the measurement time setting circuit 7! The 11 hours are 3T to 5T, which is 3 to 5 times the time T (=2L/c) required for the stress wave to make one round trip around the driven pile 20. The acceleration signal sampled by the sampling circuit 4 is converted into a digital signal via the analog-to-digital conversion circuit 8 and stored in the memory 9. In this case, the acceleration signals are stored together with a data number by assigning a number to each sampled acceleration signal.

(3)ステップ3 積分回路lOはメモリ9に記憶された各加速度信号を時
間積分し、第4図(b)に示すように打込み杭1の速度
Vを算比し、算出した速度Vに対応する速度信号をメモ
リ11に記憶させる。なお、速度信号は対応する加速度
信号に付した番号とともに記憶する。
(3) Step 3 The integrating circuit 1O time-integrates each acceleration signal stored in the memory 9, calculates the speed V of the driven pile 1 as shown in FIG. 4(b), and calculates the speed V corresponding to the calculated speed V. The speed signal is stored in the memory 11. Note that the speed signal is stored together with the number attached to the corresponding acceleration signal.

(4)ステップ4 積分回路12はメモリ11が記憶している速度信号を時
間積分し、第4図(c)に示すように打込み杭1の変位
量Sを算出し、算出した変位量Sに対応する変位量信号
をメモリ13に記憶させる。この場合も、変位量信号は
対応する速度信号及び番号とともに記憶する。なお、変
位量Sは積分回路lOによって算出するようにしてもよ
いが、高速演算を考慮すると、別々に行なった方がよい
(4) Step 4 The integrating circuit 12 time-integrates the speed signal stored in the memory 11, calculates the displacement amount S of the driven pile 1 as shown in FIG. The corresponding displacement amount signal is stored in the memory 13. In this case as well, the displacement signal is stored together with the corresponding speed signal and number. Note that the displacement amount S may be calculated by the integrating circuit IO, but in consideration of high-speed calculation, it is better to calculate it separately.

(5)ステップ5〜8 CP U 14はメモリ11及び13を検索しくステッ
プ5)、速度Vが雫(V2=O)になるデータに対応す
る変位1s(S=S2)を探す(ステップ6)、CPU
14は検索した変位量S2から打込み杭1の貫入量S、
リバワンドHKを算出する(ステップ7)、杭体1の最
終的な貫入量を33%前回の打込みによる貫入量をSl
とすると、貫入量Sは、 5=Ss−Sl =S、  −0 =S3 になる、又、リバウンド量には、最大貫入量をS、とす
ると、 K ’= S 2− S 3 になる0次いで、CP U 14は第1式に示した一次
元波動方程式にリバウンド量Kを代入して、動的支持力
Ruを算出する(ステップ8)、即ち、打込み杭1の実
断面積をA、打込み杭lのヤング係数をE、打込み杭1
の周面のN値の平均値をN、打込み杭1の周長をU、打
込み杭1の長さをI、補正係数をeo、efとすると、
動的支持力R。
(5) Steps 5 to 8 The CPU 14 searches the memories 11 and 13 (Step 5) and searches for the displacement 1s (S=S2) corresponding to the data where the velocity V becomes a drop (V2=O) (Step 6) ,CPU
14 is the penetration amount S of the driven pile 1 from the searched displacement amount S2,
Calculate River Wand HK (Step 7), set the final penetration amount of pile body 1 to 33%, and set the penetration amount from the previous driving to Sl
Then, the penetration amount S is 5=Ss-Sl =S, -0=S3, and for the rebound amount, if the maximum penetration amount is S, then K'=S2-S30 Next, the CPU 14 calculates the dynamic support force Ru by substituting the rebound amount K into the one-dimensional wave equation shown in the first equation (step 8). That is, the actual cross-sectional area of the driven pile 1 is set as A, Young's modulus of driven pile l is E, driven pile 1
Let N be the average value of the N values of the circumferential surface of
Dynamic support force R.

は、 A−E  ・ に   N−U  ・ ■になる。teeth, A-E ・ becomes N-U ・■.

[発明の効果]′ 以上説明したように本発明によれば、加速度の時間積分
値である速度が零になるとき、即ち最大貫入量を基準と
して、貫入量及びリバウンド量を算出し、さらに所定の
動的支持力算定式により動的支持力を高速に算出するこ
とができる。
[Effects of the Invention]' As explained above, according to the present invention, the amount of penetration and the amount of rebound are calculated when the speed, which is the time integral value of acceleration, becomes zero, that is, the maximum amount of penetration, and the amount of rebound is calculated based on the maximum amount of penetration. The dynamic support force can be calculated quickly using the dynamic support force calculation formula.

又、従来の紙詰付方法よりも高い精度、光学式変位計方
法と同等の精度で動的支持力が得られ、しかも、光学式
変位計方法のようにターゲットの取り付は及び光学測定
装置の校正が不要である。
In addition, dynamic support force can be obtained with higher accuracy than the conventional paper packing method and with the same accuracy as the optical displacement meter method, and unlike the optical displacement meter method, target attachment and optical measurement equipment are not required. No need for calibration.

又、加速度計を用いるので、不動点を設定する必要がな
い。
Furthermore, since an accelerometer is used, there is no need to set a fixed point.

さらに、計測時間が長く先端地盤の彫りが生じる現象を
十分に含んでいるので、原理上加速度・歪ゲージ方法よ
り精度が良い。
Furthermore, since the measurement time is long and the phenomenon of carving of the ground at the tip is fully included, the accuracy is better than the acceleration/strain gauge method in principle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る打込み杭の動的支持力計測装置の
ブロック図、第2図は第1図に示した打込み杭の動的支
持力計測装置の動作を示すフローチャート、第3図は第
1図に示した打込み杭の動的支持力計測装置の各部の信
号波形図、第4(支)は各部の実際の信号波形図、第5
図は従来の紙詰付方法の原理図、第6図及び第7図は紙
詰付方法により記録用紙に記録される線の説明図、第8
図は変位計方法の原理図、第9図は光学測定装置28の
出力を示す図、第1O図は加速度計・歪ゲージ方法の原
理図、第11図は加速度計・歪ゲージ方法により得られ
る加速度計及び歪ゲージの出力波形図、第12図は加速
度計・歪ゲージ方法により得られる変位量の説明図であ
る。 1・・・打込み杭、2・・・加速度計、3・・・増幅回
路、4・・・サンプリング回路、5・・・サンプリング
タイム設定回路、6・・・トリガレベル設定回路、7・
・・計測時間設定回路、8・・・アナログ・デジタル変
換回路、9.11.13.15・・・メモリ、1O11
2・・・積分回路、14・・・中央処理装皿(cpu)
。 第2図 第5図 (0)        (b) 第6図 第7図 第10図 クリ 第11図
FIG. 1 is a block diagram of the dynamic bearing capacity measuring device for driven piles according to the present invention, FIG. 2 is a flowchart showing the operation of the dynamic bearing capacity measuring device for driven piles shown in FIG. 1, and FIG. The signal waveform diagram of each part of the dynamic bearing capacity measuring device for driven piles shown in Figure 1, the fourth (support) is the actual signal waveform diagram of each part, and the fifth
The figure shows the principle of the conventional paper stuffing method, Figures 6 and 7 are explanatory diagrams of lines recorded on recording paper by the paper stuffing method, and Figure 8 shows the principle of the conventional paper stuffing method.
Figure 9 shows the principle of the displacement meter method, Figure 9 shows the output of the optical measuring device 28, Figure 1O shows the principle of the accelerometer/strain gauge method, and Figure 11 shows the output obtained by the accelerometer/strain gauge method. The output waveform diagram of the accelerometer and strain gauge, FIG. 12, is an explanatory diagram of the amount of displacement obtained by the accelerometer/strain gauge method. DESCRIPTION OF SYMBOLS 1... Drive pile, 2... Accelerometer, 3... Amplification circuit, 4... Sampling circuit, 5... Sampling time setting circuit, 6... Trigger level setting circuit, 7...
...Measurement time setting circuit, 8...Analog-digital conversion circuit, 9.11.13.15...Memory, 1O11
2... Integrating circuit, 14... Central processing unit (CPU)
. Figure 2 Figure 5 (0) (b) Figure 6 Figure 7 Figure 10 Figure 11

Claims (2)

【特許請求の範囲】[Claims] (1)断続的に打込まれることにより地中に貫入される
打込み杭の加速度を測定し、前記加速度を所定時間毎に
積分し、前記打込み杭の速度を算出し、前記速度を所定
時間毎に積分し、前記打込み杭の変位量を算出し、前記
打込み杭の速度が零になったときの前記変位量から該打
込み杭の最大変位量及び該打込み杭の貫入量を算出し、
該最大変位量から該貫入量を減じて、該打込み杭のリバ
ウンド量を算出し、前記リバウンド量及び動的支持力算
定式に基づいて、前記打込み杭の動的支持力を算出する
ことを特徴とする打込み杭の動的支持力計測方法。
(1) Measure the acceleration of a driven pile that penetrates the ground by being driven intermittently, integrate the acceleration at predetermined time intervals, calculate the speed of the driven pile, and calculate the speed at predetermined time intervals. , calculate the displacement amount of the driven pile, calculate the maximum displacement amount of the driven pile and the penetration amount of the driven pile from the displacement amount when the speed of the driven pile becomes zero,
The amount of rebound of the driven pile is calculated by subtracting the amount of penetration from the amount of maximum displacement, and the dynamic bearing capacity of the driven pile is calculated based on the amount of rebound and a dynamic bearing capacity calculation formula. A method for measuring the dynamic bearing capacity of driven piles.
(2)断続的に打込まれることにより地中に貫入される
打込み杭に取り付けられ、該打込み杭の打込み時の加速
度を測定する加速度計と、前記加速度を所定時間毎に積
分し、前記打込み杭の速度を算出する第1の積分回路と
、前記速度を所定時間毎に積分し、前記打込み杭の変位
量を算出する第2の積分回路と、前記打込み杭の速度が
零になったときの前記変位量から該打込み杭の1回の打
込みによる最大変位量及び該打込み杭の貫入量を算出し
、該最大変位量から該貫入量を減じ、該打込み杭のリバ
ウンド量を算出するリバウンド量算出手段と、前記リバ
ウンド量及び動的支持力算定式に基づいて、前記打込み
杭の動的支持力を算出する支持力算出手段とを備えたこ
とを特徴とする打込み杭の動的支持力計測装置。
(2) An accelerometer is attached to a driven pile that penetrates into the ground by being driven intermittently, and measures the acceleration of the driven pile when it is driven; a first integrating circuit that calculates the speed of the pile; a second integrating circuit that integrates the speed at predetermined time intervals and calculates the amount of displacement of the driven pile; and when the speed of the driven pile becomes zero. Calculate the maximum displacement amount by one driving of the driven pile and the penetration amount of the driven pile from the displacement amount, and subtract the penetration amount from the maximum displacement amount to calculate the rebound amount of the driven pile. Dynamic bearing capacity measurement of a driven pile, comprising a calculation means and a bearing capacity calculation means for calculating the dynamic bearing capacity of the driven pile based on the rebound amount and the dynamic bearing capacity calculation formula. Device.
JP16990486A 1986-07-21 1986-07-21 Method and apparatus for measuring dynamic supporting force of pile Pending JPS6373128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16990486A JPS6373128A (en) 1986-07-21 1986-07-21 Method and apparatus for measuring dynamic supporting force of pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16990486A JPS6373128A (en) 1986-07-21 1986-07-21 Method and apparatus for measuring dynamic supporting force of pile

Publications (1)

Publication Number Publication Date
JPS6373128A true JPS6373128A (en) 1988-04-02

Family

ID=15895126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16990486A Pending JPS6373128A (en) 1986-07-21 1986-07-21 Method and apparatus for measuring dynamic supporting force of pile

Country Status (1)

Country Link
JP (1) JPS6373128A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171420A (en) * 1988-12-23 1990-07-03 Doboku Kenkyu Center Method of measuring displacement of fitted pile to be fitted during construction and device therefor
JPH09228370A (en) * 1996-02-27 1997-09-02 Unyusho Daigo Kowan Kensetsukyoku Pile driving execution management device
JPH1078333A (en) * 1996-09-04 1998-03-24 Ohbayashi Corp Measuring monitoring system for driven pile
EP1939360A1 (en) 2006-12-21 2008-07-02 Technische Universität Hamburg-Harburg Method and device for inserting elongated profiles into a foundation
JP2016524670A (en) * 2013-06-18 2016-08-18 アイエイチシー・ホランド・アイイー・ベー・フェー Method for installing foundation components in the ground and pile driver
JP2019078012A (en) * 2017-10-20 2019-05-23 調和工業株式会社 Pile placement management system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171420A (en) * 1988-12-23 1990-07-03 Doboku Kenkyu Center Method of measuring displacement of fitted pile to be fitted during construction and device therefor
JPH09228370A (en) * 1996-02-27 1997-09-02 Unyusho Daigo Kowan Kensetsukyoku Pile driving execution management device
JPH1078333A (en) * 1996-09-04 1998-03-24 Ohbayashi Corp Measuring monitoring system for driven pile
EP1939360A1 (en) 2006-12-21 2008-07-02 Technische Universität Hamburg-Harburg Method and device for inserting elongated profiles into a foundation
JP2016524670A (en) * 2013-06-18 2016-08-18 アイエイチシー・ホランド・アイイー・ベー・フェー Method for installing foundation components in the ground and pile driver
JP2019078012A (en) * 2017-10-20 2019-05-23 調和工業株式会社 Pile placement management system

Similar Documents

Publication Publication Date Title
IE830635L (en) Investigating stand-off in a borehole
US4586366A (en) Method and apparatus for measuring driving resistance and velocity of piles during driving
CA2218911A1 (en) Mooring bed assessment apparatus and method
JPS6373128A (en) Method and apparatus for measuring dynamic supporting force of pile
JP4984887B2 (en) Multi-force measurement method and apparatus
JP3653685B2 (en) Pile head displacement measuring method and pile bearing capacity calculation device
JPH034688B2 (en)
JP3703900B2 (en) Pile driving management device
JPH02171420A (en) Method of measuring displacement of fitted pile to be fitted during construction and device therefor
CN204495315U (en) A kind of measuring system of contour of object
JPH1078333A (en) Measuring monitoring system for driven pile
JPS6230908A (en) Pile-head displacement measuring apparatus for pile driving
JP3173719B2 (en) Piling construction management system
JPH10160446A (en) Rebound instrument for driving pile
JPH0464403B2 (en)
JPS621922A (en) Measurement of displacement of driven pile
JPS5930007A (en) Method for measuring sinking state of pile
KR20060060436A (en) Apparatus and method for measuring the impulse of golf putting and, golf club with the apparatus
RU94036121A (en) Method of measurement of rocket engine thrust by means of primary converter and stand for its realization
JP2000180561A (en) Ground investigation method
JPH01142125A (en) Recorder for striking times of pile in pile-driving ship
SU1516963A1 (en) Method of calibrating transducers of acoustic emission
JPH03281891A (en) Measurement of distance between inner walls of pit
SU888004A1 (en) Concrete strength determining method
SU1538157A1 (en) Method of measuring meteorological visibility range